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Abstract: Precise modeling of weighted mean temperature (Tm) is critical for realizing real-time
conversion from zenith wet delay (ZWD) to precipitation water vapor (PWV) in Global Navigation
Satellite System (GNSS) meteorology applications. The empirical Tm models developed by neural
network techniques have been proved to have better performances on the global scale; they also have
fewer model parameters and are thus easy to operate. This paper aims to further deepen the research
of Tm modeling with the neural network, and expand the application scope of Tm models and provide
global users with more solutions for the real-time acquisition of Tm. An enhanced neural network
Tm model (ENNTm) has been developed with the radiosonde data distributed globally. Compared
with other empirical models, the ENNTm has some advanced features in both model design and
model performance, Firstly, the data for modeling cover the whole troposphere rather than just
near the Earth’s surface; secondly, the ensemble learning was employed to weaken the impact of
sample disturbance on model performance and elaborate data preprocessing, including up-sampling
and down-sampling, which was adopted to achieve better model performance on the global scale;
furthermore, the ENNTm was designed to meet the requirements of three different application
conditions by providing three sets of model parameters, i.e., Tm estimating without measured
meteorological elements, Tm estimating with only measured temperature and Tm estimating with
both measured temperature and water vapor pressure. The validation work is carried out by using
the radiosonde data of global distribution, and results show that the ENNTm has better performance
compared with other competing models from different perspectives under the same application
conditions, the proposed model expanded the application scope of Tm estimation and provided the
global users with more choices in the applications of real-time GNSS-PWV retrival.

Keywords: weighted mean temperature; neural network technique; ensemble learning; precipitation
water vapor; zenith wet delay; troposphere; GNSS meteorology

1. Introduction

Detecting atmospheric water vapor with Global Navigation Satellite System (GNSS)
has been paid more attention than traditional techniques (such as water vapor radiometer,
radiosonde etc.), because it has the advantages of low-cost, all-weather, high-precision and
high-resolution in space and time [1–5]. The key to realize real-time conversion from zenith
wet delay (ZWD) to precipitable water vapor (PWV) when using GNSS for remote sense
water vapor is to obtain accurate weighted mean temperature (Tm) in time. However, the
Tm needs to be calculated by numerical integration based on the measured atmospheric
profiles [6,7]; for example, the atmospheric profile data collected by radiosonde and GNSS
radio occultation are the closest to the actual conditions and can be used to compute
Tm [8–10], but they are rarely applied in the real-time retrieval of GNSS-PWV, because
the cost of collecting such data is very high, which is difficult for general users to afford.
The reanalysis data derived from the numerical weather models (NWMs) have very high
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spatiotemporal resolutions, they generally contain the values of various meteorological
elements at different heights from the ground to the tropopause and can also be used to
compute Tm [10–12]. The reanalysis data have in fact been widely used for climatological
studies of PWV rather than for real-time GNSS-PWV retrieval, because these data are
produced using the assimilation system and there is a time lag from generation to release.
The establishment of the empirical Tm model is an alternative way to obtain Tm values in
real time, and the study on Tm modeling has become one of the most important topics in
GNSS meteorology.

A large number of empirical Tm models have been developed in recent decades, and
they can be divided into two categories according to their application conditions: one is
the models without measured meteorological elements (NMTm models); and the other
one is called MMTm model, which requires the measured meteorological elements in the
Tm estimation. The NMTm models do not need the measured meteorological elements as
input, and they use the trigonometric functions to simulate the periodicities (include annual,
semi-annual and diurnal variation) of Tm in different locations [13–16]. The reanalysis data
generated by NWMs are usually used as the data source in the development of NMTm
models, and one of the most representative NMTm models is the Global Pressure and
Temperature 2 wet (GPT2w) model, which is an empirical model providing empirical
values of various meteorological elements near the Earth’s surface including Tm [17]. In
recent years, the research focus of NMTm models has shifted to the study on the impact of
height differences on the model accuracy, and a series of NMTm models such as the GTm_R
model [18], IGPT2w model [19,20], GWMT-D model [11] and GTrop-Tm model [21] have
been developed. The application scope of NMTm models has even been extended from the
ground to the tropopause [22]. The GWMT-D model and GTrop-Tm model, for example,
can be used to globally compute Tm values at different heights in the near-Earth space
(from the ground to a 10 km altitude) in real time.

The MMTm models, however, are usually established based upon the relations be-
tween Tm and measured meteorological elements such as the temperature (Ts) and water
vapor pressure (Pw) of the site. The Bevis formula (Tm = a · Ts + b) was first used to
calculate Tm [6], its coefficients were fitted from the radiosonde data distributed in the
North America, but it was found that the relation between Tm and Ts varies with the
locations and seasons, so a Bevis formula with constant coefficients a and b would result
in poor accuracy when estimating Tm in different locations and seasons. Many scholars
have conducted the localization research on the Bevis formula and found that the model
coefficients tailored to the specific locations and seasons can better fit the local conditions
[15,23–26]. Some MMTm models for global GNSS-PWV retrieval have also been developed,
such as the GTm-I model, PTm-I model [8] and the TVGG model [27]. The fundamental
aim of these models is to use the Bevis formula to model the main part of Tm (Tm0), and
the trigonometric function to simulate the periodicity of the residual caused by the Bevis
formula (∆Tm). Ding [9] first tried to develop the MMTm model with the neural network
(NN) technique, and established the first-generation neural network Tm model (named
NN-I model), the inputs of which contain the Tm value calculated by the GPT2w model,
the latitude and measured Ts of the site. However, these MMTm models can only be used
to estimate the Tm values near the Earth’s surface, and the complexity of the topography is
not considered in the modeling, so their application scope needs to be further extended.
Yao et al. [28] first studied the applicability of Bevis formula at different altitudes and
established an MMTm model based on the near-Earth atmospheric temperature. Ding [10]
released the second-generation neural network Tm model (named NN-II model), where
the altitude of the site is introduced as an additional input, and the Tm value derived from
the GPT2w model is replaced by that from the GTrop-Tm model. NN-II model extends
the Tm calculation from the Earth’s surface to 10 km altitude, which greatly expanded the
application scope of MMTm models.

The NN-I model and NN-II model all show better performance compared with other pub-
lished Tm models on the global scale, which has been proved in the literature studies [9,10].
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However, the studies on neural network-based Tm modeling can be further deepened.
Firstly, the NN-I/NN-II models are all developed based on the neural network technique,
but the results of neural network training may be greatly affected by the disturbance of
training samples [29]. The NN-I/NN-II models only use the adjusted weight and bias
values after one certain training mission as the final model parameters, and their general-
ization abilities need to be discussed and strengthened. Secondly, the global distribution
of data samples used for developing NN-I and NN-II models is extremely uneven, and
the sample size in the Northern Hemisphere is much larger than that in the Southern
Hemisphere, which would inevitably affect the application of the neural network-based
model on the global scale. Thirdly, the measured Ts is required when calculating Tm with
the NN-I/NN-II models, but it is not applicable in some cases where the meteorological
elements of the site are difficult to measure, so the development of neural network-based
Tm models without measured meteorological elements can be taken as a direction of further
study. Fourthly, many studies have demonstrated that the introduction of water vapor
pressure as input into Tm modeling can help to improve the model accuracy [8,15,18],
which is also a study idea worth trying.

In this work, Tm modeling based on neural network is further studied. An enhanced
neural network Tm model (namely ENNTm for short) is developed with the help of the en-
semble learning method within the framework of machine learning. The ENNTm provides
three sets of model parameters corresponding to three empirical models, the ENNTm-A
model, ENNTm-B model and ENNTm-C model, which can meet the needs of Tm estimation
under three different application conditions, i.e., no measured meteorological element is
needed (ENNTm-A model), only the air temperature of the site is required (ENNTm-B
model) and both air temperature and water vapor pressure are needed (ENNTm-C model).
In the following sections, the modeling process are introduced, their generalization ability
of ENNTm is discussed, and the comparisons of model performance with those of other
published models are also carried out.

2. The Determination of Tm

2.1. Computing Tm by Numerical Integration

The realization of real-time GNSS-PWV retrieval benefits from the linear relationship
between zenith wet delay (ZWD) and precipitable water vapor (PWV) [1,6,7], which can
be described by

PWV = Π× ZWD (1)

Π =
106

ρwRv
(
k′2 + k3/Tm

) (2)

where Π is the conversion coefficient to be estimated, and the ρw, Rv, k
′
2 and k3 are all

constants which can be found in the literature studies [6,15,21–23]. However, the weighted
mean temperature (Tm) is a variable that determines the final value of Π, thus plays a
decisive role in the GNSS-PWV retrieval. The Tm is defined as the mean temperature of the
atmospheric water vapor [30–33] that:

Tm =

∫ ∞
hs
(Pw/T)dh∫ ∞

hs
(Pw/T2)dh

(3)

where Pw and T are the water vapor pressure and absolute temperature of the atmosphere
along the vertical direction, respectively; hs is the height of the site (the starting height for
numerical integrating).

In practice, a series of discrete sampling data of the zenith atmospheric profile could be
measured and used to calculate Tm by numerical integration. Multiple datasets including
atmospheric profiles collected by sounding balloons and reanalysis data produced by
NWMs could be used to compute Tm with Equation (3) and act as the data sources for Tm
modeling. However, the meteorological elements extracted from reanalysis data are all
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generated using assimilation systems [34,35], they do not quite fit the actual atmospheric
conditions, and considerable uncertainties may exist in terms of establishing MMTm Tm
models with them. For instance, the ECMWF re-analysis-interim (ERA-interim), a modern
reanalysis data produced by the European Centre for Medium-Range Weather Forecasts
(ECMWF), it was found that there were great differences between the meteorological
elements extracted from them and the actual measurements [4], and the performance of
MMTm models developed with them are usually not as good as those with radiosonde data
[9,15]. The radiosonde data are actually measured by sounding balloons, so the values of
meteorological elements derived from them are closer to the actual atmospheric conditions.
In addition, the Integrated Global Radiosonde Archive (IGRA) currently provides the
measured atmospheric profile data of more than 1000 globally distributed radiosonde
stations [36,37], which can fully meet the needs of modeling Tm at the global scale.

2.2. Tm Determination with Empirical Models
2.2.1. GPT2w Model Predictions

The GPT2w (Global Pressure and Temperature 2 wet) model is the basis of the first-
generation neural network Tm (NN-I) model, so it is introduced first. The GPT2w model
is an excellent blind model for tropospheric delay estimation and can also provide the
empirical values of various meteorological elements such as temperature, water vapor
pressure and Tm, etc. [17] It is a grid model and the seasonal periodicity of the Tm at each
grid node is simulated with a trigonometric function, which can be described by

Tg
m = A0 + A1cos(

2π · doy
365.25

) + A2sin(
2π · doy
365.25

)

+A3cos(
4π · doy
365.25

) + A4sin(
4π · doy
365.25

)

(4)

where the Tg
m is the Tm estimate at a certain grid point, doy is the day of year, and two sets

of coefficients (Ai, i = 0, 1, . . . , 4) with mesh resolution of 1◦ × 1◦ and 5◦ × 5◦ (lat. × lon.)
are provided. The Tm at the target location could be calculated via bilinear interpolating
with four grid points closest to the target location.

2.2.2. GTrop-Tm Model Predictions

The GTrop (global troposphere) model is also a grid model and designed for zenith
tropospheric delay and Tm estimation [21], and in this paper we gave the part for estimating
Tm the name GTrop-Tm model. The GTrop-Tm model also uses the trigonometric function
to model the Tm at the grid node:

Tg
m = A0 + A1(y− 1980) + A2cos(

2π · doy
365.25

) + A3sin(
2π · doy
365.25

)

+A4cos(
4π · doy
365.25

) + A5sin(
4π · doy
365.25

)

(5)

where y is the year, Ai(i = 0, 1, . . . , 5) are the coefficients with resolution of 1◦ × 1◦

(lat. × lon.).
The GTrop-Tm model not only further considers the inter-annual variation of Tm, but

also has some innovations in modeling strategy compared with the GPT2w model, i.e.,
the GTrop-Tm model takes the height differences between the target location and the grid
points for interpolation into account, and the lapse rate (δ) of Tm with the height at each gird
is fitted with the data samples from the Earth’s surface to the tropopause. Consequently,
the Tm at the grid point should be corrected to the height level of the target location before
they are used for bilinear interpolating, which can be expressed by

Tc
m = Tg

m + δ · (ht − hg) (6)
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where the ht and hg are the heights of the target location and the grid point for interpolation,
respectively, and Tc

m is the corrected Tm of the grid point.
The δ of each grid node is also considered to be a variable with characteristics of

inter-annual, annual and semiannual variations, which is also fitted by an equation which
is the same as Equation (5). However, Tm is assumed to decrease approximately linearly
with the height in the development of the GTrop-Tm model, which may be inconsistent
with reality.

2.2.3. NN-I Model Predictions

The NN-I model is a typical case of applying the artificial intelligence to the GNSS
meteorology. Ding [9] combined the GPT2w model with the measured surface air tempera-
ture (Ts) to develop a combined model for predicting the Tm, namely the first-generation
neural network Tm model. The NN-I model makes use of the powerful nonlinear mapping
ability of the neural network, and a multiple-layer feedforward neural network (MFNN) is
used in the modeling. The model principle can be simply described as

Tm = f (Tm_mGPT2w, lat, Ts) (7)

where the Tm_mGPT2w means the Tm derived from the GPT2w model, which is modified by
Equation (6) with a lapse rate of −5.1 K/km, the lat and Ts are the latitude and surface air
temperature of the site.

2.2.4. NN-II Model Predictions

The NN-I model only considers the correlation between Tm and air temperature near
the Earth’s surface, but Ding [10] found that the correlation coefficient between the Tm and
air temperature below 10 km altitude reached 0.97. He further extended the application
scope of the NN-I model to the near-Earth space from the surface to 10 km altitude, and
developed the second-generation neural network Tm model (NN-II model), which can be
described by

Tm = f (Tm_GTrop, lat, Ts, Hs) (8)

The NN-II model and NN-I model have similar modeling principles and use the same
modeling tool (MFNN). However, there are three very important differences between them.
Firstly, one of the input parameters of the NN-II model, Ts, refers to the temperature of the
site which may be at any height of the troposphere rather than the temperature near the
Earth’s surface used in NN-I model. Secondly, the NN-II model uses the Tm value derived
from the GTrop-Tm model as the input rather than that from the GPT2w model, because
the GTrop-Tm model extends the Tm calculation from the ground to the near-Earth space
below 10 km altitude. Thirdly, the height of the site is taken as one of the inputs in the
NN-II model, while in the NN-I model, the height of the station is taken as an indirect
input to modify the GPT2w model (with a lapse rate of −5.1 K/km). The application scope
of NN-II model is greatly extended compared with NN-I model.

3. Development of the ENNTm
3.1. Data and Study Area

The sounding balloon released from the ground-based radiosonde stations can directly
measure the vertical profiles of meteorological elements. The Integrated Global Radiosonde
Archive (IGRA) provides free access to the radiosonde data (https://www.ncdc.noaa.
gov/data-access/weather-balloon/integrated-global-radiosonde-archive (accessed on 26
April 2021), and version 2 of IGRA (IGRA V2) has been accessible since 2016, whilst
approximately 1000 of the over 2700 IGRA stations are currently reporting data. The data
are organized one file per station with two observations per day at UTC 00:00 and UTC
12:00, whereas the pressure, geopotential height, air temperature, and the vapor pressure
computed from the temperature, pressure and dewpoint depression at the same level are
reported in the IGRA-derived sounding parameters files.

https://www.ncdc.noaa.gov/data-access/weather-balloon/integrated-global-radiosonde-archive
https://www.ncdc.noaa.gov/data-access/weather-balloon/integrated-global-radiosonde-archive
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The study area of this work is the whole near-Earth space from the surface to the
tropopause, globally, for which a total of 878 IGRA stations were selected, of which
209 stations were used to develop the enhanced neural network Tm model (ENNTm),
and the observations of another 569 IGRA stations were used to evaluate the model
performances, which can be seen in Figure 1. The data for modeling were measured from
2011 to 2015, and the data for evaluation were from 2016 to 2018. The Tm value at different
height layers for each measured atmospheric profile was calculated by using numerical
integration method introduced in Section 2.1.

Figure 1. The distribution of IGRA stations used in this work.

It is worth mentioning that the distribution of radiosonde stations is actually extremely
uneven due to the global land–sea distribution. The general situation is that the distribution
of radiosonde stations is relatively dense in the Northern Hemisphere, such as in East Asia,
Europe and North America, etc., while there are few radiosonde stations in the Southern
Hemisphere, where only South America and Australia have relatively dense distributions
of radiosonde stations. Such problems often exist in the modeling process of previous
neural network-based Tm models. Taking the NN-I model and NN-II model, for instance,
the distribution of training stations adopted in the modeling is extremely uneven, and
the available data samples in the Northern Hemisphere are often far more numerous than
those in the Southern Hemisphere. In order to weaken the impact of imbalanced data
samples on the model performance at the global scale, this paper attempted to make the
uniform distribution of modeling stations when selecting IGRA stations for training, and
adopted the up-sampling and down-sampling methods to make the data volume uniform
at each latitude band (with latitude interval of 20◦). The data size distribution and sampling
methods for each latitude band are shown in Table 1.

Table 1. The sampling method and size of the data samples for each latitude band.

Latitude Band Samples before
Preprocessing Sampling Method Samples after

Preprocessing

90◦S–70◦S 207,022 up-sampling 621,066
70◦S–50◦S 313,368 up-sampling 726,736
50◦S–30◦S 591,581 up-sampling 691,581
30◦S–10◦S 1,087,641 down-sampling 887,646
10◦S–10◦N 1,611,588 down-sampling 900,000
10◦N–30◦N 1,219,985 down-sampling 900,000
30◦N–50◦N 2,328,141 down-sampling 900,000
50◦N–70◦N 2,289,975 down-sampling 800,000
70◦N–90◦N 722,951 up-sampling 722,951



Remote Sens. 2021, 13, 2405 7 of 22

3.2. The BPNN and Ensemble Learning

An artificial neural network (ANN) is a mathematical or computational model that
mimics the structure and function of a biological neural network. Modern neural networks
usually serve as nonlinear statistical data modeling tools, and have been widely used
to solve various problems. For example, the multilayer feedforward neural network
(MFNN) is very good for solving nonlinear optimization problems of multiple input
parameters, which has been widely used in regression tasks [15,38]. Consequently, a three-
layer feedforward neural network with one input layer, one hidden layer and one output
layer was employed in this work. The gradient descent method was used to minimize
the difference between network output and target output, and a most famous algorithm
named back-propagation (BP) was usually adopted in the training of TFNN, so the TFNN
was also called the BPNN [39]. Its mathematical principle can be described by

Y = f (b(2) +
−−→
W
′
(2) · g(b

(1) +
−−→
W
′
(1) ·
−→
X ) (9)

where
−−→
W
′
(1) and

−−→
W
′
(2) denote the transpose of

−−→
W(1) and

−−→
W(2), i.e., the weight matrix to

connect neurons of the input layer and hidden layer and weight matrix to connect neurons
of the hidden layer and output layer, respectively; b(1) and b(2) indicate the offset from
the input layer to the hidden layer and offset from the hidden layer to the output layer,
respectively. The

−→
X stands for the input variable. A hyperbolic tangent function:

g(x) =
2

1 + e−2x − 1 (10)

and a linear function:
f (x) = x (11)

are usually adopted as the activation function in the hidden layer and output layer, respectively.
BPNN can well simulate the nonlinear relationship between the input and output.

However, the initial weight values for a BPNN are usually randomly generated before
training, so the results are usually different from each other after training even for the same
training set. In the training process, there is a great risk of falling into the local minimum
as a result of training with the gradient descent method, and the generalization ability
of the BPNN model for regression may be very poor due to incorrect selection [15,29,40].
Ensemble learning is a theoretical framework of machine learning based on combination
strategy which includes the boosting and bagging method. The boosting method usually
contains a series of base learners which are trained in series, and there is strong correlation
between the sequentially generated learners [40]. In contrast, the bagging method and its
base learners are trained in parallel, and the training process could be seen as mutually
independent. The bagging method was based on the bootstrap sampling, and the training
set for each base learner was approximately independent from one other, to obtain multiple
base learners with diversity. For regression tasks, a simple average method can be used
to combine multiple base learners to obtain a combined model with better generalization
performance:

Tm =
1
T

T

∑
i=1

hi(x) (12)

From the perspective of bias and variance, bagging pays more attention to reducing
variance, so it is more effective on decision trees, neural networks and other learners that
are susceptible to sample disturbance [29].

3.3. The Input Parameters

We computed the correlation coefficients between the Tm and the air temperature (Ts),
water vapor pressure (Pw) with the data samples (during 2011 and 2018) derived from
878 IGRA stations, and found that they were 0.9812 and 0.7424, respectively, so the Ts,
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Pw can be considered as the indispensable input of the neural network-based Tm model.
In addition, the GTrop-Tm model well simulated the spatiotemporal variations of Tm
in the troposhere, even though it had some defects. We also found that the correlation
coefficient between Tm calculated by the GTrop-Tm model (Tm_GTrop) and Tm extracted
from the radiosonde data reached 0.9709. Therefore, in this study, the Tm_GTrop was also
used as one of the input parameters of the neural network Tm model, and the flow of
computing Tm_GTrop can be found in the literature study [21]. The height of the site is also
an indispensable input of ENNTm due to the vertical variation characteristics of Tm, which
is also the key to determining whether the new model can perfectly simulate the Tm in the
entire troposphere. Many studies have found that the Tm and its correlation with Ts are
significantly changed with the latitude (rather than the longitude) at the global scale, so
the latitude (φ) of the site should be used as one of the inputs of the new model. The day of
year (doy) was also adopted as the input to model the seasonal variation of Tm, as well as
the Tm − Ts, Pw relations. Therefore, six parameters (doy, Tm_GTrop, φ, h, Ts, Pw) were set as
the input variables of ENNTm, while the year, month, date and longitude (λ) of the site
served as indirect inputs.

3.4. Modeling Schemes

In the development of ENNTm, three modeling schemes were designed in considera-
tion of the different application conditions that the global users may face. We called the first
one the ENNTm-A model, which is applicable to the situation where the site meteorological
elements are difficult to measure. The second one is named the ENNTm-B model, which is
suitable for the situation that has easy access to the field temperature (Ts). The third one is
the ENNTm-C model, which applies to the situation where the air temperature and water
vapor pressure (Pw) can be conveniently measured. Their input and output and the model
structures are shown in Figure 2.

Longitude(λ)

Latitude(φ)

Height(h)

DOY 
year

Month
Day

Tm_GTrop

...

Tm_pre

Ts

Pw

Input Hidden

Output

ENNTm-A

ENNTm-B

ENNTm-C

Combine
Strategy

Figure 2. The model structures of three different modeling schemes. The red solid circles denote the
direct input parameter of BPNN models.

For each modeling scheme, we designed a total of 10 kinds of network structures, of
which the number of neurons in the hidden layer (N) ranges from 5 to 50 (N = 5, 10, . . . , 50).
For each network structure, we conducted 50 independent training tasks, since the liter-
ature study [15] illustrated that an ensemble size of more than 10 can achieve a better
generalization ability for BPNN models. As a result, a total of 1500 training tasks were
carried out in the development of ENNTm. By extracting data from the radiosonde stations
around the world, we processed and generated nearly 10 million pieces of available sam-
ples for modeling. However, we only randomly sampled 1 million pieces of data for each
training task, so as to obtain diversified BPNNs with different performances via multiple
training missions.
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4. Results

Atmospheric profiles measured from 2016 to 2018 by 569 IGRA stations were utilized
to verify the performance of the ENNTm proposed in this work. The mean deviation (MD),
mean absolute deviation (MAD), root-mean-square error (RMSE), standard deviation (STD)
and Pearson correlation coefficient (R) were used to evaluate the model accuracies:

MD =
1
n

n

∑
i=1

(Tpre
m,i − Tobs

m,i ) (13)

MAD =
1
n

n

∑
i=1
|Tpre

m,i − Tobs
m,i | (14)

RMSE =

√
1
n

n

∑
i=1

(Tpre
m,i − Tobs

m,i )
2 (15)

STD =

√
1
n

n

∑
i=1

(Tpre
m,i − Tobs

m,i −MD)2 (16)

R =
∑n

i=1(T
pre
m,i − Tpre

m )(Tobs
m,i − Tobs

m )√
∑n

i=1(T
pre
m,i − Tpre

m )2
√

∑n
i=1(T

obs
m,i − Tobs

m )2
(17)

where n is the number of the test samples, Tpre
m,i and Tobs

m,i are the i-th Tm value computed
with the empirical model and the Tm value derived from the radiosonde measurements,
respectively. Tpre

m and Tobs
m are, respectively, the mean values of Tpre

m,i and Tobs
m,i .

In this section, the generalization abilities of different modeling schemes were dis-
cussed, and the performance of the proposed models were evaluated in comparison with
three published empirical models: the GTrop-Tm model, NN-I model and NN-II model.
The features and operation conditions of different competing models are shown in Table 2.

Table 2. The features and operation conditions of different competing models.

Model Application Scope Modeling Strategy Direct Inputs

GTrop-Tm Below 10 km altitude Least sqaures φ, λ, h, doy, year
NN-I Near the Earth’s surface BPNN φ, Tm_GPT2w, Ts
NN-II Below 10 km altitude BPNN φ, h, Tm_GTrop, Ts

ENNTm-A Below 10 km altitude BPNN, ensemble learning φ, h, doy, Tm_GTrop
ENNTm-B Below 10 km altitude BPNN, ensemble learning φ, h, doy, Tm_GTrop, Ts
ENNTm-C Below 10 km altitude BPNN, ensemble learning φ, h, doy, Tm_GTrop, Ts, Pw

4.1. The Generalization Ability of ENNTm

We first examined the generalization abilities of different modeling schemes, the
atmospheric profiles of 569 radiosonde stations distributed globally measured in 2016 (a
total of 8,065,535 samples) were employed in this subsection. The MD, MAD, RMSE, STD
and R are shown in Figures 3–7. The ensemble size of different modeling schemes are all
of 50.

From Figure 3, one can see that the MDs of different modeling schemes become smaller
as the number of neurons in the hidden layer (N) increases. The MD changes greatly when
N is not exceeding 10, and many more outliers could be found for the ENNTm-C model
when N is 5, and with N rising, the MDs of different modeling schemes tend to be stable.
The effect of ensemble learning is not obvious from the perspective of MD, since the
ensemble learning pays more attention to reducing variance rather than expectation of
when it is used for regression tasks, but we can verify the effect of ensemble learning
through some other indicators such as MAD, RMSE , STD and R.
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ENNTm-A ENNTm-B ENNTm-C

Figure 3. Box-whisker plot of MD for different modeling schemes with different BPNN structures.
The small circle denotes the results after combination, the red ‘+’ is the outlier.

ENNTm-A ENNTm-B ENNTm-C

Figure 4. The MAD of different modeling schemes with different BPNN structures.

ENNTm-A ENNTm-B ENNTm-C

Figure 5. The RMSE of different modeling schemes with different BPNN structures.
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ENNTm-A ENNTm-B ENNTm-C

Figure 6. The STD of different modeling schemes with different BPNN structures.

As can be seen in Figures 4–6, the MAD, RMSE and STD decrease with the increase in
N, however, when N is greater than 20, the downward trends of these indicators gradually
slow down. Another significant and common phenomenon is that the performances of
ENNTm models become stronger after combination, the MAD, RMSE and STD of different
modeling schemes can even be better than the individual BPNN with the best performance.
It can be concluded that the ensemble learning method can help the BPNN model achieve
better generalization ability.

ENNTm-A ENNTm-B ENNTm-C

Figure 7. The Pearson correlation coefficient (R) of different modeling schemes with different
BPNN structures.

We also examined the Pearson correlation coefficients (R) between the model values
and Tm values derived from the radiosonde measurements. It can be seen from Figure 7
that the R becomes larger with the increase in N for different modeling schemes, and many
more outliers can be found when N does not exceed 20. The effect of ensemble learning is
also remarkable for all the modeling schemes, which is consistent with the results shown
in Figures 4–6.

According to the analysis above, we found that the performances of BPNN Tm models
become stronger as the number of neurons in the hidden layer (N) increases. However,
for a BPNN model with only a three-layer network structure, the improvement of model
performance was limited with the increase in model complexity. For example, the reduction
rate of RMSE slows down as N is greater than 20. In addition, the model performances
can be further improved and better generalization ability can be achieved by combining
different training tasks. In conclusion, we believe that the model with N greater than 20 and
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enhanced by ensemble learning would achieve better performance, so we also provide all
the weight and bias values after training for the user’s reference.

4.2. The Overall Performances of Different Models

We investigated the overall performances of ENNTm models in comparison with
three published empirical models: the GTrop-Tm model, NN-I model and NN-II model.
The atmospheric profile data measured from 2017 to 2018 were utilized in this subsection.
The results of ENNTm models all correspond to the results when the number of neurons in
the hidden layer (N) is 25.

We first evaluated the model accuracies of different models with the data near the
Earth’s surface (below 100 m above the Earth’s surface), a total of 1,687,098 samples were
used to compute the MD, MAD, RMSE, STD and R, and the results are shown in Table 3.

Table 3. The accuracies of different models validated by test samples below 100 m above the Earth’s
surface during 2017 and 2018.

Models MD (K) MAD (K) STD (K) RMSE (K) R

GTrop-Tm −0.41 3.04 3.97 4.00 0.9418
ENNTm-A −0.12 3.00 3.96 3.96 0.9419

NN-I −0.53 2.43 3.13 3.18 0.9640
NN-II −0.24 2.50 3.26 3.27 0.9617

ENNTm-B −0.18 2.39 3.11 3.11 0.9646
ENNTm-C −0.07 2.27 2.94 2.94 0.9684

From Table 3, one can see that the GTrop-Tm model and NN-I model have a larger
negative MD on the global scale, while the NN-II model and ENNTm models perform
better, and the ENNTm-C model has the smallest MD (−0.07 K) among them. In terms of
the MAD, STD and RMSE, the GTrop-Tm model and ENNTm-A model perform poorer
than the other competing models since they are all NMTm models, but since others belong
to MMTm models, numerous studies have demonstrated that the model accuracies of
MMTm models are better than those of NMTm models. Among the published models, the
NN-II model was designed for computing Tm from the Earth’s surface to 10 km altitude,
but its performance is not as good as that of the NN-I model in computing Tm near the
Earth’s surface. A tiny improvement can be found for the ENNTm-B model compared
to the NN-I model. The ENNTm-C model, however, performs the best, since its MAD,
STD and RMSE are significantly reduced compared to other competing models, which
is consistent with the conclusions of the literature study [15]. We can also obtain similar
conclusions from the perspective of R.

Since the ENNTm models are all designed for calculating Tm values in near-Earth
space, we conducted the model accuracy comparisons with the data from the Earth’s
surface to 10 km altitude (a total of 25,373,469 samples), the results are shown in Table 4.

Table 4. The accuracies of different models validated by data from the Earth’s surface to a 10 km
altitude during 2017 and 2018.

Models MD (K) MAD (K) STD (K) RMSE (K) R

GTrop-Tm 0.79 3.69 4.75 4.81 0.9701
ENNTm-A −0.21 3.3 4.28 4.28 0.9736

NN-I 3.49 4.82 5.59 6.59 0.9763
NN-II −0.39 2.56 3.28 3.34 0.9846

ENNTm-B −0.1 2.35 3.08 3.08 0.9864
ENNTm-C 0.04 2.09 2.73 2.73 0.9893
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In Table 4, one can see that the MD, MAD, STD and RMSE of NN-I model are far larger
than those of other models. The NN-I model is only designed for the Tm estimation near
the Earth’s surface, and the comparisons between the NN-I model and NN-II model were
carried out in the literature study [10], in which it was concluded that the NN-II model is
far superior to the NN-I model in all aspects when validated with the data from the Earth’s
surface to the tropopause, so we did not consider the NN-I model in the following analysis.
Among other competing models, the GTrop-Tm model has the largest positive MD, while
marked negative MD could be found for the NN-II model and ENNTm-A model. The
ENNTm-B model and ENNTm-C model all performed better than other models in terms of
MD. In the MAD, STD and RMSE cases, significant improvement can be seen for ENNTm-A
model compared to GTrop-Tm model, with an improvement of about 10% in MAD, STD
and RMSE, respectively. The ENNTm-B model also improves much in MAD, STD and
RMSE compared with the NN-II model, by 8%, 7% and 8%, respectively. The ENNTm-C
model performs the best, improves by 12% over ENNTm-B model and 21% over NN-II
model in RMSE, respectively. A similar phenomenon can be found in the case of R, but
their R values are much larger than those shown in Table 3, since the models shown in
Table 4 (except for the NN-I model) are all designed for near-Earth space. In general, the
performances of MMTm models are much better than those of NMTm models, and the
improvements of ENNTm models in comparison with other published models under the
same application conditions are remarkable.

From the comparison and analysis above, we can obtain similar conclusions from the
perspectives of MAD, STD, RMSE and R in the evaluation of model accuracy. Therefore, in
the following analysis, we only consider the MD and RMSE as the performance indicators.

4.3. The Spatial Performances of Different Models

We further conducted the spatial performance comparisons for different models on the
global scale. The testing dataset was divided into five groups according to the geographical
zones, the definitions of different geographical zones are shown in Table 5.

Table 5. The definition of different geographical zones.

Geographical Zone Latitude Band Abbreviation

North frigid zone 66◦34′N–90◦N NFZ
North temperate zone 23◦26′N–66◦34′N NTZ

Tropical zone 23◦26′S–23◦26′N TZ
South temperate zone 23◦26′S–66◦34′S STZ

South frigid zone 66◦34′S–90◦S SFZ

The MD and RMSE for different models at each test IGRA station are calculated and
shown in Figures 8 and 9, and the statistics of MD and RMSE for each model in different
geographical zones are also shown in the figure.

From Figure 8a,b, remarkable positive MD in the middle-to-high latitudes can be
found for the GTrop-Tm model, but the IGRA stations from Australia to southern China
show obvious negative MDs. The ENNTm-A model performs similarly but is a great
improvement over the GTrop-Tm model in most regions. In Figure 8c–e, the NN-II model
shows marked negative MDs in the Northern Hemisphere, such as in North America
and southern China, but positive MDs could be found in north Asia, South Africa and
South America, etc. The ENNTm-B model and ENNTm-C model, however, both show
improvement compared to the NN-II model, especially in the middle-to-high latitudes.
From Figure 8f, the detailed statistics of MDs for different models seem to be consistent
with the results shown in Figure 8a–e. The GTrop-Tm model shows a large positive MD in
the NFZ, the NT and the STZ, but a smaller negative MD can be found in the SFZ. In the
TZ, there are no marked MDs for any of the competing models. The NN-II model shows a
large positive MD in the SFZ and a marked negative MD in the NFZ, but it performs well
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in other geographical zones. The ENNTm models, however, all show very small MDs in
each geographical zone.

(a) MD of GTrop-Tm model
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(c) MD of NN-II model
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(e) MD of ENNTm-C model

 180°   120°W   60°W    0°    60°E  120°E  180°  
  80°S 

  40°S 

   0°  

  40°N 

  80°N 

-3

-2

-1

0

1

2

3
K (f) MDs in different geographical zones

NFZ NTZ TZ STZ SFZ

Geographical zones

-2

-1

0

1

2

M
D

 (
K

)

GTrop-Tm
ENNTm-A
NN-II
ENNTm-B
ENNTm-C

Figure 8. The scattergram of MD (mean deviation) for (a) GTrop-Tm model; (b) ENNTm-A model; (c)
NN-II model; (d) ENNTm-B model and (e) ENNTm-C model at each test IGRA station; and (f) their
statistics in different geographical zones validated by radiosonde data during 2017 and 2018.

(a) RMSE of GTrop-Tm model
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(c) RMSE of NN-II model
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(e) RMSE of ENNTm-C model
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Figure 9. The scattergram of RMSE (root-mean-square error) for (a) GTrop-Tm model, (b) ENNTm-A
model, (c) NN-II model, (d) ENNTm-B model and (e) ENNTm-C model at each test IGRA station, and
(f) their statistics in different geographical zones validated by radiosonde data during 2017 and 2018.
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With regard to the RMSE, one can see from Figure 9a,b,f that the GTrop-Tm model
shows a larger RMSE on the global scale than other competing models, especially in the
middle to high latitudes. However, significant improvement can be found for the ENNTm-
A model in all of the geographical zones compared to the GTrop-Tm model, especially
in the SFZ (reduced by 1.4 K) and NFZ (by 0.8 K). From Figure 9c–f, one can see that the
values of RMSE for the NN-II model are almost all from 3.0 K to 5.0 K, except for a few
IGRA stations distributed near the equator, where it is even inferior to that of the NMTm
models (GTrop-Tm model and ENNTm-A model) in the SFZ. The ENNTm-B model and
ENNTm-C model have greatly improved this defect, and the improvement in RMSE is very
significant in the SFZ (by 2.6 K) and the NFZ (by 0.9 K). We can also see that the RMSEs of
ENNTm-C model are smaller than those of the ENNTm-B model in the tropical zone and
the temperate zones, even though the improvement is not significant.

We also computed the RMSE reductions for ENNTm models with respect to the GTrop-
Tm model and NN-II model, and the detailed statistics of RMSE reductions are shown in
Figure 10.

Figure 10. The statistics of RMSE reductions in (a) ENNTm-A w.r.t. GTrop-Tm; (b) ENNTm-B w.r.t.
NN-II; (c) ENNTm-C w.r.t. NN-II; and (d) ENNTm-C w.r.t. ENNTm-B. w.r.t = with respect to.

One can see from Figure 10a that the RMSE of the ENNTm-A model reduces in over
80% of test IGRA stations with respect to GTrop-Tm model, and in the stations where the
RMSE reduces by more than 0.5 K, this accounts for 42%. From Figure 10b, the RMSE of
more than 90% stations reduces for the ENNTm-B model with respect to the NN-II model,
and even though the RMSE of over 83% stations only reduces by 0–0.5 K, this can still
illustrate the advantage of the ENNTm-B model over the NN-II model in terms of model
accuracy. In Figure 10c, one can see that the RMSE reduction in the ENNTm-C model with
respect to the NN-II model is significant enough that the test IGRA stations whose RMSE
reduces by over 0.5 K account for 65% of the total. In the comparison between ENNTm-B
model and ENNTm-C model shown in Figure 10d, the RMSE for the ENNTm-C model at
over 97% of the test IGRA stations reduces with respect to ENNTm-B model, which further
indicates that the accuracy of the Tm model can be improved by introducing water vapor
pressure into modeling.

To investigate the performances of different models in the vertical direction, we divided
the test samples in each geographical zone into 10 groups with an interval of 1.0 km altitude
to compute the MD and RMSE. The results are shown in Figures 11 and 12.

Figure 11 shows that the MD for each model generally shows an increasing trend with
the increase in height and the GTrop-Tm model is the most prominent one, just as that shown
in Figure 11b–d. It seems that the GTrop-Tm model performs the poorest at the height layers
from 4 to 10 km, except in the SFZ. The ENNTm-A model is shown to be much better than
the GTrop-Tm model at any height layers, especially at the height layers above 4 km. The
NN-II model has a very large positive MD at the height layers from 8 to 10 km, as shown in
Figure 11d,e, however, negative MDs could be found for it at the height layers below 6 km
in the NFZ and NTZ shown in Figure 11a,b. The ENNTm-B model and ENNTm-C model
perform much better than the NN-II model at any height layers in most geographical zones,
such as at the height layers below 5 km in NFZ and NTZ, as shown in Figure 11a,b, as
well as the height layers above 7 km in STZ and SFZ shown in Figure 11d,e. Poor model
performances could be found for the ENNTm-B model and ENNTm-C model at height
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layers over 8 km near the equator, as shown in Figure 11c, but their MDs are not significant,
and no more than 1.0 K.
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Figure 11. The statistics of MDs at different height layers in the (a) NFZ; (b) NTZ; (c) TZ; (d) STZ;
and (e) SFZ.
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Figure 12. The statistics of RMSEs at different height layers in the (a) NFZ; (b) NTZ; (c) TZ; (d) STZ;
and (e) SFZ.



Remote Sens. 2021, 13, 2405 17 of 22

With regard to the detailed statistics of vertical RMSEs in different geographical zones
shown in Figure 12, one can see that the RMSE of the GTrop-Tm model increases with the
height in the Southern Hemisphere, while its RMSE first increases then decreases with the
height in the Northern Hemisphere. The ENNTm-A model also has such a rule but it is
better than the GTrop-Tm model, and its RMSE reduces at any height layers compared to
the GTrop-Tm model. The NN-II model performs well in the RMSE at any height layers
from the NTZ to STZ, as shown in Figure 12b–d, however, in the SFZ shown in Figure 12e,
the NN-II model shows a far larger RMSE compared to other competing models at the
height layers above 6 km. The RMSE of the ENNTm-B model improves compared to the
NN-II model at almost any height layers, even though the improvement is not sometimes
significant. The ENNTm-C model, however, improves much over the NN-II model in the
near-Earth space in any geographical zones, and it performs the best among the competing
models.

4.4. The Temporal Performances of Different Models

We also investigated the temporal performance of different models. The test samples
were divided into six groups according to the geographical zones, and we computed the MD
and RMSE in different months for each group, for which the results are shown in Figures 13
and 14.
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Figure 13. The statistics of MD for each model in different months in the (a) NFZ; (b) NTZ; (c) TZ;
(d) STZ; and (e) SFZ.

Figure 13e shows that in the south frigid zone (SFZ), the NN-II model has a far larger
positive MD than other competing models in the Southern Hemisphere during winter
months, and large positive MDs could be found from April to October, while there is no
significant bias in other months. The GTrop-Tm model, however, shows large negative
MD in summer months (such as November, December and January) but a remarkable
positive MD in winter months. In the statistics of the south temperate zone (STZ) shown
in Figure 13d, a similar phenomenon can be seen for the MDs for the GTrop-Tm model
and NN-II model in the winter months, which are larger than those in summer months. In
the detailed statistics of MDs in the north frigid zone (NFZ) and the north temperate zone
(NTZ) shown in Figure 13a,b, this phenomenon also exists as the MDs for the GTrop-Tm
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model and NN-II model are larger during winter months (in the Northern Hemisphere)
than those during the summer months. However, there are no significant biases which can
be found for ENNTm models in any months throughout the year, except for the results
in the Tropical Zone (TZ) presented in Figure 13c, where the ENNTm-C model shows a
relatively larger positive MD (not more than 0.6 K) from June to September.
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Figure 14. The statistics of RMSE for each model in different months in the (a) NFZ; (b) NTZ; (c) TZ;
(d) STZ; and (e) SFZ.

In terms of the detailed statistics of RMSEs shown in Figure 14, a common phe-
nomenon is that the RMSEs of all the competing models are larger in winter months and
smaller in summer months, it is mainly caused by the fact that the Tm changes are larger
during winter and smaller during summer months [41]. The RMSEs of GTrop-Tm model
are always the largest among all the competing models in different months throughout
the year, except for the results shown in Figure 14e. The ENNTm-A model is of a great
improvement compared to the GTrop-Tm model, but these are still less accurate than those
MMTm models. The NN-II model performs the poorest in the winter months of the STZ,
with the maximum RMSE of nearly 12 K, but it performs much better than the GTrop-Tm
model and ENNTm-A model in other zones. The improvement of ENNTm-B model over
the NN-II model is significant in STZ, while in other zones, even though the accuracy of
the ENNTm-B model has been consistently improved over the NN-II model in each month,
therefore the improvement is not pronounced. The performance of the ENNTm-C model
is further improved on the basis of the ENNTm-B model, which indicates that the water
vapor pressure is an important factor to improve the model accuracy.

5. Discussion

In this work, the data samples from the Earth’s surface to the tropopause were used
to develop an enhanced neural network Tm model (ENNTm), which provides three sets
of model parameters that can meet three different application conditions for global users
(namely ENNTm-A,ENNTm-B and ENNTm-C, respectively). The BPNN shows a powerful
capability and capacity to capture the spatiotemporal variations between the Tm and its
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associated factors in the development of ENNTm models. The models proposed in this
study were further optimized by ensemble learning, the results presented in Section 4.1
show that this method can efficiently strengthen the generalization abilities of BPNN mod-
els after multiple training sessions, as the BPNN model after combination showed better
generalization ability than that after one certain training mission. From the comparative
analysis in Section 4, the ENNTm models proposed in this work showed better perfor-
mance than other published models listed in this paper from multiple perspectives. The
ENNTm-A model improved by 10% over the GTrop-Tm model in RMSE, and had smaller
bias o at the global scale. The ENNTm-B model also improved much in overall MAD,
STD and RMSE compared with the NN-II model, by 8%, 7% and 8%, respectively. The
ENNTm-C model performed the best, as its RMSE was reduced by 21% and 12% compared
to those of the NN-II model and ENNTm-B model, respectively. There are multiple reasons
for the improvements of ENNTm models over other competing models (under the same
application conditions), as follows.

Firstly, the data for modeling in this study were derived from the atmospheric profiles
measured by the sounding balloons, while the GTrop-Tm model was developed with the
data derived from the NWMs. These two data sources are different somehow, which leads
to some differences between the GTrop-Tm model and ENNTm-A model. The ENNTm-
A model performed better than the GTrop-Tm model at most IGRA stations for testing
(account for more than 80%).

Secondly, Tm is assumed to have an approximately linear decrease with the increase in
height in the vertical direction in the development of the GTrop-Tm model, which deviated
from reality. This is exactly the reason why the MD and RMSE of the GTrop-Tm model at
the higher height layers were much larger than other competing models, just as shown in
Figures 11 and 12. The ENNTm models, however, well simulated the relation between Tm
and height with the help of the powerful nonlinear mapping ability of the neural network.
The results showed that the performance of the ENNTm-A model in the vertical direction
was much better than that of the GTrop-Tm model.

Thirdly, the global distribution of data samples for developing NN-I/NN-II model is
extremely uneven, as there are far more samples distributed in the Northern Hemisphere
than that in the Southern Hemisphere, while the training results of the neural network are
extremely dependent on the training samples. As a result, the performance of the NN-II
model on the global scale is also very uneven, as it can be seen from Figures 11–14, sicne the
performance of NN-II model in the frigid zones was very poor. In this study, we employed
the up-sampling and down-sampling method to make the global distribution of training
samples as uniform as possible. The results showed that the ENNTm-B model improved to
some extent over the NN-II model, especially in the regions where the IGRA stations are
rarely distributed.

Fourthly, the ENNTm-C model showed the best performance from all perspectives,
as it even improved by 12% on the basis of the ENNTm-B model, which largely benefited
from the introduction of water vapor pressure (Pw) into modeling. The Tm has a strong
correlation with the Pw of the site, and the correlation coefficients between Tm and Pw
computed by using the data in the troposphere (from the ground to the tropopause)
reached 0.74. We considered the Pw as one of the inputs of the ENNTm models to improve
the model accuracy and provide users with more choices.

6. Conclusions

In this study, we developed an enhanced neural network Tm model named ENNTm,
in the aim of achieving the excellent capability of the neural network in dealing with
nonlinear optimization problems of multiple input parameters. The ENNTm includes
three empirical models, the ENNTm-A model, ENNTm-B model and ENNTm-C model,
which provide solutions for global users to compute the weighted mean temperature
under three different application conditions in real time. Their generalization abilities were
enhanced with the ensemble learning method under the machine learning framework.
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The comparative analysis showed that the accuracies of ENNTm models are significantly
improved compared with the published models under the same application conditions:
The ENNTm-A model was superior to the GTrop-Tm model and its accuracy was improved
by 10% in RMSE; The ENNTm-B model showed better performance than both the NN-I
model and NN-II model from different perspectives, and the RMSE at over 93% test stations
reduced with respect to NN-II model; The ENNTm-C model performed the best among
all of the competing models from different perspectives, it was 12% and 21% better than
ENNTm-B model and NN-II model in RMSE, respectively.

We concluded that the ENNTm proposed in this work performed better than other
published models listed in this paper (under the same application conditions) at different
perspectives. It benefited from not only the strong capability of neural networks in cap-
turing the characteristics of Tm variation and its relationship with the essential associated
factors and the use of the ensemble learning method in strengthening the generalization
abilities of new models, but also the use of the measured atmospheric profile data, as
well as the reasonable pretreatment work before modeling. However, the variations of
Tm and the relationship between Tm and meteorological elements are extremely complex
at different spatial and temporal contexts, in addition to their own spatiotemporal distri-
bution characteristics, weather and climate change of different scales can also affect this
relationship, which cannot be perfectly reflected with an empirical model, so more research
on the Tm modeling under different weather conditions is needed in the following study.
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