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Abstract: Current multi-temporal interferometric Synthetic Aperture Radar (MTInSAR) datasets
cover long time periods with regular temporal sampling. This allows high-rate and non-linear trends
to be observed, which typically characterize pre-failure warning signals. In order to fully exploit
the content of MTInSAR products, methods are needed for the automatic identification of relevant
changes along displacement time series and the classification of the targets on the ground according
to their kinematic regime. This work reviews some of the classical procedures for model ranking,
based on statistical indices, which are applied to the characterization of MTInSAR displacement time
series, and introduces a new quality index based on the Fisher distribution. Then, we propose a
procedure to recognize automatically the minimum number of parameters needed to model a given
time series reliably within a predefined confidence level. The method, though general, is explored
here for polynomial models, which can be used in particular to approximate satisfactorily and with
computational efficiency the piecewise linear trends that are generally used to model warning signals
preceding the failure of natural and artificial structures. The algorithm performance is evaluated
under simulated scenarios. Finally, the proposed procedure is also demonstrated on displacement
time series derived by the processing of Sentinel-1 data.

Keywords: synthetic aperture radar interferometry; time-series analysis; ground displacement
monitoring; early warning

1. Introduction

Multi-temporal SAR interferometry (MTInSAR) techniques have been used for the
last two decades to derive displacement maps and displacement time series over coherent
objects on the Earth and thus to monitor geophysical ground deformations or infrastruc-
tural instabilities [1,2]. Several datasets are currently available at different wavelengths,
spatial resolutions, and revisit times, spanning national [3–5] or continental [6] areas, and
collectively covering long time periods (even more than 20 years). In particular, the short
revisit times (e.g., from the European Sentinel-1 and the Italian COSMO-SkyMed constella-
tions) achieved by improving the temporal sampling make it theoretically possible to catch
the high-rate and non-linear kinematics that typically characterize warning signals related
to, for instance, landslides or the pre-failure of artificial infrastructures.

Despite the early recognition of the importance of nonlinear analysis [7], displacement
signals in MTInSAR time series are still often treated by using a linear model, which is
computationally convenient and also more robust than higher-order models with regard to
the errors affecting the InSAR phase. In fact, the spatial analysis of MTInSAR products is
often performed by only considering the mean displacement rate, computed over the entire
monitoring period, which is the information typically displayed on displacement maps.

To fully exploit the content of MTInSAR products, methods are needed to automati-
cally identify relevant changes in displacement time series and to classify the targets on the
ground according to their kinematic regime. This would also allow a more reliable ground
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deformation spatial analysis to be conducted by distinguishing between spatial patterns of
different types (linear, bi-linear, quadratic, discontinuous, periodic, etc.).

Recently, approaches have been proposed to tackle this problem that use different
strategies based, e.g., on Principal Component Analysis [8], statistical tests [9], or more
sophisticated probabilistic multiple hypothesis testing [10]. Mostly, these approaches con-
sider a finite number of models and use statistical methods to discriminate the model that
best fits each time series. Many works add a subsequent spatial analysis to better define
areas that are subject to homogeneous displacement regimes. This mainly stems from
the fact that assigning a certain displacement model to a single time series independently
of any other information is extremely difficult for MTInSAR data. This is due to several
factors, such as the presence of noise coming from the incomplete removal of signal compo-
nents such as atmospheric artifacts or topographic errors, which reduces the identification
performance, and also the intrinsic requirements of MTInSAR algorithms, which must
postulate some form of regularity in time to identify stable scatterers in the first place.
This regularity constraint is in most cases implemented in a linear manner, or through
a limited library of simple models, and such assumptions may “leak” into the posterior
modeling operations.

Maintaining independence among individual stable target MTInSAR time series has
some advantages, especially in applications with complex environments such as urbanized
areas, where—at least with the current SAR sensor resolutions that reach at most a few
meters—deformation processes, causes, and models can vary drastically from pixel to pixel.
In this sense, in [11], a method is proposed to characterize the regularity of each individual
time series independently and without any assumption of the displacement model. Based
on the index known as Fuzzy Entropy, the method identifies, with good efficiency, time
series characterized by low noise and temporal regularity for at least a part of their length.

However, discriminating among a library of different parametric kinematic models
remains a useful objective, as often recognizing abrupt discontinuities [12] or the triggering
of nonlinear trends [13], for example, may allow researchers to efficiently monitor vast
areas for various hazards. Although these considerations are in principle applicable to
any parametric function, we focus here on the application to polynomials, which allow a
large class of different temporal trends to be modeled. In fact, polynomial fits can be used,
e.g., to reliably discern nonlinear trends (degree > 1) from linear trends. They can also
accommodate various types of discontinuities, such as impulsive changes of linear rates
(e.g., first-order discontinuities, or piecewise linear trends), with the advantage of avoiding
the determination of critical parameters such as the position of the discontinuities on the
time axis, which is not easy and requires considerable computational resources [14,15].

Some classical indices have traditionally been used to score the goodness of fit of para-
metric models according to confidence intervals [16], or more generally to rank different
models [17,18] by taking into account the obvious increase of fitting performances due to
the increase of the number of model parameters. These indices seem to have been rarely
used [9] in applications involving MTInSAR data.

In this article, we study the reliability of such classical tests—namely the Fisher
test [16], the Akaike Information Criterion [17], and the Bayesian Information Crite-
rion [18]—for comparing different polynomial models. We then introduce a new statistical
test based on the Fisher distribution with the aim of evaluating the reliability of a para-
metric displacement model fit with a determined statistical confidence. We also propose a
new set of rules based on the statistical characterization of displacement time series, which
allows, under certain constraints, different polynomial approximations for MTInSAR time
series to be ranked, and thus allows the minimum set of relevant parameters useful for
target characterization to be estimated.

Our performance analysis is carried out by simulating time series with piecewise linear
temporal trends, with different breakpoints and velocities, levels of noise, signal lengths,
and temporal sampling. In fact, piecewise linear trends are another rather general type of
model that may be chosen to interpret several phenomena of incipient displacements; e.g.,
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for landslides or infrastructures such as dams or bridge pillars. As mentioned, velocity
breaks can be approximated by polynomial trends with a degree >1, and thus a method to
reliably detect the most appropriate minimum polynomial degree approximating a time
series can be used to isolate “problematic” targets.

Finally, we illustrate the method performance over a selected set of real data derived
from the Sentinel-1 SAR constellation.

2. Problem Formulation

Suppose a MTInSAR time series composed by Nt estimations of the displacement
signal disp(ti) sampled at time ti:

zi = disp(ti) + noisei with i = 1, . . . , Nt (1)

where noisei is the noise affecting the MTInSAR estimation, which depends both on the
intrinsic scattering characteristics of the target and the processing reliability. In all the
following considerations, we refer to the zi time series as the scalar displacement, with
real values (e.g., in mm) projected on the line of sight (LOS), as retrieved by a generic
MTI processing chain. By assuming that the MTInSAR processing is able to remove
all the other components of the InSAR phase signal (e.g., atmospheric artifacts, orbital
errors) [2], the noise can be modeled as Gaussian, with standard deviation σn and zero
mean, and can be assumed not to be correlated with the displacement signal: pdf(noisei) =
N(0, σn) ∧ cov(disp(ti), noisei) = 0.

The reliability of a target can be evaluated through a quality index calculated from the
difference between the time series values zi and the value di predicted by a displacement
model. The most used index in MTInSAR applications is the so-called temporal coherence
γt, defined as [19]

γt =
1

Nt

∣∣∣∣∣ Nt

∑
i=1

exp
(

j
4π

λ
(zi − di)

)∣∣∣∣∣ disp(ti)− di ≈ 0
≈ exp

(
−

σϕ
2

2

)
(2)

where σϕ is the standard deviation of the InSAR phase noise: σϕ = σn·4π/λ, where λ is
the radar wavelength.

The temporal coherence is model-dependent: if the adopted displacement model is
well suited, the temporal coherence is only related to the phase noise affecting the target
(σn) [19], and consequently a good-quality target shows a coherence value close to 1, while
for noisy targets, the coherence values decrease toward 0. This is no longer true if the
adopted model departs from the actual, “true” displacements: in this case, low coherence
values could also occur for pixel time series affected by a small Gaussian noise component,
but a larger difference could be found between modeled and “true” displacements, thus
leading to a failure in the detection of such persistent targets.

High coherence values thus ensure that the target has a low intrinsic noise and its
displacement is well approximated by the adopted model. In fact, the selection of pixels
corresponding to coherent targets (CT) is performed according to γt:

CT =
{
(x, y)

∣∣∣ γt(x, y) ≥ γTh
t

}
(3)

where (x, y) are the pixel coordinates, and γTh
t is a threshold value that can be computed

according to the processing settings [19,20]. Although some recent MTInSAR implementa-
tions achieve the modeling of non-linear displacement trends by using polynomial and/or
periodic functions (e.g., [21,22]), very often, the linear displacement model is used, at least
for automatic large-scale processing, in order to save computational time. This means
that, in case a non-linear displacement occurs, the estimation of the target noise content
σn through the temporal coherence is biased and, in order to identify targets showing
non-linear displacement trends, pixels with low coherent values should also be considered.
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This work aims to develop a set of rules based on both state-of-the-art and innovative
indices to identify the model which best approximates the displacement trend of MTInSAR
time series. The ideal selection process should allow the identification of non-linearities
and for comparisons to be performed between models; furthermore, it should be robust
against overfitting (unlike γt) and also computationally efficient.

We focus here on polynomial models, and so our goal is to approximate the displace-
ment time series with a polynomial P

(
np
)

with degree np:

P
(
np
)
=
{

di
(
np
)}

i=1,...,Nt
=

{ np

∑
k=1

Ck·ti
k

}
i=1,...,Nt

(4)

As mentioned above, polynomial models can be used to successfully approximate a
large class of ground displacement regimes. For instance, polynomial degrees >1 generally
characterize discontinuous trends such as instantaneous velocity breaks, so targets requir-
ing polynomial approximations with a degree >1 are immediately worthy of attention.
More complex types of trends can also be approximated by polynomials, such as impulsive
displacements or creeping.

Several standard absolute indices can be used to estimate the deviation between data
and a model function; e.g., the mean error (ME), mean square error (MSE), root mean
square error (RMSE), and the coefficient of determination R2, which can be defined as
follows [23]:

ME = 1
Nt

∑Nt
i=1(zi − di); MSE = 1

Nt
∑Nt

i=1(zi − di)
2; RMSE =

√
MSE;

R2 = 1− ∑
Nt
i=1(zi−di)

2

∑
Nt
i=1(zi−〈zi〉)2 .

The choice of the best model should also take into account the number of degrees
of freedom of the problem, which in the case of a polynomial function is the polynomial
degree, np. In fact, as is well known, the higher the degree used in a fit (or, more generally,
the number of parameters), the smaller the deviation of the model from the measured data.
In the literature, several methods exist to compare different models by also taking into
account their degrees of freedom; e.g., the F test, FC [16], Akaike’s Information Criterion
(AIC) [17], and the Bayesian Information Criterion (BIC) [18].

2.1. F Test

Suppose two polynomials models are defined by (4) with degrees n2 > n1; then, the F
test statistic is defined as follows ([24] pp. 138–142):

F(n1, n2) =
(SSEn1 − SSEn2)/(n2 − n1)

SSEn2 /(Nt − n2)
with SSEnp =

Nt

∑
i=1

(
zi − di

(
np
))2 (5)

This indicator follows the Fisher–Snedecor distribution [16,25] f , pdf(F(n1, n2)) =
f (n2 − n1, Nt − n1), and allows the two models to be compared by testing the null hypoth-
esis H0; i.e., that the difference of the residuals between the measured and approximated
data using the two polynomials is not significant. In more detail, the null hypothesis is not
rejected with a level of significance α if

F(n1, n2) < Fα with Fa such that f (Fa, n2 − n1, Nt − n1) = 1− α (6)

On the contrary, if F(n1, n2) ≥ Fα, then the null hypothesis is rejected, meaning that
the displacement trend modeled by the polynomial of higher degree P(n2) is significantly
different than that obtained by the polynomial P(n1), with a significance equal to α or,
equivalently, with a confidence level equal to p = 1− α. Fα is the quantile of order p
relative to the Fisher distribution, which can be calculated as a function of Nt, n2 − n1
and p [25] (pp. 102–106). The Fα curves in Figure 1 correspond to n2 − n1 = 1 and a
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confidence level p ranging between 0.90 and 0.99, and these can be used to set Fα in (6).
For instance, assuming two nested polynomial models (n2 − n1 = 1) with a number of
samples Nt ≥ 100, the Fα value corresponding to confidence level p = 0.95 is roughly 4. If
H0 is not satisfied by a certain degree n, we could therefore increase by 1 the degree and
perform the test again, until the condition is reached in which an additional degree does
not violate the H0 hypothesis, which would correspond to the sought minimum degree.

Figure 1. Quantile values Fα of the Fisher distribution f (1, N), computed for N = Nt − np between
10 and 120, and for confidence levels p between 0.90 and 0.99. For Nt ≥ 100 and np ≤ 4, N ≈ Nt.

2.2. Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC)

The Akaike Information Criterion (AIC) [17] is widely used in non-linear regression
problems. This selection criterion is based on the Kullback–Leibler information loss that
occurs when data are approximated by a model. The value of the AIC index in the case of
a model with np parameters and Nt data is calculated as follows [26]:

AIC
(
np
)
= Nt· log

(
SSEnp /Nt

)
+ 2·np +

2·np·
(
np + 1

)
Nt − np − 1

(7)

where the last term is needed only if Nt/np . 40 in order to avoid a bias in the estimation.
Since AIC is related to the information loss, the best model will be the one that

minimizes this loss. Therefore, supposing we have M polynomial models
{

P
(
np
)}

p=1,..,M,
the best polynomial will be that with the minimum AIC value: P(nm) 3′ AIC(nm) =
min

{
AIC

(
np
)}

p=1,..,M. Moreover, since the AIC is used to compare different models, AIC

values are usually referred to this minimum value by defining the quantity ∆AIC
(
np
)
=

AIC
(
np
)
−AIC(nm).

A reliable selection should assess whether the difference ∆AIC between two models
actually involves a significant loss of information or whether they could be considered
equivalent. Rules of thumb for evaluating the significance of the difference between two
models are provided in [26], and are reported as follows:

• ∆AIC
(
np
)
≤ 2: both models have substantial support;

• 4 ≤ ∆AIC
(
np
)
≤ 7: P

(
np
)

has considerably less support than P(nm);
• ∆AIC

(
np
)
> 10: P

(
np
)

has no support.

Another criterion used in the literature (e.g., [9]) is the Bayesian Information Criterion
(BIC). It is related to the AIC and can be defined as follows [18]:

BIC
(
np
)
= Nt· log

(
SSEnp /Nt

)
+ np· log(Nt) = AIC

(
np
)
− 2·np + np· log(Nt). (8)

The BIC index, similarly to the AIC, compares two models and allows the model with
the lowest value to be selected; thus, in this case, the differential value is also computed:
∆BIC

(
np
)
= BIC

(
np
)
− BIC(nm), where nm is the model providing the minimum BIC
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value. Compared to the AIC, the BIC has an additional penalty factor proportional to
the number of parameters. In [26], an extensive discussion is presented concerning the
reliability of the BIC and AIC indices, and their performances are analyzed in several
applicative test cases. In general, the performance of the BIC improves as Nt increases, but
no relevant differences are reported between the BIC and AIC. However, unlike for the
AIC, there are no rigorous rules for assessing the significance of the difference between BIC
values that can be adopted in the process of model selection. This could represent a critical
issue in case the BIC is adopted for automatic selection procedures. According to this, the
BIC index was excluded from the following performance analysis.

2.3. FA Index

The indices introduced so far are either absolute measures of a model’s adequacy
(γt, R2, RMSE) but not robust with respect to the noise affecting the time series, or com-
parative figures, designed to select the best among several models but without assigning
a statistical reliability value to that choice. In order to overcome these limitations, a new
index is proposed here that is able to estimate the degree to which a polynomial is repre-
sentative of a data trend and to associate a statistically based degree of significance to this
estimate. The robustness of the index is pursued by decoupling the noise affecting the data
series from the contribution related to the difference between the actual data trend and the
model chosen to approximate the data.

Referring to the displacement time series signal defined by (1), the basic idea is to find
a way to evaluate the difference between the true deformation, disp(ti), and the polynomial
di defined by (4), and to approximate this signal by avoiding the effect of the noise affecting
the data. All the absolute indices introduced above depend on the differences (residuals)
between the input and model values (∆i = zi − di) and thus are related, explicitly or
implicitly, to the standard deviation of the noise, σn.

The aim of the FA index is to statistically estimate whether these differences are due to
noise or to an unreliable polynomial approximation. This is accomplished by comparing
the mean squared sum of the differences, SSEnp , divided by the noise variance σ2

n , and the
squared difference between the means, (〈zi〉 − 〈di〉)2, divided by the variance affecting
the mean, σ2

n/Nt. These two ratios compare the squared difference between the signal
and model (and between their means) with respect to the noise variance, thus somehow
estimating the percentage of difference between the signal and model that can be explained
in terms of noise. Moreover, these ratios are distributed according to the chi-square
distribution with Nt − np and one degree of freedom, respectively. The FA index is thus
defined by dividing these two normalized ratios by their degrees of freedom:

FA
(
np
)
=

(〈zi〉−〈di〉)2

σ2
n/Nt

∑
Nt
1 (zi−di(np))

2

σ2
n

/
(

Nt − np
) =

(
Nt − np

)
·(〈zi〉 − 〈di〉)2

MSEnp

(9)

This index has several advantages with respect to the indices introduced before. First,
FA does not depend on σn, and thus allows the reliability with which the polynomial model
approximates the deterministic trend of the data to be estimated, regardless of the contri-
bution of the noise. This is a crucial point since the performances of the previous indices
are strongly biased due to noise. Furthermore, as it is derived by the ratio of chi-squared
distributed variances, FA follows the Fisher statistics: pdf

(
FA
(
np
))

= f
(
1, Nt − np

)
. This

latter aspect is important because it allows the FA index to be used to test the reliability of
the polynomial model and to quantify the test significance statistically, in the same way
as shown in Section 2.1 for the F index. In more detail, the null hypothesis (H0)—that the
model is representative of the data—is not rejected with a level of significance α if

FA
(
np
)
< FAα, with FAα such that f

(
FAα, 1, Nt − np

)
= 1− α (10)
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On the contrary, if FA
(
np
)
≥ FAα, then the representation of the displacements ob-

tained with the polynomial of degree np must be rejected with a significance equal to α
or equivalently with a confidence level equal to p = 1− α. As for Fα, FAα is the quantile
of order p relative to the Fisher distribution, which can be calculated as a function of
Nt, np and p. The numerical values are the same as those computed for Fα and reported in
Figure 1: assuming Nt − np ≥ 100, the FAα value corresponding to a confidence level of
0.95 is about 4.

3. Performance Analysis

In order to compare the reliability of the indices introduced so far, a performance
analysis is carried out by using simulated displacement time series. The simulations are set
according to the following input parameters: the number of samples of the time series (Nt),
the sampling time interval (dt), the wavelength (λ), the temporal coherence (γIN), which
defines the noise level according to Equation (2), and the displacement kinematic model. In
particular, a piecewise kinematic model was adopted, constructed with two linear trends
with velocities v1 and v2 and a transition at time t1.

For each simulated time series, a least squares fit is performed by using a polynomial
model defined by (4), with the degrees np increasing from 1 to 4. Then, the polynomial
model most representative of the simulated time series is selected by adopting as a quality
figure both the absolute (γt, R2, RMSE, FAα) and relative (F, AIC) proposed indices. The
F value is computed through (5) with n2 = n1 + 1, thus allowing the comparison between
polynomials of consecutive degrees.

An example of a simulation is reported in Figure 2a, showing a piecewise linear
displacement signal of 100 samples at a constant time interval of 6 days, which is relevant
to the case of the European Space Agency (ESA)’s Sentinel-1—the current SAR sensor
constellation with the highest revisit frequency and thus the best candidate to provide long
time series that are able to detect non-linear ground displacement. Figure 2b shows the
polynomial analysis of the time series in (a), and the legend panel reports the values of the
quality indices computed for each polynomial model. In this particular case, we highlight
the F and FA values, which fall below the Fα

∼= 4 threshold for degrees ≥2, thus indicating
the parabolic trend to be the most appropriate (minimum degree). This is confirmed by the
polynomial curve trends of order 2 to 4, which appear largely superposed.

Figure 2. (a) Simulated MTInSAR displacement time series (black circles) covering a timespan of T = 600 days, sampled at
dt = 6 days, constructed with a piecewise linear trend (blue dashed line) with velocities v1 = 0 and v2 = −3 cm/year, with
transition at time t1 = T/2, and by an additive noise signal (red dots) equivalent to a coherence γIN = 0.87; (b) trends
derived by modeling the simulated displacements (black crosses) by polynomial models of degree np ranging from 1 to 4.
The legend reports the values of the quality indices computed for each polynomial model.

The performance analysis is carried out by running the simulation scheme described
above to compute the index values corresponding to different settings of the input parame-
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ters; namely, Nt, dt, v1, v2, t1, and γIN (corresponding to σn). Table 1 reports the values
of the input parameters explored to assess the reliability of the indices in selecting the
best polynomial model. Wherever units are not specified, the parameter is considered
adimensional. This work is focused in particular on warning signals related to the pre-
failure of natural or artificial structures, which typically show quite high displacement
rate values; in particular, during the accelerated phase preceding the failure (e.g., [27,28]).
For instance, typical threshold values used to classify a slope as active and susceptible
to failure are in the order of 2 cm/year [29,30]. According to this, in our simulations, we
explore displacement rate values in the order of centimeters per year.

Table 1. Values explored for each of the parameters involved in the simulation scheme. The timespan
of the simulated MTInSAR time series is T = Nt·dt.

Input Parameter Values

λ 5.6 cm
Nt 100
dt 6 days
t1 (0.5, 0.6, 0.7, 0.8, 0.9)·T
v1 0
v2 (0, −1, −2, −3, −4, −5) cm/year

γIN (0.5, 0.6, 0.7, 0.8, 0.9)
np (1, 2, 3, 4)
Nr 100

For each parameter configuration {Nt, dt, t1, v1, v2, γIN}j and for each degree of the
polynomial model np used to fit the time series in the input, we derived the correspond-
ing set of indices I(j, np) =

{
RMSE

(
np
)
, R2(np

)
, γt

(
np
)
, FA

(
np
)
, F
(
np
)
, AIC

(
np
)}

j and

polynomial coefficients C
(

j, np
)
=
{

C1
(
np
)
, . . . , Cnp

(
np
)}

j
. In order to deal with the ran-

dom nature of the noise, for each parameter configuration, both index and coefficient
values are computed by averaging the results corresponding to Nr input signals, obtained
by combining the same deterministic displacement trend with Nr different realizations of a
Gaussian noise with zero mean and standard deviation σn. According to this simulation
scheme, I(j, np) and C

(
j, np

)
are computed for all configurations in Table 1. As stated

in Section 2.2, the AIC is normalized with respect to the minimum value by computing
the ∆AIC.

In order to analyze the simulation results, we plot the index trends as a function of
the simulated velocity change in the time series, dv = v2 − v1, computed for different
values of noise level and transition time t1. An example is reported Figure 3, which shows
in each plot the trends of RMSE, R2, γt, FA, F, and ∆AIC as a function of dv in cm/year,
computed for np ranging from 1 to 4 (corresponding to different line styles as detailed in
the title). The plots along each row refer to different noise levels, decreasing as γIN ranges
from 0.5 to 0.9. All the simulated time series have a fixed transition time that occurs at
half the timespan (t1 = T/2). As the velocity difference increases (from 0 to 5 cm/year), the
simulated displacement trend increasingly deviates from linearity, and thus the polynomial
order needed to approximate the trend should also increase. According to this, the expected
trend of the index values is that increasingly high minimum polynomial degrees should be
selected as dv increases; indeed, this is basically what the plots show when comparing the
index trends corresponding to different values of np. Moreover, the plots show different
index change rates as dv changes, as well as different sensitivities to the noise level. For
instance, ∆AIC trends show considerable variations compared to the other indices, while
both FA and F show fairly similar trends for different noise levels. Similar behaviors have
been observed by simulating displacement trends with different transition times (up to
0.9·T), which are not shown for brevity.
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Figure 3. Trends of RMSE, R2, γt, FA, F, and AIC as a function of the velocity change dv = v2 − v1 in cm/year, computed
for fitting polynomials of order np ranging from 1 to 4. Plots along each row refer to different noise levels, decreasing as γIN

increases from 0.50 to 0.90. The results refer to simulated piecewise linear trends as in Figure 2, with a total timespan of
T = 600 days, sampled at dt = 6 days, with the discontinuity at time t1 = T/2, and white Gaussian added noise.

The performance analysis is carried out by using each of the six indices to select the
minimum polynomial model that is representative of the displacement time series in the
input: np(j) =

{
np(γt), np(RMSE), np

(
R2), np(FA), np(F), np(∆AIC)

}
j. To this end, we

adopt the following selection rules, some of which were introduced in the previous sections
and are listed again here for convenience:

• np(RMSE) = min
({

np
∣∣RMSE

(
np
)
≤ ThRMSE

})
with ThRMSE = 0.5 cm;

• np
(

R2) = min
({

np
∣∣R2(np

)
≥ ThR2

})
with ThR2 = 0.8;

• np(γt) = min
({

np
∣∣γt
(
np
)
≥ Thγt

})
with Thγt = 0.8;

• np(FA) = min
({

np
∣∣FA
(
np
)
≤ FAα

})
with FAα = 4;

• np(F) = min
({

np
∣∣F(np

)
≤ Fα

})
with Fα = 4;

• np(∆AIC) = min
({

np
∣∣∆AIC

(
np
)
≤ ∆A

})
with ∆A = 2.

The threshold values FAα and Fα are derived from Figure 1 according to a confidence
level p = 0.95 and a number of samples of the simulated time series of Nt = 100.

These selection rules were used to process the time series generated by exploring all
the configurations that can be derived from Table 1. The polynomial degrees np(j) selected
according to these rules are then analyzed as a function of the velocity change dv, the
transition time t1, and the noise level defined by γIN. An example is reported in Figure 4,
where each plot shows, as a function of dv in cm/year, the trends of the polynomial degree
selected by using RMSE, R2, γt, FA, F, and ∆AIC, from the top to bottom row of the figure,
respectively. As in Figure 3, the plots along each row refer to decreasing noise levels, with
γIN ranging from 0.5 to 0.9, and are derived by simulating time series with a transition



Remote Sens. 2021, 13, 2302 10 of 16

time t1 = 0.6·T. The missing values in the plots correspond to configurations for which no
polynomial model fulfills the selection rules.

Figure 4. Best approximating polynomial degrees (labeled as P1, P2, P3, and P4, respectively, on the y axes) as a function of
the time series velocity change dv in cm/year (on the x axes), selected by using RMSE, R2, γt, FC, F, and ∆AIC, respectively
(from the top to bottom rows of the figure). Plots along each row refer to different noise levels, decreasing as γIN increases
from 0.50 to 0.90. Results refer again to simulated piecewise linear trends, as described for the plots in Figure 3.

The ideal index should be able to select the most reliable polynomial model for any
value of the nonlinearity degree defined by the velocity change and of the noise level of the
input signal. In particular, as the velocity difference dv increases, the polynomial degree
needed to approximate the simulated displacement trend should also increase. Moreover,
the index should also be able to catch small velocity changes in order to reliably detect
weak precursory displacement signals.

By inspecting the plots in Figure 4, we can conclude that indices RMSE, R2, and γt
are neither robust against noise nor able to detect small velocity changes. On the contrary,
indices FA, F, and ∆AIC provide a reliable polynomial selection for any velocity change
and noise level. In particular, the performances of F and ∆AIC are very similar for all the
explored configurations; these indices are able to select the polynomial that most likely
best approximates the simulated displacement time series.

4. Results and Discussion

The performance analysis presented in the previous section allows the index reliability
to be assessed and for us to set definite rules for selecting the polynomial model that best



Remote Sens. 2021, 13, 2302 11 of 16

approximates a MTInSAR displacement time series. The analysis indicates that F and
∆AIC are the most reliable indices, which show similar performances. However, there is
no rigorous criterion for setting the threshold value for ∆AIC (∆A), while F follows the
well-known Fisher statistics, and thus the threshold value Fα can be computed according to
the number of samples (Nt) and a required confidence level (p). Thus, F appears to be the
most suitable index for the polynomial selection. However, it is a relative index and thus
only allows the best between two different models to be selected, without providing any
estimation of the absolute significance of the result. To this end, the index FA can be used,
which is instead able to estimate the absolute reliability of a polynomial model of degree
np and is robust against noise. Moreover, even in this case, it is possible to set the threshold
value FAα rigorously according to the number of samples and to a required confidence
level. Therefore, the final selection rule is defined by coupling F and FA as follows:

np(F, FA) = min
({

np
∣∣F(np

)
≤ Fα ∧ FA

(
np
)
≤ FAα

})
(11)

Figure 5 shows the processing scheme proposed for the analysis of the MTInSAR
displacement time series. The input data are time series derived by a generic MTInSAR
algorithm and characterized by temporal coherence (γt,IN) computed according to the
displacement model adopted by the algorithm. The outputs of the proposed analysis
are the coefficients C

(
np
)

of the polynomial model selected for describing the time series
(4); the proposed Fisher index FA

(
np
)
, which allows the quality of the approximation

provided by the selected polynomial model to be evaluated; and the temporal coherence
γt, OUT = γt

(
np
)
, computed with (2) by using the selected polynomial model.

Figure 5. Flow chart of the processing scheme proposed for the analysis of the MTInSAR displacement time series.

The output coherence γt,OUT should improve the estimation of the residual noise
with respect to the level provided by γt,IN, which is assumed to be computed using a
linear model (as often occurs in MTInSAR processing, at least for large-scale processing).
Therefore, a new and more reliable set of coherent targets can be derived through (3) by
using γt,OUT.

Figure 6 shows four examples of simulated time series of 100 samples each, at a time
spacing of 6 days, analyzed with the proposed method. The plot in (a) refers to a relatively
noisy linear trend. In this simple case, all the indices are able to select the polynomial model
of the first degree. Time series in (b) and (c) consist of piecewise linear trends with velocities
v1= 0 and v2 = −3 cm/year, a transition time t1 = T/2, and noise levels corresponding to
temporal coherences of 0.9 (low noise) and 0.57 (strong noise), respectively. On the contrary,
the temporal coherence, being strongly biased by the noise, would have failed to select the
reliable model in the noisy case (c): the value of 0.59 is lower than the threshold γTh

t = 0.8
(as defined in Section 3). The last plot in (d) refers to a piecewise linear trend with velocities
v1= 0 and v2 = −3 cm/year, and a transition time t1 = 0.8·T, which requires a polynomial
of higher order to be properly modeled. The proposed method selects a fourth-degree
polynomial. The relatively high noise content causes a bias in the temporal coherence,
which once again causes a failure to select the proper polynomial model.
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Figure 6. Examples of results derived by running the proposed trend analysis on simulated time series with 100 samples
at a time spacing of 6 days. Legends at the bottom of each plot show the values of the quality indices computed for each
polynomial model. Upper-right insets report the trend analysis outputs (np, FA, γt). The plot in (a) refers to a relatively
noisy linear trend. Plots (b,c) refer to piecewise linear trends with velocities v1 = 0 and v2 = −3 cm/year with a transition
time t1 = T/2, and noise levels corresponding to temporal coherences of 0.9 (low noise) and 0.57 (strong noise), respectively.
Plot (d) refers to a piecewise linear trend with velocities v1= 0 and v2 = −3 cm/year and a transition time t1 = 0.8·T, and a
noise level corresponding to a temporal coherence of 0.75.

Results from Real Data

The proposed trend analysis has been run on displacement time series derived by
processing real data though a persistent scatterer MTInSAR algorithm [20]. The dataset
consists of 245 Sentinel-1 SAR images acquired over an urban area between April 2015
and February 2020. The temporal coherence in the input is computed by adopting a linear
displacement model. According to the number of images, and assuming a confidence level
of 0.95, the threshold values used for performing the test (11) are FAα = Fα = 4.

The γt,OUT values are then used for the CT selection through (3) with γTh
t = 0.7, result-

ing in a number of pixels NCT = 74972. By comparing this CT set with that derived by
using the γt,IN, we measure an increase of the CT number of about 5.3%. This demonstrates
that the proposed trend analysis actually improves the modeling of displacement trends,
which in turn leads to an increase in the temporal coherence values. This is clearly visible
in Figure 7a, showing the scatterplot of γt,OUT versus γt,IN: 44.3% of the CTs lay above
the main diagonal (red line), meaning that they have γt,OUT > γt,IN. Figure 7b shows the
γt,OUT distributions corresponding to polynomial degrees ranging from 1 (linear) to 4,
while plots (c), (d), and (e) show examples of nonlinear displacement time series selected
according to the output of the proposed trend analysis. The continuous colored lines
represent the polynomial functions modeling the MTInSAR displacement values in the
input (black crosses). In all cases, the γt,IN values are below the threshold, thus meaning
that these pixels are not selected as CTs in the linear case. The proposed trend analysis was
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instead able to derive more reliable displacement models that increase the γt,OUT values
above the threshold and allow the pixels to be classified as CT.

Figure 7. (a) Scatterplot of γt,OUT versus γt,IN; (b) γt,OUT histograms corresponding to polynomial degrees ranging from 1
(linear) to 4; (c–e) examples of nonlinear displacement time series selected according to the output of the proposed trend
analysis. The continuous colored lines and black crosses represent the polynomial functions and the MTInSAR displacement
values in the input, respectively.

The proposed procedure can also be used to simplify the analysis of MTInSAR prod-
ucts as it allows the selection of a smaller set of CTs according to a particular displacement
kinematic of interest. For instance, if we were interested in analyzing only nonstationary
displacement trends, which are interesting for geophysical and geotechnical investigations,
by using the original MTInSAR product, we would set a low coherence threshold (e.g.,
γt,IN ≥ 0.5) to include possible nonlinear trends. This means selecting about 38% of the
image pixels, including those strongly affected by noise. On the contrary, by using the
products derived from the trend analysis, we are able to select only CTs showing non-linear
displacement ( P

∣∣ γt,OUT ≥ 0.7 and np > 1), which are about 62% less in number than
those selected by using γt,IN. The analysis of this smaller set of targets to properly interpret
their displacement time series is more manageable than analyzing the whole data set. This
kind of advantage is expected to be increasingly important as huge quantities of MTInSAR
products at a national or continental scale become available [31–33].

5. Conclusions

The present work tackles the problem of automatically classifying MTInSAR displace-
ment time series to identify those showing non-linear kinematics. In particular, it focuses
on the problem of reliably assigning a minimum degree to a polynomial approximation
of each time series, thus automatically detecting nonlinearities (as polynomials with a
degree >1) such as piecewiselinear trends, which are typical of warning signals preceding
the failure of natural and artificial structures.
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We introduced a new statistical test FA, based on the Fisher distribution, and aimed
to evaluate the reliability with which a polynomial model approximates a given trend.
We also considered other indices that are commonly used either for comparing different
models (F test, the AIC, and the BIC) or for evaluating the residuals between a model and
input signal (RMSE, R2, γt).

A performance analysis including all these indices has been carried out by simulating
piecewise linear time series with different breakpoints, velocities, levels of noise, and signal
lengths. Based on this analysis, we proposed a procedure for selecting the polynomial
model, which involves computing the FA and F statistics and comparing them to threshold
values that can be set rigorously, according to the number of signal samples, to reach a
required statistical confidence level.

The proposed methodology was also illustrated on a real InSAR displacement time
series dataset from the Sentinel-1 constellation, which, by providing datasets covering
long time periods with a regular and short temporal sampling, is well suited for detecting
warning signals related to ground instabilities. The procedure was able to classify the time
series according to the polynomial order (from 1 to 4) selected to model the displacement
trends. This allows a focus to be placed on the geophysical or geotechnical analysis of
the MTInSAR products on a smaller set of coherent targets, which are selected according
to the displacement kinematic model of interest. The dataset was obtained by using
a linear model to identify the stable targets in the first place—a procedure common to
many state-of-the-art algorithms, especially when used for large-scale processing—and
we adopted a low threshold on the input temporal coherence to keep nonlinear trends.
The proposed post-processing procedure, by adaptively identifying the most appropriate
polynomial approximation model, led to an increase in the (output) MTInSAR temporal
coherence values, thus allowing a more reliable selection of coherent targets, whether linear
or nonlinear. Finally, the computational cost of the proposed procedure is low.

This polynomial analysis could be preceded or followed by other specific processing
steps aimed at deriving further parameters to classify nonlinear trends, such as the exact
time corresponding to a breakpoint [9] or the predicted failure time for landslides [29].
Furthermore, it can be coupled with other procedures tailored to pick targets with tem-
poral trends affected by a periodic signal, such as those caused by structural thermal
oscillations [34] or seasonal ground subsidence [8,10], temporal trends different from any
“canonical” displacement trend model, or finally, temporal trends showing a partially
coherent behavior in time [11]. These interesting developments are the subject of ongoing
research.
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