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Abstract: A fast voxel traversal algorithm for ray tracing was applied to build a 4 × 4 × 20 tomog-
raphy model using the observation data of 11 ground-based Global Navigation Satellite System
(GNSS) meteorology (GNSS/MET) stations in Hebei Province, China. The precipitation water vapor
(PWV) observed at 05 a.m. (Universal Time Coordinated: UTC) on 10 December 2019, was used to
reconstruct three-dimensional (3D) water vapor density fields over the test area. The tomographic
results (GNSS_T) show that the water vapor density above this area is mainly below 25 g/m3 and is
concentrated between the first to the fourth layers. The vertical distribution conforms to the expo-
nential characteristics, while the horizontal distribution shows a decreasing trend from southwest to
northeast. In addition, the results of the 0.25◦ grid dataset generated by the Global Forecast System
(GFS) of the National Center for Environmental Forecasting (NCEP) (GFS_L) were interpolated to
the height of the tomographic grid, which is in good agreement with the tomographic results. GFS_L
is larger than GNSS_T on the first floor at the surface, with an average deviation of 0.19 g/m3. In
contrast, GFS_L from the second floor to the top of the model is smaller than GNSS_T, with the
average deviations distributed between −0.08 and −0.15 g/m3.

Keywords: 3D water vapor tomography; the fast voxel traversal algorithm; GNSS/MET; GFS

1. Introduction

Changes in water vapor over time and space have particularly important indications
for meteorological forecasting [1,2], especially for the monitoring and forecasting of small-
and medium-scale severe weather with a horizontal scale of about 100 km and a life history
of only a few hours [3–5]. Its 3D distribution is critical for the development and correction
of the initial field of the mesoscale numerical forecasting model. Accurate atmospheric
water vapor monitoring and its assimilation in the numerical weather forecasting model
will improve the prediction accuracy of precipitation and severe weather [6,7]. The initial
value of the 3D spatial distribution of water vapor in the current model is mainly provided
by the radiosonde network, which takes observations every 12 h, and the distance between
the stations is higher than 200 to 300 km [5]. Although aircraft observations, satellite, and
ground data have been used as supplementary observations to initialize mesoscale models
in recent years, their applications are limited by the lower spatial resolution and retrieval
accuracy [8,9].

Meteorological products such as precipitable water vapor (PWV), total zenith delay
(ZTD), and zenith wet delay (ZWD) obtained by ground-based Global Navigation Satellite
System (GNSS) meteorology can accurately describe the details of high temporal and
spatial changes of atmospheric water vapor in real-time. Moreover, satellite navigation
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systems such as Global Positioning System (GPS), BeiDou Navigation Satellite System
(BDS), and Global Navigation Satellite System (GLONASS) are developing rapidly, and
their observation ranges can cover the whole world [10–12], which solves the difficulties in
weather forecasts [5,13]. The assimilation of PWV data has a positive impact on tempera-
ture, humidity, and precipitation forecasting [14–19], but the application of PWV also has a
bottleneck because it cannot reflect the 3D distribution of water vapor in the atmosphere.
To address this limitation, the slant water vapor (SWV) measured by GNSS contains the
vertical profile information of water vapor. By using the observation data of the slant
path of the GNSS network with densely distributed stations, the 3D distribution of water
vapor can be obtained by a tomography technique [20–23]. By comparing the vertical
distribution of water vapor retrieved from 3D tomography with the results obtained by
numerical weather models [24], accurate vertical structure of deviations can be obtained
to capture the continuously changing processes of small-scale water vapor fields during
strong convection [21]. This will play a positive role in improving the GNSS observation
data assimilation operator and the humidity field of the numerical prediction during con-
vection [25]. Flores et al. [26] used the slant wet delay (SWD) to detail the tomography of
atmospheric water vapor through the discretion of the tropospheric atmosphere over the
GNSS area, and by using SWD across the grid in all directions to obtain the water vapor
information in the grid. Moreover, Hirahara [27] conducted a tomographic experiment in
Shigaraki to study the changes in atmospheric water vapor over a large scale and obtained
a four-dimensional wet refractive index structure during a cold front transit. Meanwhile,
MacDonald et al. [28] compared the SWD with other observations and pointed out that the
denser the GPS monitoring network is, the easier it is to detect the 3D distribution of water
vapor. Braun et al. [1] and Braun and Rocken [29] established the relationship between
the SWD and the amount of SWV and verified the accuracy and feasibility of GPS remote
sensing of water vapor in a slant path. Sparse rays passing through the model grid can
cause ill-condition issues during tomography. Benevides et al. [30] used multi-GNSS obser-
vations to tackle this problem, while Yao and Zhao [31] added the rays passing through the
side of the tomographic model into the observation equation matrix to increase the stability
of the calculation. In recent years, many researches have focused on the model building
technology itself, some new methods and techniques such as the least-squares and com-
pressive sensing [32], improved parameterized tropospheric tomographic technique [33],
and adaptive simultaneous iterative reconstruction technique [34] have been applied to
the model. In addition, many studies resolved the problems of solving observing equa-
tions [35,36] while some other studies took the observations of multi-satellite navigation
systems as input [37,38] to promote the efficiency of the model. However, few studies have
focused on the efficiency of signal line indexing in the tomography model which also needs
to be improved.

Tracing rays through the grid index during the tomography process consumes comput-
ing resources and is prone to aliasing. The traditional index determination method requires
the coordinates of the intersection point of the ray and the grid and then finds the midpoint
coordinates of two adjacent intersection points [39]. This process consumes more than 75%
of the computing resources [40]. The DDA (digital differential analyzer) algorithm is the
simplest straight-line algorithm in computer graphics and can be used for ray tracing. The
basic idea is a numerical differential algorithm [41,42], yet Fujimoto et al. [43] extended
the two-dimensional DDA algorithm to three dimensions. The three-dimensional DDA
(3DDDA) algorithm improves the ray tracing calculation speed by 13 times compared to
the traditional algorithms. Amanatides and Woo [44] introduced a fast voxel traversal
algorithm for ray tracing, which is an improvement of the DDA algorithm as it does not
require unconditional stepping along an axis like 3DDDA and it has no preferred axis.
It greatly simplifies the internal loop and realizes an accurate judgment of whether the
intersection of the ray and grid is in the current index.

In this study, the fast voxel traversal algorithm for ray tracing was applied to the
3D water vapor tomography model for the first time, which not only eliminated the
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complicated process of calculating the center point of the signal line in the grid during the
indexing process but also solved the problem of repeated indexing when the signal line
crosses the grid intersection line. Consequently, it improved the indexing efficiency of the
signal line and provided accurate grid intercept positioning information for observation
equations. We conducted a tomography test using the slant water vapor (SWV) observed
by 11 stations in Hebei, China, then used the GFS reanalysis data at the same site to
compare with the GNSS tomography results to quantitatively evaluate the solution of the
tomographic model which provides a reference for tomography application of the fast
voxel traversal algorithm.

2. Materials and Methods
2.1. Data Introduction

This tomography experiment used the observation data of 11 GNSS/MET stations in
Hebei Province, China, at 05 a.m. (UTC) on 10 December 2019. The parameters, such as the
position of the stations and equipment models, are shown in Table 1.

Table 1. The parameters of the station.

Station Latitude Longitude Altitude (km) Receiver Antenna

szcz 38.21◦ N 116.51◦ E 0.008 TRIMBLE NETR9 TRM57971.00
szag 38.42◦ N 115.33◦ E 0.036 TRIMBLE NETR9 TRM55971.00
szhj 38.42◦ N 116.06◦ E 0.015 TRIMBLE NETR9 TRM57971.00
szbd 38.44◦ N 115.29◦ E 0.017 TRIMBLE NETR9 TRM57971.00
szwe 38.85◦ N 116.46◦ E 0.008 TRIMBLE NETR9 TRM57971.00
szme 38.93◦ N 115.31◦ E 0.05 TRIMBLE NETR9 TRM57971.00
szax 38.94◦ N 115.89◦ E 0.013 TRIMBLE NETR9 TRM57971.00
szlf 39.29◦ N 116.42◦ E 0.014 TRIMBLE NETR9 TRM57971.00
szyq 39.3◦ N 116.48◦ E 0.016 TRIMBLE NETR9 TRM57971.00
szyx 39.34◦ N 115.52◦ E 0.056 TRIMBLE NETR9 TRM55971.00
szzz 39.47◦ N 116.03◦ E 0.036 TRIMBLE NETR9 TRM57971.00

The Global Forecast System (GFS) dataset used for the verification and analysis of
water vapor tomography results in this study is the reanalysis result of the NCEP grib2
format global forecast system running on a 0.25◦ × 0.25◦ global grid. The air pressure
stratification is divided into 50 layers between 0.4 hPa and 1000 hPa, and the product
interval is 3 h. The meteorological elements used were temperature, relative humidity,
potential height, and air pressure of each layer. The address to download the data is as
follows: https://rda.ucar.edu/datasets/ds084.1/, accessed on 12 January 2020.

2.2. Methodology

The total delay distance of the GNSS signals in the atmosphere ∆L is related to the
atmospheric refractivity N [45],

∆L =
∫

s
Nds (1)

N can be expressed in terms of atmospheric properties as follows [46],

N =

[
−4.03 × 106 ne

f

]
+

[
77.6

Pd
T

]
+

[
70.4

Pv

T
+ 3.739

Pv

T2

]
(2)

where ne is the electron density in the atmosphere, f is the frequency of the electromagnetic
wave, Pd is the pressure of the dry air, Pv is the pressure of the humid air, and T is the
atmospheric temperature. The above formula can be understood as the ZTD, calculated
as the sum of the zenith hydrostatic delay (ZHD) and ZWD. ZHD can be calculated
accurately based on Saastamoinenempirical formulas [47]. Then ZWD can be obtained by
subtracting ZHD from the ZTD.

https://rda.ucar.edu/datasets/ds084.1/
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ZWD has a relationship with PWV which is proved by Bevis et al. [45],

PWV = ∏×ZWD (3)

∏ is the mapping function calculated as follows [45],

∏ =
106

ρRv[
k3
Tm

+ k2 − ωk1]
(4)

where ρ is the water vapor density, Rv is an atmospheric constant of water vapor, k1, k2, k3,
and ω are physical constants, and Tm is the average temperature of the atmosphere, which
can be expressed by the surface air temperature: Tm = 70.2 + 0.72 Ts. The radiosonde
data can be used for regression analysis to establish coefficient values suitable for the
characteristics of the area [45].

PWV cannot be directly used for 3D tomography calculation, and the total amount
of atmospheric water vapor in the zenith direction needs to be converted into the water
vapor content on the satellite’s slant path using a mapping function. The total tropospheric
delay (STD) can be expressed as [48],

STD = Mdry(e)ZHD + Mwet(e) ZWD + M∆(e) (GN cos(∅) + GE sin(∅)) (5)

where Mdry(e) and Mwet(e) represent the dry and wet mapping functions, respectively;
GN and GE represent the north-south and east-west gradients, respectively; M∆(e) is the
horizontal gradient mapping function; e is the satellite elevation angle, and; ∅ is the
satellite azimuth angle. When using the GAMIT software [49] for data processing, ZTD
and the total delay gradient are first to be calculated. Then, the method described above is
used to obtain ZWD. Equation (3) shows that PWV and ZWD can be directly converted
according to the coefficient, so formula (5) can be converted into the form that directly uses
PWV. SWVk

i represents the slant path moisture content of the satellite k received by station
i, λ = 0.15 [48], and PWVi is the total amount of precipitable water vapor over station i [48].

SWVk
i = Mwet (ek

i ) PWVi + λ × [M∆(e) (Gw
N cos(∅) + Gw

E sin(∅)) (6)

GAMIT does not generate dry and wet delay gradients separately. The dry delay
gradient is stable, which can be assumed as a constant for a certain period of time (12 h). By
averaging the gradient solutions GN and GE in this period, the influence of the dry delay
gradient can be reduced or eliminated, then the wet delay gradients Gw

N and Gw
E can be

obtained. The wet mapping function can be calculated using the following formula [50],

Mwet

(
ek

i

)
=

1 + aw/(1 + bw/(1 + cw))

sin e + aw/(sin e + bw/(sin e + cw))
(7)

Mwet

(
ek

i

)
represents the wet mapping function of station i, receiving satellite k, while

aw, bw, and cw are the parameters of the new mapping function developed by [51] related
to the geographic location and date but have no connection with the meteorological
observations, which can be calculated using formula (8).

aw = aavg(ϕi)− aamp(ϕi) cos(2γ × t − T0

365.25
) (8)

where γ = 3.14, aavg(ϕi) and aamp(ϕi) can be queried in [51], ϕi represents the latitude
of station i, t is the day of year, T0 = 28; and bw and cw are obtained by the same method.
The mapping function of the horizontal gradient is calculated according to the following
formula, where c = 0.0032 [48].

m∆(e) = 1/(sin(e) tan(e) + c) (9)
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3. Model Building
3.1. Unification of Coordinate System

First, the ground-based GNSS observation data from 11 stations in Hebei Province
were selected as the input of the tomography model, as shown in Figure 1. The coordinates
of the station in the middle position were selected as the origin (red star) of the new
coordinate system, and the relative coordinates of other stations were calculated.
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Second, generate a 4 × 4 × 20 basic grid with the station in the middle position as
the origin. In the horizontal direction, the area of 2◦ × 2◦ is divided into 4 × 4 uniform
grids, and in the vertical direction, the 10 km is divided into 20 layers evenly. Then, the
coordinates of the intersection point between the signal line and the top layer of the model
were calculated based on the relative coordinates of each station and the satellite elevation
and azimuth angles. Assuming that the elevation angle of the satellite is θ, the azimuth
angle is α, the wgs84 coordinates of the station are lons, lats, hs, and the intersection point
of the satellite ray and the ceiling of the model are lond, latd, hd.
If 0◦< α ≤ 90◦,

lond =
(10 − (hs/1000))

tan θ
× sin α + lons (10)

latd =
(10 − (hs/1000))

tan θ
× cos α + lats (11)

If 90◦< α ≤ 180◦,

lond =
(10 − (hs/1000))

tan θ
× sin

(
180

◦ − α
)
+ lons (12)

latd =
(10 − (hs/1000))

tan θ
× cos

(
180

◦ − α
)
+ lats (13)

If 180◦ < α ≤ 270◦,

lond =
(10 − (hs/1000))

tan θ
× sin

(
α − 180

◦
)
+ lons (14)

latd =
(10 − (hs/1000))

tan θ
× cos

(
α − 180

◦
)
+ lats (15)
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If 270◦< α ≤ 360◦,

lond =
(10 − (hs/1000))

tan θ
× sin

(
360

◦ − α
)
+ lons (16)

latd =
(10 − (hs/1000))

tan θ
× cos

(
360

◦ − α
)
+ lats (17)

hd = 10,
If α ≤ 0◦, α = α + 360◦, then repeat the judgment above.

3.2. The Intercept of the Signal Line and the Grid

The surface perpendicular to the X-axis is defined as the X-axis profile, and the Y-axis
and Z-axis profiles are named in the same way. Taking the intersection of the signal line
and the Z-axis profile as an example, the red line represents the signal line in Figure 2, the
red line represents the satellite position, and the blue origin represents the station position.
θ1 = arctan(Y1/X1), θ2 = arctan

(
Z1/sqrt

(
X2

1 + Y2
1
))

[52],

θ3 = arctan((Zw − Zs)/sqrt((Xw − Xs)ˆ2 + (Yw − Ys)ˆ2
+(Zw − Zs)ˆ2))

(18)

1 

 

 
Figure 2. Ray angle diagram (red line is the signal line).

θ4 = 90◦ − θ3, By using the sine of θ4 to project the distance between the grids in
the X-axis direction into the distance between the intersections on the signal line, the
intersection coordinate of the X-axis profile and the signal line can be obtained by using the
range limit of the X value. According to the same method, the intersection coordinates of
the signal line and the Y (Z) axis profile can be calculated, as shown in Figure 3. Therefore,
by sorting all the intersection coordinates obtained above according to the Z coordinate,
the spatial position order of all intersections can be obtained. Because the coordinates of all
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the stations and satellites are positive, and the signal line is always along the Z-axis from
small to large values, the distance between the intersection points is calculated to obtain
the intercept of the signal line through each grid [53].

Remote Sens. 2021, 13, x FOR PEER REVIEW 7 of 18 
 

 

Figure 3. The intersections of signal lines and the model (black and yellow balls are the positions of the station and satellite; 

blue, red, and green balls are the intersections of the signal lines and the model; red and blue lines are the signal and 

central lines). 

3.3. Indexing by a Fast Voxel Traversal Algorithm for Ray Tracing 

Finding the index of the ray passing through the model grid is a key step in water 

vapor tomography modeling. Figure 4 shows the fast voxel traversal algorithm for ray 

tracing in a 2D grid. There are two important steps in the fast voxel traversal algorithm 

for ray tracing. First, the index of the starting point of the ray is determined using 𝑋𝑠𝑡𝑎𝑟𝑡 

to represent the starting point of the X-axis of the signal line, while GridX[0] represents 

the starting point of the X-axis of the grid, and then whether 𝑅 =  𝑋𝑠𝑡𝑎𝑟𝑡 − 𝐺𝑟𝑖𝑑𝑋[0] is 

greater than 0 can be determined. If it is greater than 0, the signal line is in the grid model, 

meaning that the next step is to calculate the starting index of the signal line. 𝑋𝐼𝑛𝑑𝑒𝑥
𝑠𝑡𝑎𝑟𝑡  As-

suming that voxel size X represents the unit length of the X-axis of the grid, 

𝑋𝐼𝑛𝑑𝑒𝑥
𝑠𝑡𝑎𝑟𝑡 = 𝑀𝑎𝑥 (1, 𝑐𝑒𝑖𝑙(( 𝑋𝑠𝑡𝑎𝑟𝑡 − 𝐺𝑟𝑖𝑑[0])/ 𝑣𝑜𝑥𝑒𝑙𝑠𝑖𝑧𝑒𝑋)) (19) 

 

Figure 4. Two dimensional demonstration of the fast voxel traversal algorithm for ray tracing. (The 

red dotted lines represent the signal extension line and the vertical line; R represents the distance 

between the starting point of the signal line and the origin of the X axis; T represents the distance 

Figure 3. The intersections of signal lines and the model (black and yellow balls are the positions of the station and satellite;
blue, red, and green balls are the intersections of the signal lines and the model; red and blue lines are the signal and
central lines).

3.3. Indexing by a Fast Voxel Traversal Algorithm for Ray Tracing

Finding the index of the ray passing through the model grid is a key step in water
vapor tomography modeling. Figure 4 shows the fast voxel traversal algorithm for ray
tracing in a 2D grid. There are two important steps in the fast voxel traversal algorithm
for ray tracing. First, the index of the starting point of the ray is determined using Xstart to
represent the starting point of the X-axis of the signal line, while GridX[0] represents the
starting point of the X-axis of the grid, and then whether R = Xstart − GridX[0] is greater
than 0 can be determined. If it is greater than 0, the signal line is in the grid model, meaning
that the next step is to calculate the starting index of the signal line. Xstart

Index Assuming that
voxel size X represents the unit length of the X-axis of the grid,

Xstart
Index = Max (1, ceil((Xstart − Grid[0])/voxelsizeX)) (19)

After the starting point index is determined, the direction of the signal line should be
determined, and the scale of the X-axis direction is defined as

tmaxX =
(
Xstart

Index·voxelsizeX − Xstart
)
/Xvec (20)

where Xvec represents the total projection length of the signal line on the X-axis. In the
same way, the scales in the Y- and Z-axis directions can be obtained by tmaxY and tmaxZ,
respectively, and then the three scales can be compared. The index number is one step
forward in the direction of the minimum value, and the pointer is used to move the scale,
which can effectively improve the tracking efficiency of the signal line. Therefore, it can be
determined that the index number of the end of the signal line is similar to the start index,
and it ends when the signal line advances to the index number Xend

Index,

Xend
Index = Max (1, ceil ((Xend − GridX[0])/voxelsizeX)) (21)
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Figure 4. Two dimensional demonstration of the fast voxel traversal algorithm for ray tracing. (The
red dotted lines represent the signal extension line and the vertical line; R represents the distance
between the starting point of the signal line and the origin of the X axis; T represents the distance
between the starting point of the signal line and the first intersection of the x-axis direction; Xvec

represents the projection length of the signal line on the X axis).

The index tracking of the signal line in the experiment is shown in Figure 5. The two
figures on the left are the projections of the signal line on the XY and XZ profiles, and the
right figure shows the index tracking result of the signal line in the 3D grid [54].
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3.4. Formation and Solution of Equation Group

This section may be divided into subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.



Remote Sens. 2021, 13, 2422 9 of 18

3.4.1. Observation Equation

The signal line passes through each grid and generates an intercept, which is the
coefficient of the observation equation. The water vapor density in the grid is the parameter
to be determined, and the slant water vapor in the direction of the signal is the observed
value. First, the intercept Si between the intersection points must be calculated, and then
the intercept Si and index Ni are stored correspondingly.

Si =
√
(xi+1 − xi)ˆ2 + (yi+1 − yi)ˆ2 + (zi+1 − zi)ˆ2 (22)

The slant water vapor that each station receives from each signal is extracted, where
s represents the number of satellites and n represents the number of stations. In this
experiment, s = 9 and n = 11. Then, the observation equation of this experiment can be
expressed as follows,

S11 S12 . . . S1m
S21 S22 . . . S2m

. . . . . . . . .
St1 St2 . . . Stm

·


X1
X2
. . .
Xm

 =


SWV1

1
SWV2

1
. . .

SWVs
n

 (23)

The first row of the matrix on the left represents all intersections with the grid when
the signal line of the first satellite received by the first station passes through the grid. The
intercept between the two intersections is the intercept, and the index corresponding to
the intercept is the number of grids. For example, if the signal passes through the first
grid, then the corresponding intercept is written to the position of S11, and if it passes
through the last grid m, then the corresponding intercept is written to the position of S1m,
m represents the total number of model grids, t = s × n, and Xi is the density of water
vapor in each grid, which needs to be solved in this experiment.

3.4.2. Horizontal Constraint Matrix Equation

The geometric construction of the ground-based GNSS observation network and the
uneven distribution of GPS satellites in the observation network made it difficult to provide
observations that uniformly cover all grids. As a result, some grids have no observations
passing through, thus the observation equation will be ill-conditioned. Assuming that
the horizontal distribution of water vapor during the observation period is stable, the
horizontal constraint is added to the observation equation based on the principle that the
closer the distance is, the stronger the correlation. Grids with observational information
can pass water vapor information to empty grids through horizontal constraints and fully
transmit the information of observations to all grids. Generally, the horizontal constraint
uses a Gaussian weighting function, and the expression is as follows,

W j
i =


1, Target grid

−
exp

(
−

d2
i,j

2σ2

)

∑Q
i=1 exp

(
−

d2
i,j

2σ2

) , others
(24)

The Gaussian weighted value of the grid points of the same layer was calculated, and
Q is the total grid number of the same layer. By assuming that the weight of the first grid
point is 1, the weight of the other grid points was calculated using Formula (24). Where di,j
represents the distance from the other grid points to the first grid point. σ is a smoothing
factor, which is determined according to the range of the stationary hypothesis which is set
to 1 in this experiment [48]. Then, all grid points of the same layer were calculated as the
target, as well as the relative weights of the other grid points in the same layer.
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W11 W12 . . . W1m
W21 W22 . . . W2m
. . . . . . . . .

Wm1 Wm2 . . . Wmm

·


X1
X2
. . .
Xm

 = 0 (25)

The first grid of the first height layer was selected as the target grid, then the Gaussian
weighting coefficients of the first 16 weights of the first row on the left side of the above
matrix equation were calculated according to Formula (24), and the remaining 304 weights
were written as 0. The target grid in the second row from the left of the matrix equation is
the second grid of the first height layer. Each layer has 16 grids, and row 17 on the left of
the matrix equation is the first grid of the second layer.

3.4.3. Vertical Constraint Matrix Equation

The water vapor density at the same horizontal position in the model conforms to the
exponential distribution in the vertical direction and can be expressed by the following
formula, where i is the vertical height,

SWVi = SWV1 × (−e
hi−h1

H ) (26)

SWV1 represents the water vapor in a grid at a certain position in the first layer, hi
represents the height to be solved, h1 is the height of the first layer; in this experiment,
the vertical height is 10 km in total which is divided into 20 layers, and the height of the
first layer h1 is 0.25 km, meaning hi = (i − 1)× 0.5 + 0.25 (km). Taking the first grid as an
example, its grid at the same horizontal position is 1, 17, 33, . . . , 305.

19 0 0 0 0 . . . −e
h17−h1

H 0 . . . −e
h33−h1

H 0 . . . −e
h305−h1

H 0 . . .

0 19 0 0 0 . . . −e
h18−h2

H 0 . . . −e
h34−h2

H 0 . . . −e
h306−h2

H 0 . . .
. . .

0 0 0 . . . 19 . . . −e
h32−h16

H 0 . . . −e
h48−h16

H 0 . . . −e
h320−h16

H

·


X1
X2
. . .
Xm

 = 0 (27)

The first row on the left side of the above matrix equation indicates that the first grid is
the target grid, then the weight of the first grid in the first layer in the vertical direction is 19,
and the rest are 0. The weight of the first grid of the second layer in the vertical direction

is −e
h17−h1

H , and the other weights are 0. By analogy, each row of the matrix equation has
320 weights, with a total of 16 rows. In the formula, H is the scale height. The empirical
formula is as follows,

H =
10w
ρ0

(28)

where w is the total amount of PWV (the model has 16 grids in the horizontal direction and
11 target stations; w can be replaced by the PWV of the nearest station), ρ0 is the surface
water vapor density, which can be calculated using the following formula,

ρ0 =
e

RvT
(29)

where T is the ground temperature, Rv = 0.4615 J/(kg), and e is the surface water vapor
pressure, which can be calculated by the Goff-Gratch formula [55]. First, the saturated
water vapor pressure, E, was calculated as follows,

log E = 10.79574
(

1 − T0
T

)
− 5.028 log T

T0
+ 1.50475 × 10−4

[
1 − 10−8.2969( T

T0
−1)
]

+0.42873 × 10−3
[
104.76955(1− T0

T ) − 1
]
+ 0.78614

(30)
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where T0 = 273.16 (K) and T is the absolute temperature in Kelvins. Then, the vapor
pressure of each layer was calculated from the saturated vapor pressure of each layer,
where U is the relative humidity,

e = E × U
100

(31)

3.4.4. Boundary Constraint Matrix Equation

In order to reflect the changes in the water vapor vertical profile more reasonably,
boundary information can also be given. According to radiosonde data, water vapor is
generally concentrated from the ground to a height of 3 km, which decreases rapidly with
the increase in altitude, dropping to approximately 0.1 g/m3 at a height of 10 km. Therefore,
in this experiment, the water vapor density of the ceiling is constrained to 0.1 g/m3. The
matrix equation is as follows,

[0 0 . . . 0 1 . . . 1 1 . . . ]·


X1
X2
. . .
Xm

 = 1.6 (32)

The left side of the matrix equation is composed of 0 and 1, the first 304 values are 0,
and the last 16 values are 1.

3.4.5. Solving Equations

By combining the above four matrix equations, the unknown quantities of water vapor
density can be calculated in each grid using the singular value decomposition solving
method of MATLAB [56], [U, S, V] = svd (C), where C represents the coefficient matrix on
the left side of the matrix Equation (33), and the V matrix is the result of the water vapor
density in the model grid. 

S
W
E
I

·X =


SWV

0
0

1.6

 (33)

4. Results

Figure 6 shows the water vapor tomography results of the 11 stations in the experiment.
The horizontal coordinates represent latitude and longitude in degrees, and the vertical
coordinates represent layers, each layer represents 500 m. The color bar represents the
water vapor density, which is mainly below 2 km in this experimental area. This result
is consistent with the general results of radiosonde [48]. In the vertical direction, the
water vapor gradually decreases as the height increases, and in the horizontal direction, it
gradually decreases from the southwest to the northeast. Furthermore, the water vapor
density decreases significantly from the fourth layer upwards, and it is difficult to see the
layer change of the water vapor density from Figure 6. In order to analyze the accuracy of
the tomography model more clearly, we calibrated the GNSS_T and the GFS_L from the
altitude and horizontal position respectively before the comparison.

The water vapor density with a grid accuracy of 0.25◦ × 0.25◦ from the GFS data
was used to compare its altitude needs to be calibrated according to the height of the
tomography model. Figure 7a,c,e,g shows the isosurface of the water vapor density
tomography results at 11 stations from the ground to 2 km, and Figure 7b,d,f,h shows the
isosurface of the GFS results at the same height. The water vapor density peaks at four
layers all appeared in the southwest corner. Yet the water vapor density in the central
and northeast corners was lower. Although the results of the first and second layers are
in good agreement, the third and fourth layers have deviations. Figure 7f,h show that the
tomography results are higher in some stations. In the southeast of the third layer, the
difference between the two results is more obvious. In addition, Figure 7g shows that
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there are two high-value areas of water vapor density in the north and southeast directions
which are not obvious in the result of GFS.

The isosurface map of the lower level shows that the two results are in good agreement,
and the comparison result of the water vapor density profile at the same station also
indicates the correlation between the two results. Figure 8 shows that the water vapor
density profile of GNSS_T is more in line with the exponential change, which satisfies the
previous vertical constraints. The deviations between the two results of the first layer to
the fourth layer are small. The results of the GFS change significantly above layer 9, while
the results of the GNSS tomography are stable. The tomography results above layer 5 are
larger than those of GFS, and the absolute value of the deviation is within 1 g/m3.
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Figure 8. (a) Comparison of GNSS_T and GFS_L between 20 layers at following stations: szcz, szhj,
szbd, szzz, szme, szcf. (b) Comparison of GNSS_T and GFS_L between 20 layers at following stations:
szag, szyx, szyq, szax, szwe.
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5. Discussion

The deviations of the two results can be derived to analyze the accuracy of the tomog-
raphy model which are shown in Figure 9. The deviations have the same trend distributed
between −1 and 0.5 g/m3, with an average value of −0.547 g/m3. The tomography result
showed the szag station as too large, at approximately 2 g/m3 compared to the results
of the other stations. The reason for this needs further study. The deviations between
the two results reached the maximum on the 9th layer, followed by fluctuations, which
basically were less than zero. In addition, the deviations appear to be polarized on the
13th layer, some of them are smaller, while the others become larger. The water vapor
density isosurface of these two layers can be used to analyze the distribution of these
deviations characteristics in the model.
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12h when calculating the gradient with GAMIT, so the obvious atmospheric gradient 
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Figure 9. The deviation between the water vapor density of the tomography and GFS data.

Figure 10 shows the GNSS_T, GFS_L, and the deviation between them on the 9th and
13th layers. First of all, most of the deviations are less than zero, so the GNSS results are
smaller in these two layers. Secondly, the distribution of GFS appears to be higher in the
surrounding area and lower in the center which is not visible in the results of GNSS_T.
In addition, the peak of water vapor density of the GFS results appears in the north of
both layers, while the GNSS results are completely different. The reason for this deviation
may be due to the vertical restraint effect of the tomographic model itself, or because t we
set 12h when calculating the gradient with GAMIT, so the obvious atmospheric gradient
changes are smoothed out [57]. These hypotheses still need a lot of studies.

The grid division of the tomography model in this experiment uses a basic mode
that needs to be improved. The grids in the horizontal and vertical directions are all
uniform, which cannot satisfy all observations. First of all, the horizontal distribution
of stations is not always so uniform, which may cause a rank deficit in the observation
equation. Secondly, in the vertical direction, the density of water vapor in the atmosphere
varies greatly, but it is mainly distributed below 2 km–3 km, so the grid division in the
vertical direction should be dense below 2 km–3 km, while sparse above that. In addition,
sometimes the atmospheric gradient changes very fast, especially when there is a convective
weather process, so the time interval for gradient calculation should be shortened, which
will effectively capture the change characteristics of water vapor.
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6. Conclusions

The fast voxel traversal algorithm for ray tracing was applied to the construction of a
GNSS water vapor tomography model for the first time, which has high feasibility. The
index sequence formed by grid tracking accurately describes the path of the satellite signal
received by the GNSS station, avoiding repeated indexing caused by rays passing through
the grid intersection. Because the scale is used to judge the direction of the ray, the step
of finding the center point of the intersection of the ray and the grid is eliminated, which
improves the efficiency of the tomographic solution.

A comparative analysis with the GFS reanalysis data at the same site demonstrates that
the model built in this study has a high water vapor tomography accuracy. In particular,
the consistency of the water vapor density results from the ground to a height of two km.
The tomographic results above 10 layers show little change, while the GFS results fluctuate
more obviously. The reason for this deviation may be related to the constraints of the
model in the vertical direction and the uniform division of the grid. This will continue to
be studied and analyzed in future experiments.

This model uses a uniform grid division, which reduces its applicability. The grid
will be divided into non-uniform grids according to the actual station spacing and the
distribution of water vapor in the atmosphere, thereby improving the accuracy of the
model. Furthermore, this study directly used PWV instead of ZWD when calculating
the water vapor content of the slant path. The residual term R_e was not introduced and
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empirical values for λ were used, which may affect the accuracy of tomography and thus
will be the focus of future studies.
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11. Zrinjski, M.; Barković, Ð.; Matika, K. Development and Modernization of GNSS. Geod. List 2019, 73, 45–65.
12. Hein, G.W. Status, perspectives and trends of satellite navigation. Satell. Navig. 2020, 1, 22. [CrossRef]
13. Zhao, Q.; Yao, Y.; Cao, X.; Zhou, F.; Xia, P. An optimal tropospheric tomography method based on the multi-GNSS observations.

Remote Sens. 2018, 10, 234. [CrossRef]
14. Kuo, Y.H.; Zou, X.; Guo, Y.R. Variational Assimilation of Precipitable Water Using a Nonhydrostatic Mesoscale Adjoint Model.

Part I: Moisture Retrieval and Sensitivity Experiments. Mon. Weather Rev. 1996, 124, 122–147. [CrossRef]
15. Gutman, S.I.; Holub, K.L.; Sahm, S.R.; Stewart, J.Q.; Schwartz, B.E. Rapid retrieval and assimilation of ground based GPS-Met

Observations at NOAA Forecast System Laboratory: Impact on Weather Forecasts. J. Meteorol. Soc. Jpn. 2004, 82, 351–360.
[CrossRef]

16. Smith, T.L.; Weygandt, S.S.; Benjamin, S.G.; Gutman, S.I.; Sahm, S. GPS-IPW observations and their assimilation in the 20-km
RUC during sever weather season. In Proceedings of the Preprints 22th Conference on Severe Local Storms, Hyannis, MA, USA,
3–8 October 2004.

17. Yuan, Z. Variational assimilation of GPS precipatable water into MM5 mesoscale model. Acta Meteorol. Sin. 2005, 63, 391–404.
18. Ajjaji, R.; Al-Katheri, A.A.; Dhanhani, A. Tuning of WRF 3D-Var data assimilation system over Middle-East and Arabian

Peninsula. In Proceedings of the 8th WRF Users Workshop, Boulder, CO, USA, 1–15 June 2007.
19. Radhakrishna, B.; Fabry, F.; Braun, J.J.; Hove, T.V. Precipitable water from GPS over the continental United States: Diurnal cycle,

intercomparisons with NARR, and link with convective initiation. J. Clim. 2015, 28, 2584–2599. [CrossRef]
20. Seko, H.; Shimada, S.; Nakamura, H.; Kato, T. Three dimensional distribution of water vapor estimated from tropospheric delay

of GPS data in a mesoscale precipitation system of the Baiu front. Earth Planets Space 2000, 52, 927–933. [CrossRef]
21. Champollion, C.; Masson, F.; Bouin, M.; Walpersdorf, A.; Doerflinger, E.; Bock, O.; Van Baelen, J. GPS water vapour tomography:

Preliminary results from the ESCOMPTE field experiment. Atmos Res. 2005, 74, 253–274. [CrossRef]

http://doi.org/10.1029/2000RS002353
http://doi.org/10.1029/2009RG000301
http://doi.org/10.1002/cjg2.837
http://doi.org/10.1002/qj.785
http://doi.org/10.1127/0941-2948/2013/0413
http://doi.org/10.1109/TGRS.2020.2968124
http://doi.org/10.1186/s43020-020-00023-x
http://doi.org/10.3390/rs10020234
http://doi.org/10.1175/1520-0493(1996)124&lt;0122:VAOPWU&gt;2.0.CO;2
http://doi.org/10.2151/jmsj.2004.351
http://doi.org/10.1175/JCLI-D-14-00366.1
http://doi.org/10.1186/BF03352307
http://doi.org/10.1016/j.atmosres.2004.04.003


Remote Sens. 2021, 13, 2422 17 of 18

22. Troller, M.; Geiger, A.; Brockmann, E.; Kahle, H. Determination of the spatial and temporal variation of tropospheric water vapour
using CGPS networks. Geophys. J. Int. 2006, 167, 509–520. [CrossRef]

23. Notarpietro, R.; Cucca, M.; Gabella, M.; Venuti, G.; Perona, G. Tomographic reconstruction of wet and total refractivity fields
from GNSS receiver networks. Adv. Space Res. 2011, 47, 898–912. [CrossRef]

24. Vedel, H.; Huang, X.Y. Impact of ground based GPS data on numerical weather prediction. J. Meteorol. Soc. Jpn. 2003, 82, 459–472.
[CrossRef]

25. Wang, J.; Han, S.; Bian, H.; Liu, X.; Sun, D.; Zhao, C. Characteristics of Three-Dimensional GPS tomography water vapor field
during the rainstorm. Acta Sci. Nat. Univ. Pekin. 2014, 50, 1053–1064.

26. Flores, A.; Rius, A.; Ruffini, G. 4D tropospheric tomography using GPS slant wet delays. Ann. Geophys. 2000, 18, 223–224.
[CrossRef]

27. Hirahara, K. Local GPS tropospheric tomography. Earth Planets Space 2000, 52, 935–939. [CrossRef]
28. MacDonald, A.; Xie, Y.; Ware, R. Diagnosis of three dimensional water vapor using slant observations from a GPS network. Bull.

Am. Meteorol. Soc. 2002, 130, 386–397.
29. Braun, J.; Rocken, C. Water Vapor Tomography within the Planetary Boundary Layer Using GPS. Available online: https://

www.researchgate.net/publication/228573377_Water_vapor_tomography_within_the_planetary_boundary_layer_using_GPS
(accessed on 12 January 2020).

30. Benevides, P.; Nico, G.; Catalao, J.; Miranda, P. Analysis of Galileo and GPS integration for GNSS tomography. IEEE Trans. Geosci.
Remote Sens. 2017, 55, 1936–1943. [CrossRef]

31. Yao, Y.; Zhao, Q. Maximally Using GPS Observation for Water Vapor Tomography. IEEE Trans. Geosci. Remote Sens. 2016,
54, 7185–7196. [CrossRef]

32. Heublein, M.; Bradley, P.E.; Hinz, S. Observing geometry effects on a Global Navigation Satellite System (GNSS)-based water
vapor tomography solved by least squares and by compressive sensing. Ann. Geophys. 2020, 38, 179–189. [CrossRef]

33. Chen, B.Y.; Dai, W.J.; Xia, P.F.; Ao, M.S.; Tan, J.S. Reconstruction of wet refractivity field using an improved parameterized
tropospheric tomographic technique. Remote Sens. 2020, 12, 3034. [CrossRef]

34. Zhang, W.; Lou, Y.; Liu, W.; Huang, J.; Wang, Z.; Zhou, Y.; Zhang, H. Rapid troposphere tomography using adaptive simultaneous
iterative reconstruction technique. J. Geod. 2020, 94, 76. [CrossRef]

35. Sa, A.; Rohm, W.; Fernandes, R.M.; Trzcina, E.; Bos, M.; Bento, F. Approach to leveraging real-time GNSS tomography usage.
J. Geod. 2021, 95, 8. [CrossRef]

36. Zhao, Q.; Li, Z.; Yao, W.; Yao, Y. An improved ridge estimation (IRE) method for troposphere water vapor tomography. J. Atmos.
Sol. Terr. Phys. 2020, 207, 105366. [CrossRef]

37. Cai, C.; Gao, Y.; Pan, L.; Zhu, J. Precise point positioning with quad-constellations: GPS, BeiDou, GLONASS and Galileo. Adv.
Space Res. 2015, 56, 133–143. [CrossRef]

38. Dong, Z.; Jin, S. 3-DWater Vapor Tomography in Wuhan from GPS, BDS and GLONASS Observations. Remote Sens. 2018, 10, 62.
[CrossRef]

39. Ding, N. Study on the Key Technologies in Ground-Based GNSS Tomography. Ph.D. Thesis, China University of Mining and
Technology, Xuzhou, China, 20 December 2018.

40. Whitted, T. An improved illumination model for shaded display. Commun. ACM 1980, 23, 343–349. [CrossRef]
41. Weghorst, H.; Hooper, G.; Greenberg, D.P. Improved computational methods for ray tracing. ACM Trans. Graph. 1984, 3, 52–69.

[CrossRef]
42. Kay, T.L.; Kajiya, J.T. Ray tracing complex scenes. Comput. Graph. 1986, 20, 269–278. [CrossRef]
43. Fujimoto, A.; Tanaka, T.; Iwata, K. ARTS: Accelerated ray-tracing system. IEEE Comput. Graph. Appl. 1986, 6, 16–26. [CrossRef]
44. Amanatides, J.; Woo, A. A fast voxel traversal algorithm for ray tracing. Eurographics 1987, 87, 3–10.
45. Bevis, M.; Businger, S.; Herring, T.A.; Rocken, C.; Anthes, R.A.; Ware, R.H. GPS meteorology: Remote sensing of atmospheric

water vapor using the global positioning system. J. Geophys. Res. Atmos. 1992, 97, 15787–15801. [CrossRef]
46. Thayer, D. An improved equation for the radio refractive index of air. Radio Sci. 1974, 9, 803–807. [CrossRef]
47. Saastamoinen, J. Contributions to theory of atmospheric refraction. J. Geod. 1972, 105, 279–298. [CrossRef]
48. Liu, M.; Guo, P.; Ye, Q.; Zhang, J.; Zhu, X. The 3D tomography technique and application of water vapor using ground-based GPS

networks in Shanghai. Acta Astron. Sin. 2010, 51, 299–308.
49. Herring, T.A.; King, R.W.; Floyd, M.A.; McClusky, S.C. GAMIT (Version 10.7). 2018. Available online: http://www-gpsg.mit.edu/

(accessed on 12 January 2020).
50. Herring, T.A. Modeling atmospheric delays in the analysis of space geodetic data. In Proceedirws of Refraction of Transatmospheric

Simals in Geodesy; Netherlands Geodetic Commission: Delft, The Netherlands, 1992; pp. 157–164.
51. Niell, A.E. Global mapping functions for the atmosphere delay at radio wavelengths. J. Geophys. Res. 1996, 101, 3227–3246.

[CrossRef]
52. Altuntac, E. Variational Regularization Strategy for Atmospheric Tomography. Ph.D. Thesis, Institute for Numerical and Applied

Mathematics, University of Goettingen, Göttingen, Germany, 2016.
53. Altuntac, E. Three Dimensional Atmospheric Tomography Toy Model-II. MATLAB Central File Exchange. Available online:

https://www.mathworks.com/matlabcentral/fileexchange/70614-three-dimensional-atmospheric-tomography-toy-model-ii
(accessed on 20 July 2019).

http://doi.org/10.1111/j.1365-246X.2006.03101.x
http://doi.org/10.1016/j.asr.2010.12.025
http://doi.org/10.2151/jmsj.2004.459
http://doi.org/10.1007/s00585-000-0223-7
http://doi.org/10.1186/BF03352308
https://www.researchgate.net/publication/228573377_Water_vapor_tomography_within_the_planetary_boundary_layer_using_GPS
https://www.researchgate.net/publication/228573377_Water_vapor_tomography_within_the_planetary_boundary_layer_using_GPS
http://doi.org/10.1109/TGRS.2016.2631449
http://doi.org/10.1109/TGRS.2016.2597241
http://doi.org/10.5194/angeo-38-179-2020
http://doi.org/10.3390/rs12183034
http://doi.org/10.1007/s00190-020-01386-4
http://doi.org/10.1007/s00190-020-01464-7
http://doi.org/10.1016/j.jastp.2020.105366
http://doi.org/10.1016/j.asr.2015.04.001
http://doi.org/10.3390/rs10010062
http://doi.org/10.1145/358876.358882
http://doi.org/10.1145/357332.357335
http://doi.org/10.1145/15886.15916
http://doi.org/10.1109/MCG.1986.276715
http://doi.org/10.1029/92JD01517
http://doi.org/10.1029/RS009i010p00803
http://doi.org/10.1007/BF02521844
http://www-gpsg.mit.edu/
http://doi.org/10.1029/95JB03048
https://www.mathworks.com/matlabcentral/fileexchange/70614-three-dimensional-atmospheric-tomography-toy-model-ii


Remote Sens. 2021, 13, 2422 18 of 18

54. Klyuzhin, I. Fast Raytracing through a 3D Grid. MATLAB Central File Exchange. Available online: https://www.mathworks.
com/matlabcentral/fileexchange/56527-fast-raytracing-through-a-3d-grid (accessed on 30 July 2019).

55. Goff, J.A.; Gratch, S. Low-pressure properties of water-from 160 to 212 F. In Transactions of the American Society of Heating and
Ventilating Engineers; New York, NY, USA, 1946; pp. 125–164.

56. MatlabR2018a. MathWorks: Massachusetts, USA, March 2018. Available online: https://www.mathworks.com/products/
matlab.html (accessed on 20 July 2019).

57. Mao, H. Statistic research on remote sensing of atmospheric water vapor along slant path using global positioning system in
Shenzhen. Environ. Sci. Manag. 2020, 45, 177–180.

https://www.mathworks.com/matlabcentral/fileexchange/56527-fast-raytracing-through-a-3d-grid
https://www.mathworks.com/matlabcentral/fileexchange/56527-fast-raytracing-through-a-3d-grid
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html

	Introduction 
	Materials and Methods 
	Data Introduction 
	Methodology 

	Model Building 
	Unification of Coordinate System 
	The Intercept of the Signal Line and the Grid 
	Indexing by a Fast Voxel Traversal Algorithm for Ray Tracing 
	Formation and Solution of Equation Group 
	Observation Equation 
	Horizontal Constraint Matrix Equation 
	Vertical Constraint Matrix Equation 
	Boundary Constraint Matrix Equation 
	Solving Equations 


	Results 
	Discussion 
	Conclusions 
	References

