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Abstract: Use of 3D sensors in plant phenotyping has increased in the last few years. Various
image acquisition, 3D representations, 3D model processing and analysis techniques exist to help
the researchers. However, a review of approaches, algorithms, and techniques used for 3D plant
physiognomic analysis is lacking. In this paper, we investigate the techniques and algorithms used at
various stages of processing and analysing 3D models of plants, and identify their current limiting
factors. This review will serve potential users as well as new researchers in this field. The focus is on
exploring studies monitoring the plant growth of single plants or small scale canopies as opposed to
large scale monitoring in the field.

Keywords: plant phenotyping; plant growth monitoring; point cloud processing; 3D point cloud;
SfM; structural parameter; 3D measurements

1. Introduction

In recent years, a plethora of studies have been conducted on plant trait measurement
in 3D [1–3]. Plant phenotyping is an important area of research for plant growth monitoring.
It is implemented by a fusion of techniques, such as spectroscopy, non-destructive imaging,
and high performance computing. Plant phenotyping provides vital information about
plants for monitoring growth which is helpful to farmers for their decision making process.
Plant phenotyping is a set of protocols and techniques used to precisely calculate plant
architecture, composition, and growth at different growth stages. Popular plant traits
for growth monitoring include stem height, stem diameter, leaf area, leaf length, leaf
width, number of leaves or fruit on the plant, and biomass. However, the measurement
of plant structure and growth parameters is difficult, tedious and mostly depends on
destructive approaches. 3D modelling helps to access the complex plant architecture [4]
which allows plant related information to be extracted, such as characterization of plants
and their growth development. Conventionally all these elements have been evaluated
by experts in this field using a subjective visual score, which can result in dissimilarity
between expert judgements. Primarily, the aim of plant phenotyping is to calculate plant
features precisely without subjective biases [5]. Therefore, 3D measurement techniques are
potentially suitable as these allow measurement of plant traits and can accurately model
plant geometry.

The range of 3D measurement methods include LiDAR, laser scanning, structured
light, structure-from-motion, and time of flight sensors. Each of these methods has its own
merits and demerits. All these methods produce a point cloud, in which every 3D point
represents a point detected on the surface of the plant. Based on the measuring technique,
the coordinates can be augmented by color information or the intensity of the reflected light.
Current 2.5D techniques calculate distances from a single point of view (range images).
In contrast, 3D models describe point clouds captured from different angles and views
displaying various spatial levels of points and therefore demonstrate less occlusion, higher
accuracy, spatial resolution, and sample density.
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A detailed technical classification of 3D acquisition methods is shown in Figure 1.
Active techniques use their own source of illumination for measurements and passive
techniques use ambient light in the scene. Active sensing techniques are then classified into
two types: triangulation-based methods and time-of-flight-based methods. Structured light
(early Kinect sensor) and laser triangulation approaches are triangulation-based methods.
LiDAR and time-of-flight cameras are time-of-flight-based methods. Field cameras and
structure-from-motion (SfM) methods are type of passive techniques. A comparison
between these techniques is given in Table 1.

Figure 1. Classification of 3D acquisition methods.

Table 1. Comparative analysis of state-of-the-art 3D acquisition systems.

Method Price Type Output Resolution

Structured Light $$ Active XYZIRBG <mm

Laser triangulation $$$ Active XYZI < mm

Structure-from-motion $ Passive XYZRGB mm

LiDAR $$$ Active XYZ(I/RGB) cm

Field cameras $$$ Passive XYZRGB mm

Time-of-flight $$ Active XYZI mm

Several papers reviewed 3D image acquisition for plant phenotyping [2,6–9]. However,
a review of approaches used for 3D model processing and analysis in the context of plant
physiognomic analysis is lacking, which will be the focus of this review. For 3D plant
model analysis, a wide set of tools is needed, because of the variety of plant architectures
across species. Our aim is to identify standard processing and analysis stages, and to
review techniques which have been used in each of these stages. An overview of the stages
covered in this paper is shown in Figure 2.

This review addresses the questions related to 3D plant physiognomic analysis. What
sensing methods can be used for such analysis? Are there any potential cost-effective and
non-destructive methods? What are the various scene representations? What type of plant
traits should be extracted? What are the current challenges and research directions?
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Figure 2. Outline of processing and analysis stages for 3D plant growth monitoring.

2. 3D Imaging Techniques
2.1. Active Techniques
2.1.1. Laser Triangulation

Laser triangulation (LT) describes distance calculation techniques based on differing
laser and sensor positions. A laser ray is transmitted to illuminate the target surface. The
position of the laser spot is detected using an image sensor (see Figure 3). Since the laser
and sensor are in different positions, the 3D location of the laser spot can be found through
triangulation. A 3D point cloud can be generated by scanning the laser spot.

Figure 3. General configuration of laser triangulation.

Laser triangulation has a trade-off between the target volume and point resolution.
It can either measure a small target with highest possible resolution or large target with
low resolution. This approach needs a prior estimation of the required resolution and the
target volume. Laser triangulation is mainly used in laboratory settings because of its high
accuracy, high resolution readings and easy set-up [10,11].

2.1.2. Structured Light

Structured light (SL) projects patterns, a grid, in a temporal order on the target. For
every pattern an image is captured by the camera. The 2D points on the grid pattern are
linked to their 3D data by calculating the distortion of the pattern (see Figure 4) [12,13].
Structured light has a bulky set-up and requires more time than other sensing techniques.
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Figure 4. Structured-light technique diagram.

To achieve a 3D model, either the set-up or the target object has to be moved. Struc-
tured light is mostly used for industry applications to check the quality of an object,
providing high accuracy and resolution [14]. The early Kinect sensor is an example of a
structured light sensor.

2.1.3. Time-of-Flight

Time-of-flight (Tof) uses high frequency modulated illumination, and calculates the
range from the phase shift (see Figure 5) [15]. This process can be repeated for thousands
of points at the same time [5]. The set-up for Tof cameras is smaller than other methods
and captures images with lower resolution. These cameras are suitable for indoor appli-
cations [16] or in the gaming industry [17]. Tof cameras are required to move in order to
build a complete 3D point cloud. The cameras are slow and have low resolution, compared
to laser triangulation and structure-from-motion (SfM).

Figure 5. ToF measurement principle.
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2.1.4. LiDAR

LiDAR is basically an extension of the principles employed in radar technology. It
calculates the distance between the scanner and the target object by illuminating the
object using a laser and measuring the time taken for the reflected light to return [5].
Terrestrial LiDAR has a bulky set-up and to deal with occlusion issues, the plant has
to be scanned from multiple positions. This approach has already proved its worth in
surveying applications, such as landslide detection and measurement [18]. For plant
growth monitoring, LiDAR has the advantage that it can measure any target volume with
high accuracy. However, this approach is costly, time consuming, and bulky which makes
it less suitable for plant growth monitoring.

Airborne LiDAR has also been used in some studies [19,20] to determine plant height
and crown diameter measurement. Airborne LiDAR offers accurate and detailed measure-
ments, data can be collected quickly and from a variety of locations. However, there are
some limitations such as underestimation of vegetation height compared to field measure-
ments [21,22] and it struggles with dense vegetation canopy where the dense undergrowth
may be confused with bare ground. The underestimation of vegetation height is also
dependent on plant species and growth stage [23].

2.2. Passive Techniques
2.2.1. Stereo Vision

Stereo vision has three main processing stages: camera calibration, feature extraction,
and correspondence matching. A stereo camera captures a pair of images (right and left).
Using this stereo pair, the disparity can be calculated between the camera coordinates of
matching points in the scene, thus the depth can then be calculated through triangulation
(see Figure 6).

Figure 6. Stereo vision technique.

2.2.2. Structure-from-Motion

Structure-from-motion (SfM) uses a set of 2D images acquired by an RGB camera at
different positions to generate a 3D model of the target [24] (see Figure 7). Corresponding
points in the images are extracted [25] and matched to stitch the images together and
generate the 3D model. The 3D point cloud includes color and intensity information
depending on the type of camera used [26].
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Figure 7. Illustration of structure-from-motion technique.

The point resolution achieved from SfM is comparable to laser triangulation. However,
it depends on the camera resolution and number of images used for 3D modelling [26].

Structure-from-motion can be used by mounting a camera on an unmanned aerial
vehicle (UAV). This set-up is cheaper than airborne LiDAR. It is easy to gather data on a
small study area, and overcast or partly cloudy conditions have less effect on the acquisition
process. However, it is computationally demanding and it cannot penetrate the plant’s
canopy.

In contrast with laser triangulation, which requires more time for acquisition and the
direct result is the point cloud, SfM requires less time for acquiring the images, but needs
more time for reconstruction. SfM can be used in outdoor environments as it does not
require special illumination or complex set-up. This method requires only an off-the-shelf
camera to capture the images, the set-up is cost-effective and easy.

2.2.3. Field Cameras

Field cameras [27] gives depth information with color image by calculating the direc-
tion of the light coming in using camera arrays. This allows the reconstruction of the target.
However, similar to time-of-flight sensors, field cameras also need to move with a bulky
set-up which makes them difficult in outdoor applications.

2.3. A Constructive Comparison of 3D Imaging Techniques

Active techniques provide a high-resolution point cloud for further plant analysis such
as plant trait segmentation and measurement. However, the influence of the laser on plant
tissue has to be considered when active illumination techniques are used, especially laser
triangulation. Even though laser-based techniques are described as non-penetrating, recent
studies have found that plant tissue below cuticle (protecting covering) has significant
impact on the trait measurement and accuracy due to laser intensity [9]. In addition,
because of the edge effect [28,29], plant trait measurements of partial leaves can generate
outliers or errors in the measurement. Other active techniques such as structured light, time-
of-flight, and LiDAR have proven their worth for plant phenotyping demands. However,
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the resolution and accuracy have to be improved for high throughput plant physiognomic
analysis. Table 2 summarises the advantages and disadvantages of the various 3D imaging
techniques.

In contrast, structure-from-motion gives an easy and cost-effective solution. This
makes them best suited for outdoor applications. However, the resolution of the point
cloud depends on the number of images captured. Additionally, SfM requires more
computation time than the other methods. Summing up, SfM is a reliable technique for 3D
modelling of plants while resolving occlusion, self occlusion, correspondence problems,
and providing high resolution information.

In all these studies, researchers have used different sensors and techniques to derive
a 3D model. In conclusion, every sensor and technique has its merits and demerits [5]
and their accuracy may vary. One should choose the sensors and techniques depending
on the budget and requirements [30]. However, if budget is a limiting factor, based on
the comparison provided in Table 1, one must choose structure-from-motion as it is not
only a cost-effective and non-destructive solution, but also it provides better point cloud
resolution at the lowest price.

Table 2. Comparative analysis of 3D imaging techniques.

Technique Type Advantages Disadvantages

Laser
Triangulation Active

-High precision
-High speed data acquisition
& 3D model generation
-Do not rely on external light
source

-High cost
-Sensitive to sunlight

Structured Light Active
-Low cost
-High speed
-High spatial resolution

-Small field-of-view
-Poor with shiny surfaces
-Limited sensing range
-Sensitive to sunlight

Time-of-Flight Active

-Performs well in dim/dark
light conditions
-High pixel resolution
-Accurate depth sensors

-High cost
-sensitive to sunlight

LiDAR Active

-Robust against sunlight
-Performs well in dim/dark
light conditions
-Robust against interference

-High cost
-Bulky set-up
-Poor in edge detection

Stereo Vision Passive

-off-the-shelf cameras used
-Cost-effective
-Easy implementation
-Provides efficient RGB
stream

-Correspondence problem
-Depth range depends on
baseline
-Sensitive to sunlight
-Computationally costly

Structure-from-
Motion Passive

-Low cost
-Excellent portability
-Easy to use
-Works with economical
cameras

-High computation time
-Poor in dim light

3. Plant Separation in Clusters and Row Structure

In some scenarios, the plants are planted in a row or in a cluster. To detect individual
plants, various active and passive methods have been developed in the literature [31,32].
In particular, LiDAR has been widely used over the past decade. Due to the high spatial
resolution of airborne laser scanner (ALS), its data provide important information used
for individual tree detection [33,34]. In the last 20 years, many fully and semi-automatic
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algorithms have been developed for detection of individual plants. However, even if one
algorithm is best for a specific application, it may not be ideal for other situations. For
instance, some algorithms may work well on canopies with large variations in plant growth
stage, plant spacing, or plant crowns with high degree of occlusion [35,36]. It is challenging
to decide an ideal algorithm to detect individual plants as there is no standard method to
assess the accuracy of the algorithm [37]. This section will cover the work related to LiDAR
information using a canopy height model (CHM), digital surface model (DSM), and using
passive methods to generate point cloud to detect the individual plants. Individual plant
detection algorithms are grouped into four categories by Koch et al. [38]: (1) raster-based
algorithms; (2) point cloud-based algorithms; (3) fused method combining raster, point,
and a priori data; and (4) plant shape reconstruction algorithms.

The individual plant detection algorithms are outlined below, but for detailed descrip-
tion, the reader must refer to the primary publications.

3.1. Raster-Based Algorithms
3.1.1. Plant-top Detection

To use local maxima detection on CHM, the canopy height has to be derived from
the laser point cloud data, interpolated and smoothed. The smoothing process results in
the loss of detail about the plants. However, the smoothing process is needed to achieve
an accurate number of local maxima as a starting point for plant segmentation. CHM
underestimates the actual canopy height. To overcome this limitation, Solberg et al. [34]
demonstrated a residual height adjustment method, in which the initial echoes from ALS
were interpolated into a DSM with 25 cm spatial resolution by a minimum curvature
algorithm. A 3×3 Gaussian filter was used to smooth the DSM. The local maxima in 3×3
neighborhood were considered to be plant candidates. The height deviation of the initial
echoes from the DSM was estimated providing a residual height distribution, and the local
maxima and DSM were adjusted by adding specified residual height percentile. The filter
window size and residual height percentile adjustment can be set according to the row
structure or cluster.

However, all the algorithms based on CHM smoothing need a specific smoothing
factor. A large smoothing factor may lead to an under-representation of local height
maxima corresponding to plant-tops. In contrast, a low smoothing factor may lead to an
over-representation of the maxima. In addition, all the algorithms based on analysing local
maxima struggle to detect plants which are not shown in the CHM. For instance, plants in
undergrowth are covered by a neighboring plant’s crown.

In a study conducted by Popescu et al. [19] which used LiDAR to extract individual
plants from a cluster used the local maxima on the assumption that the maximum heights
in a given spatial neighbourhood represent the tips of the plant. The heights help to locate
the individual plants in the cluster.

3.1.2. Segmentation and Post-processing of the Result

Two widely used raster-based algorithms for segmentation are the pouring and water-
shed algorithms [38]. The pouring algorithm starts "flowing water" from a given maximum
height towards the lower heights and the region is divided into areas according to the water
flow. The watershed algorithm uses identical but inverse concept: the areas are extended,
as long as the neighboring pixels with same or lower height exist. The segmentation of
plant crowns with the pouring algorithm works well for uniform heights. However, the
result may have segmented areas not resembling plant crowns, e.g.areas too small to be
plants, non-plant-like structures and so on. Solberg et al. [34] restricted region growing by
applying polygon convexity rules when considering the directions where the regions can
grow.

Geometrical models can be used to identify geometrical shapes combined with specific
dimensions. Holmgren et al. [39] used geometric models for tree crown segmentation.
A correlation surface was formed as the maximum pixel-wise correlation between the
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geometric plant crown model and CHM, defined as generalised ellipsoids of revolutions
[40]. Both the correlation surface and CHM were used for segmentation, and a merging
and splitting criteria was used according to the geometric models.

3.2. Point Cloud Based Methods
3.2.1. K-means Clustering

K-means is one of the most popular clustering algorithms, with many attempts to
partition ALS information into various clusters [41] and in single plant crowns [42]. The
k-means algorithm needs seed points, derived as smoothed CHM-based local maxima [42].
The unnecessary local maxima were removed by 3D Euclidean distance criteria, which
were specified according to the tests using training data. A k-means algorithm is used
to cluster the point cloud according to the seed points. However, it is important to note
that the k-means algorithm works well when the point cloud has isolated or compact
clusters [43]. Therefore, adaptive alternatives have been developed for different cluster
structures [44].

3.2.2. Voxel Based Single Tree Segmentation

Point data were projected on a voxel space, where density images were estimated from
sequential height layers [45]. The images are scanned from top to bottom by a hierarchical
morphological algorithm, assuming that the plant crown has a higher number of points.
The method was then further developed with an algorithm for splitting and merging the
plant crowns, based on the horizontal projection.

3.2.3. Other Point Cloud Based Methods

In another study based on structure-from-motion, Jay et al. [46] analysed the plants
planted in a row structure using overall excess green (ExG) distribution in the image.
Generally, the ExG value changes for the plant and the background which helps to extract
the individual plants when planted continuously.

To extract individual potato plants, planted in a row structure, Zhang et al. [13]
defined ROIs and then the regions are classified as different colors for plants and the
background. Supervised maximum likelihood classification (MLC) clusters pixels into pre-
defined classes. MLC presumes that the statistics for each class in every band is normally
distributed and estimates the probability that a specific pixel belongs to a particular class.
In this way, individual plants were extracted from a row structure.

3.3. Fused Method Combining Raster, Point, and a Priori Data
3.3.1. Adaptive Plant Detection

Ene et al. [47] introduced an adaptive method for single tree delineation and CHM
generation. They adjusted the CHM resolution and filter size based on the prior information
achieved in the form of area-based stem number estimates. Considering that plants are
distributed according the Poisson process, one can estimate a rough plant-to-plant distance
for optimizing the filter size and CHM resolution. A set of CHMs in varying resolution is
formed for each training data. Two runs of the pit-filling algorithm by Ben-Arie et al. [48]
were applied to every CHM, followed with low-pass filtering using binomial kernel with
size relative to the expected nearest-neighbor distance between plants.

3.3.2. Combined Image and Point Cloud Analyses

Some methods combine point cloud data and raster to enhance the segmentation of
single plants [49,50]. Reitberger et al. [49] applied normalized cut graph by Malik et al. [51]
for segmentation using full waveform LiDAR point data. The method is based on graph
partitioning and a measure to calculate within or between group dissimilarity. Reitberger
et al. [49] used a watershed algorithm for crude segmentation. This segmentation was
run to a smoothed CHM to generate an under-segmented result. The reflections extracted
from a full-waveform data were arranged in voxels, this was cut to areas based on graph
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partitioning to within-segment similarity. This similarity between voxels was calculated by
echo, point distribution, and intensity. This algorithm generated a higher detection rate
compared to using the watershed algorithm alone, yet still had some false detections.

3.4. Plant Shape Reconstruction Algorithms
3.4.1. Convex Hull

Point cloud clusters shaped like plant crowns can be geometrically reconstructed
using the convex hull [42,52], which represents the outer boundary of point cloud. Gupta et
al. [44] compared k-means clustering, modified k-means, and hierarchical clustering using
a weighted average distance algorithm to detect plants, followed by an adapted convex
hull algorithm, called Quick hull (QHull), for 3D plant shape reconstruction. Outdoor
conditions, point density, plant crown, terrain type, and plant density are the important
factors that affect the shape and the number of extracted plants.

3.4.2. Alpha Shapes

As an alternative to the convex hull, the number of facets corresponding to the
minimum convex polygon may be controlled to achieve a detailed shape. A specifically
useful method to perform this restriction is the idea of 3D alpha shapes [53], in which a
pre-specified factor alpha is used as a size-criterion to estimate the level of detail in the
achieved triangulation. Vauhkonen et al. [54] used the alpha shape method to select plant
objects for predicting a range of factors including species, plant crown volume, and crown
base height, and noticed that this method is sensitive to the applied point density.

3.5. Key Takeaways

Individual plant detection algorithms are widely based on raster-image analysis
methods such as watershed segmentation and local maxima detection. However, extracting
the local maxima from raster-based CHMs misses plants below the dominant canopy, and
methods developed to adjust the level of CHM smoothing cannot resolve this limitation.
The detection of small plants or plants in early growth stages may be improved by a
local refinement approach [49], or by performing detailed analysis of 3D point clouds
[55,56]. These techniques are computationally expensive and time consuming. Despite
these limitations, the segmented plants posses useful information for applications such as
plant growth monitoring, plant phenotyping, and plant physiognomic analysis.

4. Initial Scene Rendering

3D objects or scenes can be described as a point cloud, voxel grid, or depth map.

4.1. Point Cloud

Generally, active techniques directly provide point cloud information following the
data acquisition. The point clouds are uniformly sampled points on the described object’s
surface. In contrast, the density of the point cloud obtained using passive techniques will
mainly depend on the features present on the object’s surface. The reason is that passive
techniques often depend on searching corresponding points on numerous overlapped
images. Feature-less areas of the object or plant are poorly represented in the point
cloud. Additionally, these feature-less areas can provide false points because of feature
mismatching if the scene has similar structures. In outdoor conditions, it is often noticed
that if there is excess sunlight present in the scene during image acquisition, the plant’s
leaves saturate, with a resultant loss of information which can lead to an inaccurate or
incomplete 3D model. In addition [30], any movement during the image acquisition
process, for example from wind, results in poor scene representation.

Point clouds usually provide accurate surface topology information. This makes it
easier to precisely estimate the curve or underlying surface information and to calculate
surface traits. For passive techniques, the quality of the point cloud largely depends on
the number of images used as well as the plant architecture. A detailed analytical study
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is provided by Paturkar et al. [57] on selecting an appropriate number of images for 3D
modeling. This can help to generate a precise point cloud using fewer images. Point
clouds are appropriate for segmentation and further analysis of segmented point clouds is
possible.

4.2. Voxel Grids

A 3D plant can also be described by a 3D array of cells, in which each cell (voxel)
has one of two values, showing if a voxel is occupied by the plant or not. The most
common techniques which result in a voxel grid representation are voxel coloring [58],
space carving [59], generalised voxel coloring [60,61], and shape-from-silhouette [62].

If the plant architecture is simple then these techniques are fast, easy to implement, and
generate accurate estimations. For instance, Kumar et al. [63] used shape-from-silhouette
to reconstruct young corn and barley plants. Similarly, Golbach et al. [64] used the same
technique to reconstruct tomato seedlings. In another study, Phattaralerphong et al. [65]
also used shape-from-silhouette to achieve voxel grid representations of tree canopies. The
goal of this study was to calculate features such as canopy volume, tree crown diameter,
and tree height which usually do not need precise 3D representation. Kumar et al. [63]
examined maize root volume using shape-from-silhouette. These studies were conducted
on the plants in early stages.

However, if the plant architecture is complex, e.g., heavy overlapping between plant or-
gans, or plant organs are very complex, then one has to use principle volumetric techniques.
For instance, Klodt et al. [66] proposed a fast approach which searches a segmentation
of the volume surrounded by the visual hull, by reducing the surface area of an object,
based on the factor that the volume of the segmented object should be 90% of the volume
surrounded by visual hull. The authors applied their approach for 3D reconstruction of
fully grown barley plants and obtained precise fine-scale features of the plant.

X-ray computed tomography (CT) and magnetic resonance imaging (MRI), generally
used in medical imaging, can also be applied to the plant phenotyping domain. Studies
show that these techniques have been used to visualise plant root systems [67–70]. These
techniques generate voxels which have intensity data, either describing the density for CT,
or the ability of the material to ingest and emit radio frequency energy in the existence of a
magnetic field for MRI.

4.3. Depth Map

A depth map is nothing but a 2D image in which the value of every pixel shows the
distance from the camera. It is also referred to as 2.5D imaging. In such descriptions, parts
of a plant occluded by a projected surface are not calculated. 3D imaging techniques which
provide a depth map as an output are mainly stereo vision or other active techniques.
Stereo vision calculates depth of the scene from a single viewing location by analysing the
disparity between two images captured from slightly different positions.

Depth maps can be obtained of single plants, of which the leaves are flattened, have
orientation perpendicular to the camera. Xia et al. [71] proposed the implementation
of depth maps only to give a robust segmentation of individual leaves of bell pepper
plants. In this scenario, 2D imaging has struggled to separate overlapping of leaves.
Dornbusch et al. [72] used depth maps to inspect and analyse the daytime patterns of
leaf hyponasty (which is an upward bending of leaves) in Arabidopsis. Chéné et al. [73]
examined the implementation of depth maps for calculation of plant traits such as leaf
angle, leaf curvature and also for leaf segmentation.

In a few studies, depth maps are used on canopies, where deriving complete 3D
structure is not important. Muller-Linow et al. [74] and Ivanov et al. [75] used depth maps
to estimate structural features of canopies from top-view stereo vision set-ups, in sugar
beat and maize respectively. Plant height and stem width were estimated by Baharav et
al. [76] using a side-view stereo set-up.
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Depth maps can also be used for segmentation but keep in mind that segmentation
of depth maps may struggle with occlusions. Depth maps can be augmented to a real 3D
point cloud by capturing the 3D scene from various angles and directions with overlapping
images. An iterative closest point algorithm [77] can be used to match point clouds from
overlapping depth maps.

5. 3D Model Processing
5.1. Preprocessing

When working on a point cloud, background removal, outlier removal, denoising,
and down-sampling are important steps in the processing. The generated point cloud often
has parts of the surrounding scene and some erroneous points, which need to be carefully
removed. Additionally, the primary size of the point cloud is often too large for processing
in a feasible time and hence down-sampling may be required.

5.1.1. Background Removal

If the point cloud is generated using an active imaging technique, it usually does not
include color information. Additional efforts need to be taken to acquire as little of the
surrounding area as possible. If the point cloud still holds some surrounding information
then the background can be removed via the detection of geometric structures such as
cylinders, planes, and cones which might correlate with the plant surface, the plant’s stem
or pot. Points can then be removed by considering their relative position to these features.
The detection of these geometric structures is generally done using the RANSAC algorithm
[78]. For instance, Garrido et al. [79] modelled maize plant using LiDARs firmly fixed on
an autonomous vehicle and later used RANSAC to segment point clouds into plants and
ground.

If the point cloud is generated using passive techniques, it often includes color in-
formation as an RGB camera is used for image acquisition. This color information can
then be used for background removal. Efforts taken in controlling the lighting conditions
during image acquisition will determine the reliability of simple color-based thresholding,
classification or clustering approaches to differentiate between background and plant.
Jay et al. [46] proposed a clustering method based on both color and height above the
ground to differentiate between background points in the point cloud generated from
structure-from-motion and a plant.

3D model processing is an important step when working on point clouds. Background
removal from a point cloud generated using active imaging techniques is tedious and
prone to error because of the lack of information about the background.

5.1.2. Outlier Removal

Two approaches are mainly used for outlier removal for point clouds: statistical and
radius outlier removal. Statistical outlier removal uses the mean distance to the k-nearest
neighbors. Points are discarded if the mean distance exceeds a particular threshold which
depends on the global mean distance to the k-nearest neighbors and standard deviation of
mean distances.

Radius outlier removal calculates the number of neighboring points within a given ra-
dius and discards points which have fewer than a specified minimum number of neighbors.
Both outlier removal approaches perform well on the point clouds. The only limitation is
that the user has to give input value of the radius and k-nearest neighbors.

5.1.3. Denoising

Before advancing to further analysis, it might be important to correct some irreg-
ularities such as noise and misaligned points in the data. Moving least squares (MLS)
repetitively projects points on weighted least squares surface of their neighborhoods, hence
requiring the newly sampled points to lie near an underlying surface [80].
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Denoising using MLS is effective at eliminating the noise present in the point cloud.
Even after applying outlier removal approaches there can still be some irregularity present
in the point cloud which can be removed using MLS.

5.1.4. Down-sampling

Primary point clouds may need to be down-sampled to process them in a shorter time.
If the number of points is reduced by too much then important information about the plant
may be lost. The most reliable down-sampling approach is the voxel-grid filter [81]. In this
approach, the point cloud is arranged into a 3D voxel grid and points within every voxel
are replaced by the centroid of all the points within that voxel.

Another approach which uses random sampling that is designed to retain important
structures in the point cloud is the dart throwing filter [82]. In this, points from the primary
point cloud are successively added to the down-sampled point cloud if they do not possess
neighbors in the resultant point cloud with a fixed radius.

However, down-sampling the point cloud may lose important information about
the plant such as parts of the leaf or stem. Therefore, depending on the plant species,
architecture, and quality of 3D model, one should select the down-sampling rate. If it is
not essential to down-sample the point cloud then one can simply skip this step.

5.2. Lower-level 3D Model Representation

For further analysis it may be beneficial to convert the 3D depictions into the following
lower level representations-

5.2.1. Octree

An octree [83] is a tree-like representation of the data which repeatedly sub-divides a
3D space into eight octants, only if the parent octant has at most one point. This way, the
expanding tree depths show the point cloud in increasing resolution. This representation
can help overcome memory limitations when points must be scanned within a large point
cloud. A key advantage is that little memory is used for empty areas. Additionally, the
octree representation does not struggle with complex plant architecture. One disadvantage
of an octree representation is that an object or scene can only be approximated, and not
fully represented. This is because the octree breaks everything down into smaller and
smaller blocks.

In the literature, there are multiple algorithms for skeletonization and clustering which
use the octree data format which are also appropriate for plant phenotyping. SkelTre [84]
and Campino [85] are examples of the skeletonization and clustering algorithms. Scharr
et al. [86] proposed a method for voxel carving of maize and banana seedlings which
provides an octree depiction as an output. Duan et al. [87] exploited octrees to separate
wheat seedling’s point clouds into initial groups of points; later these initial groups were
combined manually to correlate them with distinctive plant organs.

5.2.2. Polygon Mesh

This is a 3D depiction comprised of faces, edges, and vertices which describes the
shape of an object. Polygon meshes are formed from a point cloud using α-shape triangu-
lation [53] or from voxels using marching cubes algorithm [88]. Nonetheless, to produce
an accurate polygon mesh, a precise voxel depiction or point cloud is essential. The com-
plex plant architecture makes the generation of polygon mesh of the whole plant difficult.
However, the polygon mesh is conceptually simple. Generally, surface fitting is applied to
various plant organs.

McCormick et al. [89] generated polygonal meshes acquired through laser scanning
to measure leaf widths, lengths, angles, area, and shoot height in sorghum. Paproki et al.
[90] also generated polygon meshes of cotton plants from multi-view stereo and applied
phenotypic analysis based on this depiction. In this study, they measured individual leaves.
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Chaudhary et al. [91] constructed a polygon mesh of Arabidopsis plant using α-shape
triangulation to find volume and surface area of the plant.

5.2.3. Undirected Graph

This representation is a structure comprised of vertices linked by the edges. These
edges are allocated weights corresponding with the distance between the connected points.
The shortest path can be calculated using Dijkstra’s algorithm [92], graph-based clustering
e.g., spectral clustering [51], and minimum spanning tree [93] which use undirected graphs
as an input.

This undirected graph can be generated from a point cloud by linking neighboring
points to the query point. These neighbors can be chosen using a particular radius (r)
around the query point, or the (k)-nearest neighbors are selected. If (r) or (k) are selected
very high, many redundant edges will be created, whereas, if (r) or (k) are very low,
important edges will be missed. Therefore, it is important to select correct values of (r)
and (k). Hetroy-Wheeler et al. [94] generated an undirected graph of various seedlings
acquired using laser scanning. These undirected graphs are then used as a base for
spectral clustering into plant organs. To prevent redundant edges and also to speed up the
computation process, while simultaneously not missing any important edges, they reduced
the edges which contain neighbors within a particular radius (r), depending on the angles
between the edges. However, undirected graphs struggle with redundant edges.

6. 3D Model Analysis

The following processing stages convert the original 3D model as preparation for
further analysis. During these stages, supplementary information is obtained from the 3D
model.

6.1. Segmentation

A critical and complex stage in extracting the plant trait measurements is the segmen-
tation of the 3D model into distinctive plant traits. There is no standard method which can
be applied because segmentation depends strongly on the quality of 3D model and the
particular plant architecture.

6.1.1. Point Cloud Surface Feature-based Segmentation

Surface feature-based approaches exploit surface normals and extracted features as
measures for classification or clustering. This can allow for classification between traits
with various geometrical shapes, such as straight stems, flat leaves or other geometries.

The point cloud consists of a set of points on a surface. The surface normals can be
derived by executing an eigendecomposition or principal component analysis (PCA) on the
co-variance matrix of nearest-neighbors around the query point. The nearest-neighbors can
be selected either by defining a particular radius (r), or defining the number of neighbors
(k). These two parameters must be selected carefully because if (r) or (k) are selected very
small, the normal calculation will be noisy; in contrast, if these parameters are selected very
large,too many points are included and edges between planar surfaces will be blurred.

1. Saliency Features: In a study conducted by Dey et al. [95] on yield estimation, saliency
features, along with color information, were used to segment the point clouds of
grapevines generated using structure-from-motion (SfM) [96], into fruit, leaves, and
branches. They estimated saliency features at 3 spatial scales and integrated color in
RGB to achieve a 12-dimensional feature vector for segmentation.
In another study, Moriondo et al. [97] also used structure-from-motion to obtain
point clouds of the canopy of olive trees. They exploited saliency at one spatial scale
and color information as features to segment the point cloud into leaves and stems
using a random forest classifier. Li et al. [98] used surface curvatures to classify
linear stems and flat leaves. They used Markov random fields to achieve a spatially
understandable unsupervised binary classification.
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2. Point Feature Histograms: Point feature histograms (PFHs) [99] and its more efficient
version, fast point feature histograms (FPFHs) [100], provide distinctive features of
a point’s neighborhood that can be used for matching. This approach relies on the
angular relationships between pairs of points and their respective normals within
a given radius (r) around each query point. This information, generally 4 angular
features, are binned into a histogram and then these histogram bins can be used as
features in a classification or clustering method. The study by Paulus et al. [101]
illustrates the difference in the PFHs between point clouds with various surface
properties.
PFHs rely on approximate representation of the plant trait shapes and surfaces which
is mostly achieved using active 3D imaging techniques such as LiDAR or laser scan-
ning. PFHs have been exploited as features of point clouds of wheat, barley, and
grapevine generated by laser scanning [101–103]. In a study on sorghum plants,
Sodhi et al. [104] used less accurate point clouds derived from multi-view stereo and
robustly segmented stems and leaves because the sorghum plant’s traits are easily
classified.

3. Segmentation Post-processing: Point cloud segmentation methods which depend
on local features, e.g., surface feature-based techniques, generally result in inaccu-
rate classifications. A standard post-processing stage to enhance the accuracy is to
implement a fully connected pairwise conditional random field (CRF) [105], which
considers the spatial context to greatly enhance the results. Sodhi et al. [104] and Dey
et al. [95] used a CRF as post-processing stage of segmentation using saliency features
and PFHs respectively. The outcome of this post-processing is shown in [106].

6.1.2. Graph-based Segmentation

Spectral clustering is group of clustering methods which considers connectivity
between points in an undirected graph [107]. The points are projected onto a lower-
dimensional graph which maintains the distances between the connected points. After
that, a common clustering method is applied on this graph.

While implementing the spectral dimension reduction on a graph of a plant, this plant
should be identifiable in the lower-dimensional graph, whereas other morphological traits
of the plant will be suppressed. Bolrcheva et al. [108] and Hetroy-Wheeler et al. [94]
used similar approach to segment the point cloud of poplar plants into stems and leaves.
They were able to identify the branching structure of the lower-dimensional graph which
corresponds to the plant traits in the original point cloud.

6.1.3. Voxel-based Segmentation

Golbach et al. [64] used shape-from-silhouette to generate a 3D voxel structure of
tomato seedlings. A breath-first-flood-fill algorithm with a 26 connected neighborhood is
used which repeatedly fills the structure. The algorithm starts with a lowest point in the
voxel structure, which is the bottom of the stem. As the algorithm passes through the stem,
all neighboring points are close together. However, when the first leaves and branches
appear, the distance of newly added point increases. If the distance threshold exceeds a
specified threshold, the iteration is terminated and new iteration started. The threshold
depends on the voxel resolution and plant architecture. Once the flood-fill is carried out, a
leaf tip is detected as the last added point, and consequently backtracks the flood-fill until
the last point of the stem is reached.

In another study, Klodt and Cremers et al. [66] segmented the 3D voxel structures of
barley into parts using the eigenvalues of the second-moment tensor of the surfaces. These
give information of the gradient directions of the structure, and permits classification be-
tween flat, long, or structures without any direction. This method resulted in classification
between the plant traits.

The following examples of voxel-based segmentation methods can be modified de-
pending on the plant architectures [64,66]. The first method which uses shape-from-
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silhouette to generate the voxel model and relies on the plants with rosette-like structure of
narrow leaves. The second method exploits the opposite arrangement of the cotyledons of
dicot seedlings. The main advantage of these highly modified methods is that they can be
easily customized according to plant architecture.

6.1.4. Mesh-based Segmentation

Based on polygonal meshes, there are two standard methods for segmentation. The
first method is region growing from seed points on the mesh surface, constrained by
curvature changes which correspond with edges [109,110]. The second method is the
fitting of shape primitives e.g., spheres, cylinders, and planes [111].

Paproki et al. [90] used a hybrid segmentation approach which makes use of both
methods on cotton plants. At first, they achieved a coarse mesh segmentation into individ-
ual leaves and stem using region growing. Then, a detailed segmentation of the stem into
petioles and internodes was achieved using cylinder fitting.

Nguyen et al. [112] looked at segmentation and measurements of dicotyl plant traits.
For this, they used region growing constrained by curvature. Using this method, they
measured leaf width, length, surface area, and perimeter.

6.1.5. Deep Learning-based Segmentation

3D point cloud segmentation using deep-learning is a new field. Some general tech-
niques exist, which can be divided into two classes. One class of techniques is point-based
which directly works with unordered 3D point clouds. Networks such as SGPN [113],
PointNet [114], PointNet++ [115], and 3DmFV [116] take the 3D point cloud as input and
provide class labels for each point as output. However, these architectures are limited
in the number of points in each model. If the size of the point cloud is large, there is no
reliable solution for the network training and interface.

The other class of technique is based on multiple views, which generates many 2D
projections from the 3D point cloud. It then uses deep-learning based segmentation
techniques on the produced 2D images, later connecting the various projections into a
3D point cloud segmentation. For example, SnapNet [117] was applied for semantic
segmentation of a 3D model by producing a number of virtual geometry-encoded 2D
RGB images of the 3D object. The predicted labels from the 2D images were then back-
propagated to the 3D model to provide each point a label.

Shi et al. [118] proposed a plant trait segmentation approach using a multi-view
camera system in combination with deep-learning. This approach segments the 2D images
and integrates the data from multiple viewpoints into a 3D point cloud of the plant. They
used Mask R-CNN architecture [119] for instance-segmentation and FCN architecture [120]
for semantic-segmentation. A new 3D voting system was then proposed for segmenting
the plant’s 3D point cloud. However, the performance of this approach was unsatisfactory.
The reason is that deep-learning methods require a lot of ground-truth training data which
is time-consuming and cumbersome. This field needs further exploration in the context of
plant phenotyping.

6.2. Skeletonization

Skeletonization thins a shape to simplify and highlight its topological and geometrical
properties, such as branching of the stem or leaf, which are important for calculation of
phenotypic features. Plenty of methods have been introduced to produce curve skeletons.
Methods exploit various theoretical frameworks e.g., medial axes or topological thinning.
The outcome of skeletonization is generally a set of points or voxels which are connected
to form an undirected graph, on which further analysis can be conducted.

A plethora of studies have proposed methods to structure the 3D model of plants by
skeletonization for phenotyping purpose or computer graphics. In Mei et al. [121] and
Livny et al. [122], LiDAR was used to generate point clouds of trees and skeletonization
was performed on these point clouds, not to generate a precise 3D representation of the
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trees, but to produce models of trees with convincing visual appearance for computer
graphics.

Cote et al. [123] generated 3D models of pine trees using skeletonization to achieve
realistic models to study transmitted and reflected light signatures of trees, incorporating
the results into a 3D radiative transfer model. In this study, the aim was not to achieve the
phenotypic measurements of the trees, but to study the radiative properties which relate to
the tree canopy structure. They produced credible tree canopy structures from a skeleton
frame describing the branches and trunk only. The skeletonization approach applied
to build this structural frame is comparatively easy and it uses the Dijkstra’s algorithm
employed on an undirected graph [124]. Delagrange et al. [125] proposed a software
tool (PypeTree) for the extraction of the skeleton of trees using the same skeletonization
approach but with more editing functionality.

In another study, Bucksch et al. [84] proposed a skeletonization method using the
direction in which the point cloud traverses through octree cell sides. They assessed their
method by comparing the dispersions of skeleton branch lengths and manually calculated
branch lengths with good results [126]. This method is fast but does not work well on
varying point densities and is less applicable to plants different from the leafless trees
which they examined.

The 3D analysis of the branching architecture of root systems is an additional applica-
tion which has been addressed by skeletonization. Clark et al. [127] proposed a software
tool for the 3D modeling and analysis of the roots. In this study, the thinning method is
executed on the voxel representation generated using shape-from-silhouette.

Regardless of its efficiency for the calculation of certain plant features, skeletonization
has barely been used for phenotyping of leafy vegetables. The reason is that skeletoniza-
tion struggles with diverse topographies, complex plant architectures, and with heavy
occlusions. Chaivivatrakul et al. [128] developed an axis-based skeletonization method for
simple plant architectures, such as young corn plants, to extract leaf angle measurements.
However, they assessed that their skeletonization algorithm did not perform well when
compared to plane fitting.

6.3. Surface Fitting

When working with point clouds, surface fitting can be helpful for segmentation and
also can serve as a prior stage before plant trait measurements. The fit can be based on
geometric structure such as planes, cylinders, and flexible structures such as non-uniform
rational Bsplines (NURBS) [129].

6.3.1. Non-uniform Rational Basis Splines

NURBS are mathematical models commonly used for producing and representing
smooth surfaces and curves in computer graphics. A NURBS surface is defined by a list of
3D co-ordinates of surface points and related weights. Various fitting methods of NURBS
are explained in Wang et al. [130]. NURBS surfaces and curves can be triangulated and the
surface area is estimated by adding up the areas of each triangle.

NURBS have been used for calculation of leaf surface area in several works: Gerald et
al. [131,132] used structure-from-motion to generate point clouds of sunflowers and fitted
NURBS to segmented leaves after the stem was extracted and discarded using cylinder
fitting. Santos et al. [133,134] also used structure-from-motion to produce point clouds
of soya beans and then segmented the 3D point cloud using spectral clustering. After
that, they fitted NURBS surfaces to the segments related to leaves. In another study,
Chaivivatrakul et al. [128] fitted NURBS surfaces to a set of points corresponding to corn
leaves.

6.3.2. Cylinder Fitting

Usually plant stems can be locally described as a cylinder. A cylinder fitting method
using least-squares fitting is explained in Pfeifer et al. [135]. Paulus et al. [102] used laser
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scanning to generate point clouds of barley. Point feature histograms were used to segment
the 3D point clouds and then cylinders were fitted to the stems to measure stem height.

However, it is not necessary that the stem will always be straight; it can be curved as
well. Gerald et al. [132] addressed this issue by developing an alternative method in which
they propagated a radius along the stem of the plant with normal constraints to structure
the stem as a curled tube. Nonetheless, the results were not accurate.

6.4. Key Takeaways

3D model analysis is a complex stage because it mainly depends on the plant architec-
ture. Different analysis methods can be used for different architectures, and not all methods
are applicable for a given plant architecture. Skeletonization is good for overall structure,
but is not appliable for 2D structures such as leaves. Skeletonization and surface fitting
work well on less complex architectures but struggle with heavy occlusion. Segmentation
methods performed well on complex as well as less complex plant architectures and have
been widely used. Deep learning-based segmentation methods have shown potential but
requires huge ground-truth data to train the model.

7. Plant Traits to Consider for Growth Monitoring and Extraction of the Traits

After the difficult stages of segmentation, surface fitting, and skeletonization, plant
trait measurement of either single plant organs or whole plant is comparatively easy, and
various approaches may provide accurate estimates.

7.1. Individual Plant Trait Measurements

1. Leaf Measurements: The most natural description for estimating leaf dimensions is a
mesh. Leaf area can be easily calculated as the sum of the area of triangular polygon
mesh faces [105,131,132]. Leaf length can be estimated by calculating the shortest
path on the mesh represented as a graph. Sodhi et al. [105,106] calculated leaf width
by determining a minimum area enclosing rectangle around a leaf point cloud and
then measuring the shortest dimension of the enclosing rectangle.
Golbach et al. [64] extracted the leaf measurements of tomato seedlings from a voxel
description to reduce computing time. For leaf length, they considered the distance
between the two points on the leaf surface which are farthest away from each other.
For leaf width, they scanned for the highest leaf width perpendicular to the leaf
midrib. For leaf area, they considered an approximation based on the number of
surface voxels. The authors chose to use simple calculations and have traded precision
for fast computation. When leaves are curled, it can be difficult to measure the leaf
precisely.

2. Fruit or Ear Volumes: Plant yield is calculated by the estimated volume of plant fruit
or ears. For instance, Paulus et al. [101] determined that kernel weight, number of
kernels, and ear weight in wheat plants was correlated with ear volume which they
measured by calculating α-shape volumes on the point clouds representing the ears.

3. Stem Measurements: Inter-node length and stem height can estimated by cylinder
fitting or curve skeletons. Paulus et al. [101] extracted stem height by fitting a cylinder
to the stems. Golbach et al. [64] exploited the voxel skeleton corresponding to the
stem of tomato plant seedlings.
By considering the skeleton graph, the inter-node length can be calculated by estimat-
ing the shortest distance between the branch points. This was developed by Balfer et
al. [136] on grape clusters which was first skeletonized using technique introduced
by Livny et al. [122]. Stem width can be calculated by cylinder fitting. Sodhi et al.
[105,106] fitted a cylinder shape to a segmented point cloud of corn plants to derive
the stem diameters.
However, similar to leaf measurements, stem measurements are difficult when the
stem is not straight. Cylinder fitting is not applicable in this case. Therefore, a robust
stem measurement method is required which can work on curved stems as well.
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7.2. Whole Plant Measurements

1. Height: Point cloud height can be defined as the maximum distance between points
corresponding to a plant projected on the vertical axis. This method was used by
Nguyen et al. [137] for cucumber seedlings and cabbage and Paulus et al. [10] for
sugar beet. Height can also be estimated from a top-view depth map which is the
difference between the closest pixel in the image and the ground plane [73].

2. Volume and Area: 3D meshes are mostly used to estimate plant volume and area in
the case of point cloud representations. Using Heron’s formula, the surface area of
a mesh can be calculated by summing up the area of its triangular mesh faces. The
mesh volume can also be estimated using the technique proposed in [138] which first
calculates the features for each elementary shape and then add up all the values for
the mesh.
If the plant model is represented as an octree or voxel grid, the plant volume can
be calculated by summing up the volumes of all voxels which are covering the
plant, as proposed by Scharr et al. [86]. However, this method has shown some
inaccuracies in the measurements because of the discrete nature of voxels. If the
representation is desired from space carving, then occlusion and concavities will also
cause inaccuracies.

3. Convex Hull: This is defined as the shape of a plant which is formed by connecting
its outermost points. The volume of the convex hull is an excellent indicator of plant
size. In the root systems it is very helpful for indication of the soil exploration [139].
Estimation of convex hull of plant’s point clouds needs minimum pre-processing
to remove outliers but gives very crude estimation. Rose et al. [26] estimated the
convex hull of a tomato plant’s point cloud, and the convex hull was calculated on
root systems by Topp et al. [139], Mairhover et al. [67], and Clark et al. [127].

4. Number of Leaves: Once the voxel representations or point clouds are segmented to
classify between stem and leaves, the number of connected components can be used
to derive number of leaves, only after conversion of leaf points into a graph if point
cloud is used.
In some cases, such as in monocot plants, leaves are elongated and not always
differentiable from the stem. However, a precise segmentation of stem and leaves is
not required if leaf counting is the only goal. For instance, Klodt and Cremers [66]
classified between only the outer part of leaves and the stem by analysing gradient
direction of a 3D model. This was enough to count the number of leaves.
Another way to count number of leaves for elongated leaves is to count the number
of leaf tips, which are usually described by the endpoints of the skeleton of the plant.
However, care must be taken for plants with jagged leaves to avoid many false tips.

7.3. Canopy-based Measurements

3D imaging techniques may not give sufficient information to allow for calculation of
individual plant traits when used on a larger field. The important information can still be
estimated on the level of tree or plant canopies. These traits consist, leaf area index, leaf
angle distribution, or canopy height.

1. Leaf Angle Distribution: 3D imaging techniques give an opportunity to examine
patterns of leaf orientation, which is very dynamic feature that varies with change
in the environment. Biskup et al. [140] proposed a method using a top-view stereo
imaging set-up. The depth maps were segmented using graph-based segmentation
[141] to achieve a crude segmentation of leaves. After that, planes were fitted to each
and every segment based on RANSAC, to obtain leaf inclination angles. Muller-Linow
et al. [74] proposed a software tool to study leaf angles in plant canopies based on
similar methods.

2. Canopy Profiling: LiDAR has an ability to penetrate tree or plant canopies, therefore
in LiDAR the laser interception frequency by a canopy can be considered to be an
index of foliage area. In ecological research on forest stands [2,142], this canopy
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profiling by airborne LiDAR has been mostly employed. In a study by Hosoi and
Omasa et al. [143] they used a set-up of LiDAR and mirror to estimate vertical plant
area density of a rice canopy at various growth stages. Their approach used a voxel
representation of canopy to calculate leaf area density, [2]. The leaf area index also
can be extracted from vertical integration of leaf area density.
Cabrera et al. [144] used a voxel model of corn plants to examine light interception of
corn plant species by building virtual canopies of corn. In these virtual canopies the
average leaf angles and cumulative leaf area were estimated using the 3D models of
the individual plants.

8. Plant Growth

Several studies have reported techniques to determine plant growth. In a study by
Zhang et al. [13] on potato plants, the plant’s number of leaves, leaf area, and plant height
was measured for five months. The ground truth for plant height and leaf were collected
using 2D image analysis and number of leaves was counted manually. The correlation
between measured values and ground truth shows a good estimation for plant height,
number of leaves, and leaf area with R2=0.97.

In another study, Li et al. [145] estimated the biomass for individual plant organs and
aboveground biomass of rice using terrestrial laser scanning (TLS) for an entire growing
season. The field experiments were conducted in 2017 and 2018 providing two different
datasets. Three different regression models, random forest (RF), linear mixed-effects (LME),
and stepwise multiple linear regression (SMLR), were calculated to estimate biomass
with data gathered at multiple growth stages of rice. The models are calibrated with
2017 dataset and validated on 2018 dataset. The results show that SMLR was suitable for
biomass estimation at pre-heading stages and the LME model performed well across all
growth stages, especially at the post-heading stage. In addition, the combination of TLS
and LME is a promising method to monitor rice biomass at post-heading stages. Friedli et
al. [146] measured canopy height growth of maize, soybean, and wheat by terrestrial laser
scanning (TLS) over a period of 4 months with ground measurements taken 1 to 3 times a
day. High correlation (R2) between ground truth and TLS-measured canopy was achieved
for wheat.

Reji et al. [147] demonstrated the potential of 3D TLS for the estimation of crown area,
biomass of vegetable crops, and plant height at various growth stages. Three vegetable
crops were considered in this study: eggplant, cabbage, and tomato. LiDAR point clouds
were collected using a TLS at different growth stages for 5 months. Validation with ground
truth illustrate high correlation for plant height R2=0.96, crown area R2=0.82, and combined
use of crown area and plant height helped to estimate biomass with correlation R2=0.92 for
all the three crops throughout the growth stages. In a study by Guo et al. [148], plant height
was measured as a function of the scanning position, number of scanning site, and scan
step angle were evaluated in field the growth stages of wheat. The results demonstrated
that TLS with H95 can be an alternative to assess crops such as wheat during an entire
growth stage, and the height at which wheat can be precisely detected by TLS was 0.18 m.

Han et al. [149] determined growth of maize for three months. Plant height, canopy
cover, normalized difference vegetation index (NDVI), average growth rate of plant height
(AGRPH), and contribution rate of plant height (CRPH) traits were extracted and evaluated.
A time series data clustering method called typical curve was proposed to evaluate these
traits. The system performed well with the accuracy of the traits ranging from 59% to
82.3%.

Itakura et al. [150] observed changes in chlorophyll content of eggplants for five days
under water stress conditions with images captured once a day. The chlorophyll was
measured using a spectrometer (Jasco V570). A regression method is used to estimate
correlation between the points in the 3D model and ground truth and high correlation was
achieved with R2=0.81. Paturkar et al. [151] determined the plant growth over a period
of one month. Eight manual readings and images were captured twice a week over this
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period. The ground truth of plant height is measured using a ruler, leaf area was measured
using ImageJ, and number of leaves was counted manually by moving around the plant.
The correlation between the ground truth values and measured values demonstrates strong
estimation of leaf area, plant height, and number of leaves with R2=0.98.

8.1. Key Takeaways

The plant growth is determined over a specific period of time based on the plant type.
Various ground truth reading as well as measured values from 3D model/surface model are
collected over this time period. This time series data are then correlated using a regression
model. R2 is the most common metric used in the literature to assess the performance.
However, other metrics can also be used along with R2, such as mean average percentage
error (MAPE) and root mean squared error (RMSE).

9. Discussion

From the literature, it is evident that passive techniques, especially structure-from-
motion, appear to be the most promising method for 3D acquisition because of its high
point cloud resolution at a lower cost. SfM can be used for plant growth monitoring
applications because of its economical and non-destructive nature. However, there are a
few challenges which need to be addressed such as:

1. Illumination Effects: Passive techniques, to be specific, SfM gives a highly accurate
point cloud [151]. However, changes in the illumination while capturing the plant
images can result in missing information such as blank patches in the 3D model of the
plant surface and leaves. Active illumination techniques are more immune to changes
in ambient lighting, although sensors can be swamped by strong sunlight.

2. Movement due to Wind: Because of plant displacement in two consecutive images
due to wind, there can be many feature matching errors resulting in a poor 3D model.
The resulting 3D model will have missing important details in the stem area of the
plant with some half reconstructed leaves. Techniques which use only single images,
or capture multiple images simultaneously (e.g., stereo) are less sensitive to wind,
although longer exposure times can result in motion blur.

3. Computational Time: Active techniques rapidly give a point cloud but do not contain
color information. However, when using passive techniques, such as Sfm, it needs a
certain number of images to reconstruct the plant in 3D. The computation cost of a
reconstructed 3D model largely depends on the number of input images and selection
of the views. It is not necessary that every image will contribute equally to overall
quality of a 3D model. It is difficult to select the number of images because with a
limited number of images it is difficult generate an accurate plant model. Although
the computation time is less, fewer images can generate false points in the 3D point
cloud because of the larger change between images. In contrast, a large number of
images will result in processing redundant information which will inevitably increase
computation time [57]. To obtain an appropriate number of images for precise 3D
reconstruction, prior information or manual measurements of plants are required to
compare to the corresponding measurements from the 3D model. Therefore, there
is a need to find a way to obtain an appropriate number of images for precise 3D
reconstruction and thus to reduce the computation time.

4. Robust Segmentation: There is no standard method which can be applied for seg-
mentation because of the wide variations in plant architecture. There is a need for a
robust segmentation method which can work on the majority of plant architectures.

5. Robust Plant Trait Measurements: As discussed earlier, naturally, plant leaves and
stem can curl and because of this not all approaches will provide accurate results.
Cylinder fitting will be an optimal choice if the stem is straight to calculate stem
height. To measure leaf length and width, calculating internode distance will not be
sufficient if the leaf is curled. Therefore, there is a need for a robust measurement
approach which could be applied on curly as well as straight leaves and stems.
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One domain in which more progress can be expected for 3D plant monitoring, espe-
cially for plant trait segmentation is neural networks. The fundamental obstacle to using
neural networks in plant monitoring applications is the requirement of large ground-truth
training data. Manual segmentation of plant images is time consuming, prone to error, and
tedious. To date, a limited number of benchmark databases for plant phenotyping with
labels have been published publicly [152–154]. With more benchmark databases for 3D
plant phenotyping being made publicly available, the use of neural network will pursue its
success accomplished in other domains.

Neural networks can also be used in 3D: 3D convolutional neural networks (3DCNN)
can deal with voxel grids, while numerous neural network architectures are developed to
deal with point clouds [114,115,155–157].

10. Conclusions

In this paper, we conducted a comprehensive survey of the acquisition techniques,
possible representations, and analysis techniques as applied to 3D plant physiognomic
analysis, the open issues and future directions. We also investigated and discussed in
this paper the current studies where researchers have proposed promising techniques
and applications for segmentation and clustering the plants. Furthermore, we have also
discussed the various plant traits to consider for plant physiognomic analysis. These plant
traits can be at plant organ level or canopy level. Some exciting technological advancements,
such as use of deep learning algorithms are also discussed in this paper with its current
disadvantages. We foresee that our review of the field will help the researchers in this field.
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