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Abstract: Recently, many Low Earth Orbit (LEO) satellite networks are being implemented to
provide seamless communication services for global users. Since the high mobility of LEO satellites,
handover strategy has become one of the most important topics for LEO satellite systems. However,
the limited on-board caching resource of satellites make it difficult to guarantee the handover
performance. In this paper, we propose a multiple attributes decision handover strategy jointly
considering three factors, which are caching capacity, remaining service time and the remaining
idle channels of the satellites. Furthermore, a caching-aware intelligent handover strategy is given
based on the deep reinforcement learning (DRL) to maximize the long-term benefits of the system.
Compared with the traditional strategies, the proposed strategy reduces the handover failure rate by
up to nearly 81% when the system caching occupancy reaches 90%, and it has a lower call blocking
rate in high user arrival scenarios. Simulation results show that this strategy can effectively mitigate
handover failure rate due to caching resource occupation, as well as flexibly allocate channel resources
to reduce call blocking.

Keywords: LEO handover strategy; multiple attributes; caching; deep reinforcement learning

1. Introduction

In recent years, the 5th generation mobile communication system (5G), which aims
to provide high-speed wireless services [1] for global users, has developed rapidly. How-
ever, due to the impacts of terrain and cost on infrastructure construction, terrestrial cellular
networks can only cover densely populated areas [2], and it fails to provide communica-
tion services for mountainous terrain, oceans, and air areas. The advantages of satellite
communication, which are wide coverage, strong resistance to destruction, and insensitive
to terrain factors, can compensate for the limitations of the terrestrial mobile communi-
cation networks. Therefore, satellite communication has become one of the key technical
components for systems beyond 5G to achieve global coverage [3]. It is widely imple-
mented in many fields [4], such as military, disaster emergency, digital broadcasting and
television, and mobile communication. Some scholars also proposed that the 6th generation
(6G) wireless communication will be “5G + satellite network” [5]. Thus, many countries
and companies are actively engaging in the research and implementation of satellite com-
munication systems, especially the Low Earth Orbit (LEO) communication systems with
lower propagation delay [6], such as Starlink, OneWeb, etc.

Generally, the LEO satellite system has a dynamic topology, which leads to frequent
handover between terrestrial terminals and satellites [7]. Unfortunately, frequent handover
not only makes the LEO satellite systems difficult to guarantee the quality of service
(QoS) of users but also leads to the waste of radio resources. Moreover, the existing
studies on satellite handover strategies, such as inter-beam handover and inter-satellite
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handover [8], mainly focus on handover based on the receiving signal quality, remaining
service time, and so on.

Papapetrou et al. [9] proposed three different handover criteria: the maximum remain-
ing service time, the maximum number of idle channels, and the minimum distance, which
could be applied to new coming or handover calls. The strategy based on the maximum
remaining service time can greatly reduce the handover times, delay, and signaling cost.
On basis of this strategy, Hu et al. [10] proposed a velocity-aware handover prediction
method to find the shortest path of the time-expanded graph dynamically. Duan et al. [11]
proposed a distributed handover method by taking into account the impact of routing,
and it can reduce the propagation delay while keeping the handover times acceptable.
Seyedi et al. [12] proposed a simple real-time handover strategy, which exploited both
the global positioning system (GPS) infrastructure and multiple satellites, to minimize
the expected handover times. The strategy based on the maximum number of idle channels
selected the candidate satellite with the largest number of available channels. Thus, the load
distribution of satellite systems can be balanced, and the limited network resources can be
efficiently utilized. Zhou et al. [13] proposed a dynamic channel reservation scheme based
on priorities. The traffic, which is predicted based on the deterministic movement property
of LEO satellites, was used to obtain the thresholds for reserved channels. It can effectively
reduce handover failure rate and improve channel utilization by dynamically adjusting
the thresholds according to the traffic conditions. The strategy based on the minimum
distance selected the candidate satellite by considering the distance between the satellites
to avoid link interruption. Wu et al. [14] proposed a graph theory-based inter-satellite
handover strategy, which adopted the shortest path algorithm to obtain the optimal han-
dover scheme. Furthermore, other single-attribute handover criteria can be achieved with
this handover model by changing the path weights. Since the above studies only consider
the effect of a single attribute of the candidate satellite, they cannot achieve a good trade-off
between handover times, system load, and success rates of handover.

Li et al. [15] proposed a multi-layer handover management framework and different
handover procedures based on handover prediction which can reduce handover delay
and signaling cost. Furthermore, they also proposed a dynamic handover optimization
method, which takes traffic, rate demand, and channel gain into account, aiming at reducing
the dropping rate and guaranteeing the QoS of mobile terminals. Li et al. [16] proposed
a user-centric handover scheme for ultra-dense LEO satellite networks, and it can realize
seamless handover by buffering user’s downlink data in multiple satellites simultaneously.
Wu et al. [17] proposed a handover algorithm based on the potential game, and the strategy
considered the remaining service time and the satellite elevation angle which can be utilized
to minimize the average satellite handover times and decrease call-dropping probability.
They also proposed a terminal random-access algorithm aiming at balancing the network
load. He et al. [18] proposed a load-aware satellite handover strategy based on multi-agent
reinforcement learning, and it can balance satellite load to avoid network congestion,
while, at the same time, maintain low signaling overhead. Miao et al. [19] proposed an
LEO satellite handover strategy based on the multi-attribute decision. The strategy used
the technique for order preference by similarity to an ideal solution (TOPSIS) evaluation
method to calculate the weighted values of three attributes, which include signal strength,
remaining service time, and remaining idle channels. And then, the stratrgy selected
the candidate satellite with the best overall performance. Zhang et al. [20] considered
the impacts of channel quality, remaining service time, and the number of service users on
handover strategy, and they used the entropy method to weight each factor and transform it
into a single objective optimization problem. Xu et al. [21] analyzed a quality of experience
(QoE)-driven handover strategy, which considered routing delay, remaining service times,
and remaining idle channels with high-speed mobile users for LEO satellite networks.
Table 1 shows the summary and comparison of the above studies.
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Table 1. Comparison of existing handover strategies.

Strategy Types Authors
Handover Factors

PerformanceService
Times

Channels Distance Others

Single
attribute

Papapetrou
et al. [9]

X reduce the handover times

X balance load,
reduce handover failure rate

X avoid link interruption

He et al.
[10]

X velocity-aware handover prediction,
find the shortest path

Duan et al.
[11]

X routing delay reduce the propagation delay

Seyedi et al.
[12]

X GPS,
multiple satellite

minimize the handover times

Zhou et al.
[13]

X
traffic

prediction
reduces handover failures rate,

improves channel utilization

Wu et al.
[14]

X optimal handover strategies
for end-to-end communication

Multiple
attribute

Li et al.
[15]

X
traffic, rate

demand
reducing the dropping rate,

guarantee the QoS of mobile users.

Wu et al.
[17]

X X minimize the handover times,
decrease call-dropping probability

He et al.
[18]

X X load-aware balance load,
maintain low signaling overhead

Miao et al.
[19]

X X single strength reduce handover times,
balance load and guarantee QoS

Zhang et al.
[20]

X X number of users,
satellite power

reduce handover times,
balance load and guarantee SNR

Xu et al.
[21]

X X routing delay reduce handover times, failure
rate and transition delay

Besides factors related to the communication metrics, resource management by con-
sidering the integration of communication, computing and caching (3C) is also important
for future mobile edge computing (MEC) enhanced satellite systems [22]. Caching data
at satellite nodes can improve communication efficiency by avoiding duplicate transmis-
sions [23,24]. Liu et al. [23] proposed a novel caching algorithm by optimizing contents
placement in LEO satellite constellation networks, which was used to minimize user ter-
minals content access delay. Zhang et al. [25] analyzed the caching restricted resource
allocation with joint optimization of satisfaction index and spectrum efficiency for multi-
beam satellite systems. Since the satellite on-board caching resource is limited, we focus
on evaluating the inter-satellite handover strategies for the LEO satellite systems with
the caching aware strategy.

Moreover, we aim to tackle the following problems encountered by the existing
handover strategies:

(1) Although the existing handover strategies analyze several factors that affect the perfor-
mance of handover, the effect of limited on-board caching is not considered. Moreover,
the joint-effect of multiple attributes, which are on-board caching, remaining service
time, and idle channels, is not considered either.

(2) The existing handover strategies make the handover decisions with the snap shot-
based topology. However, the topology of LEO satellite networks is time varying, and
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the snap shot-based handover strategies cannot guarantee the long term performance
of the dynamic system.

To solve these problems, the effects of on-board caching and joint-effect of multiple
attributes on handover strategies are analyzed in this paper. Furthermore, an intelligent
handover strategy based on deep reinforcement learning (DRL) is proposed to reduce
the dropping probability and call blocking rate. The main contributions are listed as below.

(1) A novel framework for caching-aware intelligent handover strategies is proposed
for LEO satellite networks. Different from existing handover strategies, the joint-effect
of multiple attributes, including remaining service time, remaining idle channels, and
remaining caching capacity, on handover performance are investigated with dynamic
network topology.

(2) To adapt to the dynamic topology of satellite systems, the inter-satellite handover
process is modeled as a Markov decision process, and the process for the intelligent
handover strategy is provided in detail.

(3) An intelligent handover algorithm based on DRL is proposed. The algorithm can make
decisions on when will the handover be activated and select the target satellite in each
time slot. Moreover, the DRL algorithm can make continuous handover decisions,
which makes the whole system obtain the maximum long-term benefits. Simulation
results demonstrate the effectiveness of the proposed handover strategy.

2. System Model
2.1. System Architecture and Handover Factors

LEO satellites are typically deployed at low altitude, such as 500 km to 1500 km,
and the LEO satellites move with a high speed relative to the users on the ground. Thus,
frequent handover may occur during the service time of users. This paper considers
a constellation of LEO satellites in the sun-synchronous orbit. There are 12 orbits within
the constellation, and 9 satellites are located at each orbit. The satellites are located at an al-
titude of 1000 km and have an orbital inclination of 99.4843 deg. A typical handover
scenario in the LEO satellite system is presented in Figure 1. Each terrestrial user termi-
nal establishes a communication link with an LEO satellite for transmitting data. Due
to the high mobility of the LEO satellite, the terrestrial users will move out of the coverage
of the serving satellite after a period of connecting, and handover is required to ensure
continuous communication. In addition to this case, the access of new coming users can
also lead to handover within the system. And the adjacent satellites will continuously ex-
change the remaining resource information through the inter-satellite link. When the source
satellite detects that the handover is needed for the connected user links, it will analyze
the resource information and select the best satellite from the candidate satellite list. Before
the handover, the data that has not been sent will be cached, and then the cached data
should be sent to the optimal candidate satellite after the new link is established.

In the P time slot, the serving satellite refers to the satellite currently connected
to the subscriber, which provides communication services to the subscriber during the time
slot. Candidate satellites refer to satellites that are available for connection in the P time slot
other than the serving satellite. The candidate satellites can be selected when the handover
is activated for the user’s communication link. There are 2 to 4 visual satellites for a user
in this system. In addition to the serving satellites, there are 1 to 3 candidate satellites. Once
the handover is activated, the optimal candidate satellite is selected from the candidate
satellites according to the intelligent policy.
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Figure 1. Handover scenario in LEO satellite system.

2.2. Remaining Service Time

Due to the high mobility, a LEO satellite stays in the visible range of the user for about
10 min generally, during which the satellite can communicate with the user. This period
is called the maximum service time. The maximum remaining service time refers to the time
that the communication link can maintain before the serving satellite moves out of the user’s
visual range. In Figure 2, due to the user’s speed is far less than the speed of the satellite,
we assume that the user terminal is stationary relative to the satellite. For every user and
its serving satellite, the elevation angle between the user and the satellite will gradually
increase from the minimum value to the maximum value and then, finally, decrease
to the minimum value. Specifically, at T0, the user terminal enters the satellite coverage area,
and the elevation angle from the user terminal to the satellite is the smallest. At this point,
the satellite begins to provide communication services for users, and the remaining service
time is the longest. With the movement of the satellite, the elevation angle increases
gradually, and the user terminal gets the maximum elevation angle at T1. The position
of the satellite footprint Q1 coincides with the point H, and H stands for the closest point
from the location of the user terminal to the satellite footprint trajectory. After T1 − T0,
the elevation angle of the user terminal is minimum again in T2 slot, and the user leaves
the satellite service coverage area. According to the geometric relationship, we can obtain
the maximum service time Tmax [20] as follows:

Tmax =
2Γ(t0)

ω
, (1)

where Γ(t0) is the radian of ∠Q0OH, O is the center of the Earth, and ω is the angular
velocity of the satellite. Γ(t0) can be calculated with Υ(t0) and Υmin [20] as follows:

cos Γ(t0) cos(Υmin) = cos Υ(t0), (2)

where Υmin is the radian of ∠Q1OU, O is the center of the Earth, and Q1U represents
the shortest distance between the user terminal and the satellite footprint trajectory. Υ(t0)
is the radian of ∠Q0OU, and Q0U represents the longest distance between the user terminal
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and the satellite footprint trajectory. According to the geometric relationship, we can
calculate the maximum service time with the total radian of the satellite footprint trajectory
2Γ(t0).

0( )t

0( )t 2( )t

2( )t

0Q
2Q1( )H Q

Satellite footprint 

trajectory

min

Satellite orbit

user terminal

U

0T 1T
2T

Figure 2. Satellite coverage at different times.

First, Υ(t0) [20] can be obtained as shown in the Figure 3. It can be expressed as

(Re + h) cos(θmin + Υ(t0)) = Re cos θmin, (3)

where Re is the radius of Earth, h is the altitude of satellite orbit, and θmin is the user’s
minimum elevation angle. Then, Υ(t0) can be expressed as

Υ(t0) = arccos(
Re

Re + h
cos θmin)− θmin, (4)

Figure 3. The geometric relationship of Υ(t0).
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As show in Figure 4, Υmin [20] can be obtain as follows:

Υmin = arccos

√
1−

d2
min
R2

e
, (5)

where dmin is the shortest distance of user terminal to the satellite footprint trajectory plane.
In the actual system, the latitude and longitude of the satellite footprint point (φs

t , ϕs
t , 0)

and user (φu
t , ϕu

t , ζu
t ) for time slot t can be obtained according to the GPS positioning

system. Converting latitude, longitude and altitude coordinates (φ, ϕ, ζ) to Earth-Centered
Earth-Fixed (ECEF) coordinates (x, y, z). The conversion formula is:

x = (
a√

1− e2sin2φ
+ ζ) cos φ cos ϕ

y = (
a√

1− e2sin2φ
+ ζ) cos φ sin ϕ

z = ((1− e2)
a√

1− e2sin2φ
+ ζ) sin φ

, (6)

where a is the length of the Earth’s semimajor axis, and e is the eccentricity of the Earth. Use
three coordinates of the satellite footprint {(xs

t , ys
t , zs

t)|t = 0, 1, 2} to determine the satellite
footprint trajectory plane equation

Ax + By + Cz + D = 0, (7)

where 
A = (y2 − y1)(z3 − z1)− (y3 − y1)(z2 − z1)

B = (z2 − z1)(x3 − x1)− (z3 − z1)(x2 − x1)

C = (x2 − x1)(y3 − y1)− (x3 − x1)(y2 − y1)

D = −Ax1 − By1 − Cz1

. (8)

Figure 4. The geometric relationship of Υmin.

According to the plane Equation (7), dmin can be expressed as
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dmin =
Axu + Byu + Czu + D√

A2 + B2 + C2
. (9)

Finally, the angular velocity ω of the satellite in the ECEF coordinate system can be
got according to the geometric relationship in Figure 5, which can be expressed as

ω ≈ ωs + ωe cos(π − σ), (10)

where ωs and ωe are, respectively, the angular velocity of the satellite and the Earth
in the Earth-Centered Inertial(ECI) coordinate system, σ is the satellite orbit inclination, ωs
can be expressed as

ωs =

√
µ

(Re + h)3 , (11)

where µ is the Kepler constant, Re is the Earth radius, and h is the altitude of the satellite orbit.
With Equations (4) and (5), Γ(t0) can be written as

Γ(t0) = arccos
(

cos Υ(t0)

cos(Υmin)

)
. (12)

Then, the maximum service time of satellite can be obtained by Equation (1), and
the remaining service time at the current slot T can be expressed as

Trem = Tmax − (T − T0), (13)

where T0 is the recorded service start time.

Figure 5. Angular velocity of satellite.
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2.3. Remaining Idle Channels

Each satellite has a fixed number of channels. Channels that are occupied will not be
allocated to other users, while unoccupied channels are idle and waiting to be allocated.
The number of remaining idle channels reflects the satellite load. Unbalanced load distribu-
tion will lead to a large number of idle channels in the light-load satellite coverage area, and
the dropped calls and call blocking rate will increase in the overload areas. This situation
will greatly reduce the overall performance of the system. In this paper, the number of idle
channels is obtained in real-time through information interaction between satellites and
utilized as a factor to make the handover decisions. For example, the handover strategy can
dynamically reset the links of connected users to the adjacent satellites with idle channels
to reduce the blocking rate of new calls.

2.4. Remaining Caching Capacity

During the handover period, the user’s unsent data will be cached to the serving
satellite, and they will not be sent to the target satellite until the handover is completed.
The data will be cached and utilized to ensure the integrity of user data and avoid packet
loss caused by handover. Apart from the occupied caching resources, the remaining caching
resources that can be used for caching the data during the handover process are called
the remaining caching capacity. However, the limited satellite on-board caching resource
is difficult to meet the requirement of a large amount of data caching caused by multi-user
simultaneous handover processes, and it will lead to handover failure and data packet
loss. Therefore, the on-board caching resource is regarded as one of the decision factors
of handover, and the information can also be obtained from the information interaction
between adjacent satellites.

3. Caching-Aware Intelligent Handover Strategy
3.1. Handover Flow

This paper proposes an inter-satellite handover strategy, where the handover decisions
are made by the serving satellite, and handover flow is shown in Figure 6. Firstly, the user
periodically reports the user’s location to the serving satellite, and the satellite calculates
the remaining service time according to the user’s location. At the same time, each satellite
will periodically send its resource information to adjacent satellites, mainly including
the number of idle channels and the remaining caching capacity. For example, at a certain
time slot, the serving satellite will receive resource information from adjacent satellites
and make handover decisions according to the user location information and the satellites
resource information. In detail, the trained DRL network is adopted to decide when
will the handover be executed and the candidate satellite. If the handover procedure
is activated, the serving satellite will send the handover request to the optimal candidate
satellite. Then, the optimal candidate satellite applies for the resources. If the resources
are sufficient, it will send the handover response to the serving satellite, who is caching
the unsent user’s data and sends the handover notification to the user. From then on,
the user and the candidate satellite can establish the communication link, and the handover
can be completed. If the candidate satellite has no remaining resources, or the serving
satellite’s caching is overflow or the link is interrupted, handover failure occurs.
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Figure 6. Handover flow chart based on serving satellite decision.

Based on the handover signaling flow chart, we will analyze the handover latency.
The latency of this process is composed of propagation latency and data transmission
latency, which is ignored here as the signaling transmission latency is much smaller than
the propagation latency. Firstly, the signaling interaction from user to satellite for reporting
location information and information exchange among adjacent satellites occurs periodi-
cally, so this part of the signaling overhead is not counted as part of the handover delay.
When the serving satellite decides to activate handover based on the state of the environ-
ment, it interacts with the optimal candidate satellite for the handover request signaling.
The request and response signaling is carried out on the inter-satellite link, and the max-
imum signaling time between two satellites at a time is approximately 17 ms, as can be
calculated from the STK simulation environment. When the serving satellite finishes
caching the unsent data, it sends a handover command to the ground user, and the propa-
gation delay from satellite to ground user is about 3.3 ms. The user receives the handover
command and establishes a connection with the optimal candidate satellite. Then, the han-
dover process is finished. This process involves two Earth-satellite link transmission and
three inter-satellite link transmissions. The total propagation delay of the process is 57.6 ms.

Here, we should note that there will be several reasons that will cause satellite han-
dover. Besides the satellite movement, we also focus on the following two situations
in this paper:

• When the new coming user asks for access, the communication links of the connected
users may be reset from the serving satellite that has no idle channels to another
candidate satellite. Thus, the channels can be released for the new coming users.

• If the remaining caching capacity is less than the amount of data that will be sent
by the users, the handover cannot be carried out. Otherwise, the handover will fail,
and it will result in packet loss and a sharp decline in user experience.
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Moreover, the handover decisions will be made by considering the joint-effects of sev-
eral attributes, such as remaining service time, remaining idle channels, and remaining
caching capacity, to obtain the best overall system performance.

3.2. Intelligent Handover Strategy with Multiple Attributes

The handover decisions will affect the resource utilization of the connected satellite
resources, so the handover decisions at each time slot will also be affected by the decisions
at the previous time slots; thus, the process can be modeled as the Markov decision process.
In order to achieve a dynamic and continuous handover decision that takes into account
multiple factors in a continuous environmental state, we propose an intelligent handover
strategy based on the DRL. The strategy can intelligently decide when will the handover
be activated and select the optimal satellite based on the resource utilization information
of the candidate satellite. It fully takes into account the joint-effect of multiple attributes
which include the remaining service time, the number of idle channels, and the remaining
caching capacity. Among these attributes, two attributes are the state of the candidate
satellite (the remaining service time and the number of idle channels), and another attribute
is the state of the serving satellite (the remaining caching capacity). Moreover, the handover
strategy can make continuous decisions for the dynamic LEO network. The network
structure is shown in Figure 7, and the detailed explanation for the DQN training process
can be found in Reference [26]. We need to train this decision network in advance and use
the parameter-stabilized DRL network to output the decision actions. During the actual
handover process, the satellite simply feeds the environment information from the mobile
terminal periodically into the DRL network, and the corresponding handover decision will
be obtained.

Powered by TCPDF (www.tcpdf.org)

Figure 7. The intelligent handover network based on DQN.

The specific design of an intelligent handover decision network based on DRL, which
is shown in Figure 7, can be denoted as a tuple (S, A, P, R). S denotes the state space
of the LEO system. A is the handover action space. P is the space of the state transition
probability. S denotes the reward of state and action.

State space (S): the state space is derived from the environment of the LEO satel-
lite communication system. There are four environment state quantities in this paper:
the satellite label Ω, the number of remaining idle channels Θ, the remaining cache capacity
C, and the remaining service time T. Firstly, the satellite label is used to express which
satellite is currently connected to the user, and which satellites are candidates. The number
of remaining idle channels, remaining cache capacity, and the remaining service time are
the factors to be taken into account for handover. And each state consists of the correspond-
ing state of the serving satellite and the handover candidate satellites. The state at time slot
p can be defined as
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sp = {Ωp, Θp, Cp, Tp}. (14)

Ωp is the set of satellite label, which can be expressed as [Ω∗p, Ω1
p, Ω2

p, . . . , ΩK
p ]. Ω∗p

is defined as [Ω∗
1,p

, Ω∗
2,p

, . . . , Ω∗
i,p
]. The upper corner of the status variable symbol is used

to refer to the serving satellite or the candidate satellite. “*” represents the relevant status
of the serving satellite which connected to the user. The lower corner “i, p” indicates
the user number i and the time slot p. So, Ω∗

i,p
is used to express the serving satellite

label of user i. Ω∗i,p ∈ {1, 2, 3, . . . , M}, M is the total number of the LEO satellites. ΩK
p

is difined as [ΩK
1,p, ΩK

2,p, . . . , ΩK
i,p]. The upper corner “k” indicates the relevant status

of the candidate satellite k. For example, the maximum number of visible candidate
satellites for the user in this paper is 3, then the upper corner is 1 or 2 or 3. So, ΩK

i,p
is used to express the kth candidate satellite label of user i. Θp refers to the information
of satellite channels, which can be expressed as Θp= [Θ∗p, Θ1

p, Θ2
p, . . . , ΘK

p ]. Θ∗p is defined
as [Θ∗1,p, Θ∗2,p, . . . , Θ∗i,p], and Θ∗i,p is the number of idle channels of the serving satellite

of user i. Θ∗i,p ∈ {1, 2, 3, . . . , I}, I is the total channel number of a single satellite. ΘK
p

is defined as [ΘK
1,p, ΘK

2,p, . . . , ΘK
i,p], and ΘK

i,p is the number of idle channels for user i’s

Kth candidate satellite. Cp = [C∗p, C1
p, C2

p, . . . , CK
p ] and Tp = [T∗p, T1

p, T2
p, . . . , TK

p ]
is the remaining caching capacity and service time.

Action space (A): For each time slot, the agent will decide whether the handover be
activated or not and select the optimal target satellite for every user. The action of time slot
p can be expressed as

ap = [Λ1,p, Λ1,p, . . . , Λi,p], (15)

where Λi,p ∈ {0, 1, 2, 3, . . . , K}. The value ’0’ means that the handover for user i
will not be activated. Other values mean that handover will be activated, and the corre-
sponding number is the label of the candidate satellites. K is the maximum number of
candidate satellites.

Transition probability (P): Since the system state in this paper is continuous and
the state is affected by the handover decision, the transition probability from sp to sp+1
with the action ap is difficult to be obtain. Hence, a model-free DRL framework based on a
deep Q-learning network (DQN) is adopted.

Reward function (R): We divide the reward function R(sp, ap) into two parts: gain
function gp and cost function lp.

R(sp, ap) =
N

∑
i=1

gi,p − lp, (16)

gi,p =

w1Θ∗i,p + w2C∗i,p + w3T∗i,p, if ap= 0, handover is not activated

w1Θ
ap
i,p + w2C

ap
i,p + w3T

ap
i,p, if ap 6= 0, handover is activated

, (17)

lp = w4αp + w5βp + w6δp. (18)

gi,p is the gain of remaining communication resources. Three attributes, which are the num-
ber of idle channels, remaining caching capacity, and remaining service time, are normal-
ized. w is the weight of each attribute, and w1 + w2 + w3 = 1. lp is the cost function.
αp is the number of successful handover times in time slots p, and βp is the number of
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failed handover times. The failed handover defined here refers to the handover failure
caused by several reasons. For example, the candidate satellite does not have idle channels,
or the remaining service time is reduced to zero, or the serving satellite does not have
enough caching capacity. δp is the number of dropped calls caused by insufficient resources
(remaining service time, channel, etc.).

According to the definitions of state, action, and the reward, we can calculate the target
Q value:

yp = R(sp, ap) + γmax
a′

Q̂(sp, a′; θ−). (19)

Then, the mean square error loss function is calculated as

L(θ) = E[(R(sp, ap) + γmax
a′

Q̂(sp, a′; θ−)−Q(sp, a; θ))2], (20)

where θ is the main network parameters, and θ− is the target network parameters. After
calculating the loss function, the gradient descent strategy is used to update the main
network parameters. To break the time correlation between the sequences, the replay buffer
is used to store the experience, and a random sample of minibatch is used for learning.
The detailed algorithm is described as Algorithm 1.

Algorithm 1 Intelligent handover algorithm based on DRL.

Initialize replay buffer D
Initialize action-value function Q with random weights θ
Initialize target action-value function Q̂ with weights θ− = θ
Repeat
Initialize episode = 1 and p = 1
Initialize the start state s1 with connection relationship.
for p = 1, T do

Select a random action a1 With probability ε otherwise select ap = arg maxaQ(sp, a; θ).

Execute action ap in LEO environment emulator.
Receive a reward R(sp, ap) and next state sp+1
Store transition (sp, ap, rp, sp+1) in D.
Sample minibatch of transition (sp, ap, rp, sp+1) randomly from D when D is full.
Update the main network parameters θ using gradient descent with the goal of mini-
mizing the loss function L(θ) defined in Equation (20)
Every C steps reset Q̂ = Q.

end for
Until episode > episode_ max.

4. Results

Satellite tool kit (STK) is used to obtain the topology of the satellite network. The sim-
ulation parameters are shown in Table 2. And the number of visible satellites for each
terrestrial user is from 2 to 4, which means that each user has up to 3 candidate satellites
except the serving satellite. Five user terminals are set up in Beijing with the locations
following a uniform distribution. We use STK software to simulate the scene and obtain
the geographical coordinates of each user. And STK is used to simulate LEO satellite
constellation to obtain satellite operation data.
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Table 2. Simulation parameters.

Parameter Value

Scene parameters
Constellation type Sun-synchronous orbit

Orbital altitude 1000 km
Orbital inclination 99.4843 deg
Number of planes 12

Number of satellites per plane 9
Minimum elevation angle of user terminal 12 deg

Number of channels per satellite 200
On-board caching capacity for handover 1 GB

Time slot length 100 ms
Data rate [500, 800] Mbit/s

DRL Network parameters
Replay buffer 10,000

Observation size 3000
Minibatch size 200

Activation function ReLU
Learning rate 0.01

Discount factor 0.9

In this paper, DQN is adopted, and Figure 8 shows the convergence of the DQN
network loss function with the increase of training steps. It shows that the loss function
converges when the number of training steps reaches about 4500.

In the simulation, the convergence characteristics of the reward value with different
learning rates, which are 0.0001, 0.001, and 0.01, are compared and shown in Figure 9.
Simulation results show that different learning rates will achieve different performances,
and the convergence speed will also vary. It can be seen from Figure 9 that the conver-
gence speed with learning rate 0.01 is the fastest, and the reward value after convergence
has a small fluctuation range and high stability. The reward value with a learning rate
of 0.01 is much higher than that, with a learning rate of 0.001. Therefore, the learning rate
in this paper is set as 0.01.

Powered by TCPDF (www.tcpdf.org)

Figure 8. Convergence of the DQN loss function.
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Figure 9. Comparison of reward values under different learning rates.

Figure 10 compares the performance of four handover strategies in terms of handover
failure rate. RST represents the traditional handover strategy based on the remaining ser-
vice time (RST), which takes the maximum remaining service time as the selection criteria
for selecting optimal candidate satellites, and handover is activated when the current serv-
ing satellite has no remaining service time. NIC is a traditional handover strategy based on
the number of remaining idle channels (NIC), which takes the maximum number of remain-
ing idle channels as the selection criteria for selecting candidate satellites, and handover
is activated when there is no remaining service time. MAF is a multi-attribute fusion (MAF)
decision based on the TOPSIS evaluation strategy. The strategy considers the remaining
service time and the number of idle channels to select the optimal candidate satellite, and
handover is activated when there is no remaining service time. IMF is the handover strategy
of Intelligent multi-attributes fusion (IMF) decisions based on the DRL, which is proposed
in this paper. It can be seen from Figure 10 that the handover failure rate increase with
the raise of caching occupancy. Among the strategies, the RST strategy has the highest
handover failure rate because it does not consider the remaining channel resources and
the remaining caching capacity. Moreover, the growth trends of the handover failure rate
of RST, NIC, and MAF are significantly improved when the caching occupancy is higher
than 50%. When the caching occupancy is 90%, the handover failure rate is close to 100%.
When the caching occupancy is 90%, the handover failure rate of IMF is close to 20%,
which shows its performance gain over the referred strategies. Therefore, the proposed
IMF handover strategy has the best performance with high caching occupancy.

Moreover, the performance of these strategies on call blocking rate is also compared.
Here, the call blocking rate is defined as:

Pblock =

T
∑

slot=1

Nblock
Nnew

T
. (21)

Here, Nnew new coming users arrive in the satellite coverage area and send an access
request to the satellite. However, because the satellite does not have enough remaining
channel resources for serving all the new coming users, Nblock new coming users’ access
requests are rejected. In this paper, we consider the average call blocking rate in one hour
under a high load rate (95% channel occupancy). The call blocking rate can reflect the flex-
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ibility of the handover algorithm and the QoS of users in the coverage area. As shown
in Figure 11, the call blocking rate of every handover strategy is increasing with the rise
of user arrival rate. Among them, the new call blocking rate of RST is the highest because
the channel state is not considered. The call blocking rate of the NIC is lower than that
of the RST strategy. The MAF strategy considers the remaining service time and the number
of idle channels, but the blocking rate is still high because it cannot flexibly adjust the con-
nections of connected users. The IMF strategy can not only consider multiple factors but
also flexibly configure the connected user link. If necessary, the connected user link can be
reset to the other satellites with the idle channel resources, and it can greatly reduce the call
blocking rate. The simulation results show that the call blocking rate of IMF is the lowest.
Especially when the user arrival rate is 10, the call blocking rate of IMF is about 23% lower
than that of the RST strategy.
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Figure 10. Performance comparison of handover failure rate.
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5. Discussion and Conclusions

In this paper, a caching-aware intelligent handover strategy is proposed for the LEO
satellite network. The strategy is different from existing handover strategies. First,
the handover strategy focuses not only on the selection of the optimal candidate satellite
for handover but also on the handover moment when it will be activated. That is to say
the intelligent handover strategy needs to judge whether the handover can be activated
at this moment and to select the candidate satellite. Secondly, the effects of multiple factors,
including remaining service time, remaining idle channels, and remaining caching capacity,
on the handover strategy are jointly considered. Then, DRL is adopted to make continuous
intelligent handover judgment, which enables sequential decision to maximize long-term
gains by interacting with the environment.

Via simulation, it is verified that the caching-aware intelligent handover strategy has
a significant performance improvement in both the handover failure rate and call blocking
rate. The performance of this strategy is compared with typical RST, NIC single-attribute
handover, and MAF multi-attribute strategies. When the system caching occupancy is 10%,
this strategy reduces the handover failure rate by nearly 40% compared to the RST han-
dover strategy and nearly 20% compared to the MAF strategy. With the increasing of
caching occupancy, the handover failure rate of the RST, NIC, and MAF handover strate-
gies increase rapidly, while the caching-aware handover strategy proposed in this paper
only has a failure probability of 18.3%. This shows that the handover strategy proposed
in this paper can improve the quality of service for users in high caching occupancy scenar-
ios. In addition, the system call blocking rates of each policy are compared for different
user arrival rates. When the user arrival rate is high, the proposed intelligent handover
strategy reduces the call blocking rate by 25% compared to the RST handover strategy and
by 18.5% compared to the MAF handover strategy. Therefore, it can be concluded that
the proposed strategy can effectively balance the system load, relieve the network pressure,
reduce packet loss, and improve the quality of service for users.

Moreover, the DRL used in this strategy can make intelligent and continuous handover
decisions to obtain maximum long-term gains. The complexity of the DRL mainly depends
on the dimensions of state and action space, which is affected by the number of users,
satellite and handover factors considered. Generally, the training process of DRL will cost
long time to converge. Once the training process is finished, the complexity of decision
process is low. Therefore, the training process can be executed on ground gateways with
a large amount of computing resources, and the decision process can be implemented
on-board. Moreover, artificial intelligence applied in satellite communication systems
is still an open topic, and we will also investigate other light-weight models that could be
utilized for resource management in satellite networks in our future works.
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