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Abstract: T-splines have recently been introduced to represent objects of arbitrary shapes using a
smaller number of control points than the conventional non-uniform rational B-splines (NURBS) or
B-spline representatizons in computer-aided design, computer graphics and reverse engineering.
They are flexible in representing complex surface shapes and economic in terms of parameters as they
enable local refinement. This property is a great advantage when dense, scattered and noisy point
clouds are approximated using least squares fitting, such as those from a terrestrial laser scanner
(TLS). Unfortunately, when it comes to assessing the goodness of fit of the surface approximation
with a real dataset, only a noisy point cloud can be approximated: (i) a low root mean squared error
(RMSE) can be linked with an overfitting, i.e., a fitting of the noise, and should be correspondingly
avoided, and (ii) a high RMSE is synonymous with a lack of details. To address the challenge of
judging the approximation, the reference surface should be entirely known: this can be solved by
printing a mathematically defined T-splines reference surface in three dimensions (3D) and modeling
the artefacts induced by the 3D printing. Once scanned under different configurations, it is possible
to assess the goodness of fit of the approximation for a noisy and potentially gappy point cloud and
compare it with the traditional but less flexible NURBS. The advantages of T-splines local refinement
open the door for further applications within a geodetic context such as rigorous statistical testing of
deformation. Two different scans from a slightly deformed object were approximated; we found that
more than 40% of the computational time could be saved without affecting the goodness of fit of the
surface approximation by using the same mesh for the two epochs.

Keywords: terrestrial laser scanning; rigid body motion; T-splines; surface modeling; T-mesh; local
refinement; Hausdorff distance; NURBS

1. Introduction

Terrestrial laser scanners (TLS), also called terrestrial LIDAR (light detection and
ranging), are contact-free measuring devices. They acquire coordinates of numerous
points by emitting laser pulses toward these points and measuring the range from the
device to the target [1]. More than 10° points per second can be acquired, possibly with a
millimeter accuracy. The range of applications is constantly growing, from coastal or fluvial
surveying tasks [2] to building model reconstructions [3], canopy investigations [4,5] or the
construction of tunnels [6], inter alia.

One application is the measurement of spatially varying topographic changes (see,
e.g., [7-10]). The detection of changes or deformations in the surface morphology is made
possible when multiple time series of measurements taken at different epochs are recorded
and georeferenced [11-13].

The TLS measurements are usually loaded in dedicated software: the related task of
treating and processing millions of points at the same time may be computational demand-
ing. A compact representation of the point clouds faces this challenge and is referred to as
surface approximation. In addition to facilitating the manipulation of the surface, such a
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parametric representation allows a rigorous statistical testing for deformation: mathemati-
cal splines’ surfaces are extremely beneficial to define and quantify differential structures
for shape analysis [14]. Not only is the computation of a predefined distance, such as
cloud to cloud or mesh to cloud, allowed but also risk assessment [15,16]. Unfortunately,
surfaces with complicated geometries may be challenging to convert into a mathematical
representation, such as the traditionally used non-uniform rational B-splines (NURBS; [17]):
continuity and conciseness may not be provided, and parameter redundancies may oc-
cur [18]. We believe that local refinement strategies are a flexible alternative to NURBS to
face that challenge: the latter do not support local modelization due to the tensor product
formulation [19]. Up to now, different strategies have been proposed for local refinement.
We cite hierarchical B-splines [20], truncated B-splines [21] or LR-splines [22,23]. Readers
should refer to [24-26] for applications of surface fitting to, for example, a bathymetry
dataset, for reserve engineering or, more recently, for a bridge monitoring application [27].
In this contribution, we will focus on T-splines, which offer a powerful and flexible alterna-
tive to NURBS, by being, simultaneously, their generalization [28,29].

A surface approximation is often performed in an iterative way [20,30], i.e., the surface
fitting space changes at each iteration depending on the results of the previous approxi-
mation. The least squares strategy is more often applied: the problem turns out to be to
solve a linear system to minimize the distance between scattered and noisy observations to
its mathematical representation. Complementary to least squares approaches, multilevel
B-splines can be used and provide numerical stability [31,32]. Surface skinning can be ap-
plied to gridded data to reduce the computation burden [33]. Non-gridded data are slightly
more challenging to approximate; segmentations may be necessary or the introduction of a
fairness functional to smooth the surface obtained ([18] and the references inside).

Iterative fitting is based on a simple concept: when the distance from the data points
to the reconstructed surface exceeds a given tolerance, the control mesh—a rough version
of the surface formed from its control point—is refined. Whereas NURBS conduct a global
refinement introducing mesh lines in both directions, T-splines allow the introduction of
local mesh lines, i.e., only at the place where a specific refinement is needed. Unfortunately,
in a real case, the true underlying surface is unknown and unknowable. Correctly judging
the goodness of fit of the surface approximation with adaptive refinement strategies
from noisy observations is challenging. The indicators chosen—root mean square error
(RMSE), number of points outside the tolerance and/or maximal error—rely mainly on
a comparison between the noisy point cloud and its approximation and not between the
point cloud and the true surface [34]. Additionally, the iterative strategy may still be
computationally demanding when two epochs have to be approximated independently,
for example, regarding differential shape analysis. In this contribution, we propose facing
these challenges by:

e  Assessing the goodness of fit of surface approximation with T-splines. Accordingly, we
use the high potential of three-dimensional (3D) printing. To that aim, we created and
scanned with a TLS a 3D corpus corresponding to a known T-splines reference surface.
Having modeled the inaccuracies due to the printing with Monte Carlo measurements,
we allow a unique comparison between the known T-splines reference surface and the
approximated noisy and scattered point cloud.

e Comparing the results of the adaptive fitting with the traditional but less locally
flexible NURBS by highlighting the risky overfitting, i.e., fitting of the noise.

e Proposing a strategy in the case of the rigid body motion of an object to save compu-
tational time. Under rigid body motion, we understand that the shape of the body
does not change strongly, only its orientation/distance in space: no strong strain
or distortion occurs. We will investigate how to avoid repeating an iterative refine-
ment for the second epoch of observations based on the mesh computed for the first
epoch. This procedure can greatly simplify the analysis of deformation based on
parametric surfaces and its rigorous statistical testing by significantly decreasing the
computational time [27].
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We will apply our derivations on both the 3D-printed surface and a real dataset from
a bridge under load. This dataset has already been used in previous publications of the
first author to test for deformation: to date, only a global B-splines fitting was adapted.
We propose, here, to specifically highlight the potential of a local refinement strategy
such as T-splines when point clouds have to be fitted compared to global surface fitting
with NURBS.

The reminder of this contribution is as follows: In the first section, we introduce the
concept of iterative surface approximation using T-splines. In the second part, the principle
of 3D printing of a reference surface is explained as well as the associated calibration
procedure after its scanning. We further compare the results of the fitting with T-splines
and NURBS to assess the goodness of fit of the surface approximation. In the penultimate
section, we apply the procedure to a real dataset for rigid body motion analysis. We
conclude with some recommendations.

2. Surface Fitting Using T-Splines
2.1. Basis Concepts

In this contribution, we propose introducing the T-spline surfaces in an intuitive way,
using the concept of T-mesh. Interested readers should refer to dedicated publications
for detailed mathematical derivations [28,35]. We assume the reader has some previous
knowledge about NURBS [19] (see also [36,37] for a more geodetic approach). NURBS are
a way to represent some surfaces using a parametric model by means of basis functions
called B-splines. They are defined by the order of the B-splines, a set of weighted control
points and a knot vector. The knot vector determines where and how the control points
will be active and, thus, the shape of the surface. The main drawback of NURBS is linked
to the tensor product of their basis functions, which does not allow local refinement. This
leads to (i) a computationally demanding procedure and (ii) the risk of overfitting, i.e.,
fitting the noise of the point cloud.

T-spline surfaces were introduced as a generalization of NURBS surfaces with T-
junctions to face that challenge. These surfaces inherit the good properties of NURBS,
such as partition of unity, point-wise non-negative, affine covariance and a convex hull
property [18]. They are defined by a control grid called a T-mesh, which represents a
group of control points connected by several straight lines. The mesh becomes dense and
close to the point cloud as the number of control points increases (Figure 1, right and left,
visualization using Matlab software).

Figure 1. [llustration of the control T-mesh over a given parametrized surface. Red points are the
control points, black the mesh lines.

The control vertices in the T-mesh (red points in Figure 1) correspond to knots in a
parametric pre-image (Figure 2). The number of knots in every row and column is not
necessarily the same. As shown in Figure 2 (right), the interrupted knots form the letter T,
from which the term T-spline was derived. The so-called T-junctions within the T-splines
framework enable a local refinement: control points can be inserted into the control grid
without adding a whole row or column of control points. In this way, the number of
redundant control points in T-spline surfaces is minimized compared to NURBS surfaces.
A NURBS mesh is simply a rectangular grid, i.e., a T-mesh without T-junctions.
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Figure 2. Illustration of the concept of blending functions and control points refinement. Left: Control point P with its
associated knot quintuples in both directions. Refinement and new control points P1 (middle) and P2 (right) and their

associated knot quintuples.

We call (1, v) the parameters that define the surface domain, which is usually described
as two real numbers ranging from 0 to 1. Starting from a two-dimensional T-spline pre-
image, the position of a surface point on the T-spline surface is given by

i1 P;i-w; - Bi(u,0)
Yiqw;i- Bi(u,v) '

where P; represents the n control vertex, w; is the control points” weights usually taken to
1 in T-spline surface fitting and B;(u, v) is the set of T-spline blending functions. The set
of blending functions is defined as the product of two univariate B-spline basis functions
determined by two knot quintuples following

¢y

S(u,v) =

Bi(u,v) = N;(u) - Ny(0v), 2

If we take the u direction as an example, the B-spline basis functions N;(u) are recur-
sively defined as

_ ) Lui<u<ujg
Nio(u) = { 0, otherwise (3)
u—u; u; —u
Nl,d(u) = Ujyg—Uj Nl’,d*l(u) + ui+;j;iu,'+1 Ni“t’l,d*l(u)

where N;(u) corresponds to d = 3, i.e., cubic basis functions [18]. In that case, we usually
define U = {up <wuj <....<u,y3} as the knot vector for NURBS, a sequence of non-
decreasing parametric values of length n + 4. The knot vector for T-splines is locally defined
as U; = [ujp, uj1, Ui, i3, 4], and similarly for the parameter v as V; = [vjg, Vi1, Vi, Vi3, Via),
according to [28]. These knot quintuples are associated with each control point P; and are
obtained from the T-mesh in the parametric domain (so-called pre-image, see Figure 2).
Based on the knot quintuple, the blending functions are calculated from the recursion
formula given in Equation (3). If one inserts a knot into the knot quintuples, the “old”
blending function is decomposed into a linear combination of a few new blending functions
that have finer knot quintuples; see [18] (Chapter 3) for a detailed example.

T-splines allow local refinement, i.e., a local definition of the knot vector and the asso-
ciated control points. They are, therefore, much more flexible than B-splines. This property
can be mathematically shown if we denote the rational blending function with weight 1 as

Ri(u,v) = %. The T-spline surface can be rewritten as S(u,v) = Y/ ; R;(u,v)P;, or
in matrix form as

s=RTp, 4)
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withR = [R, Ry, ..., R,,]T, P=[P,P,,..., Pn]T being the rational blending functions and
the matrix of control points, respectively. This definition shows that there is no longer any
limitation from the tensor product definition, for which we would have

Yy X Py wi - Ni(u)Nj ()

S(u,v) = i1 Z]r'l:l wij - Nj(u)Nj(v)

©)

Compared to Equation (5), the coefficient of each vertex (or control point in the
parametric space) in Equation (4) within the T-splines framework is simply the value of a
rational blending function. The latter denotes its local influence on the surface point which
is expressed as a linear combination of control vertices.

2.2. Refinement Strategy

As it has been mentioned previously, given a rectangular domain, a T-mesh is a parti-
tion of the parametrized domain, i.e., a rectangular grid for which Tjunctions are allowed.
A T-mesh can be locally refined when individual selected cells (Figure 3 “cell to be refined
in dark red”) are divided along their longest grid span. In this contribution, we make use
of the refinement algorithm of [38]. This algorithm has a linear computational complexity
in terms of the number of mesh elements marked and generated. It provides smooth
transitions between refined and unrefined domains, preventing unwanted oscillations on
the surface near the refined domains. Its principle is illustrated in Figure 3 by means of
a simple example. More complex refinement examples are to be found in the dedicated
publication. The surroundings of the cell (light red) to be refined are checked to search if
they are coarser than the cell itself (Figure 3 “is it coarser than”). The refinement is not only
performed for the cell under consideration but also involves its surroundings. A classical
hierarchical approach would have halved the marked cell in the two directions, leading to
four refined cells, without accounting for the neighborhood of the cell.

Cell to be Coarser cell
refined / |

B s B -

I Is it coarser than? no

Figure 3. Example of refinement: The patch marked (pink) contains elements that are coarser than
the cell to be refined (red). The algorithm checks their patches for even coarser elements and stops
after two iterations.

In order to obtain an admissible T-mesh, a few rules need to be accounted for, described
in [29]. The linear independence of the T-spline blending functions, for instance, and the
partition of unity have to be guaranteed so that more control points may need to be added
to the T-mesh. Additionally, the sum of the T-spline blending functions should always
equal one.

2.3. Iterative T-Spline Surface Approximation Using Least Squares

The goal of surface fitting is to find the best T-spline surface based on a certain crite-
rion [18] for T-splines fitting. In this contribution, we search for a surface that minimizes
the sum of the squared parametric distances between 1(u, v)—the parametrized Cartesian
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observations of length nobs—and the surface, which we solve as a standard least squares

nobs
problem, i.e., minp Y ||S(uj,v;) —1(uj,v;)|,, with ||-|, as the L2 norm or Euclidian dis-
=1

tance. This optimization problem can be summarized in matrix form as ATP = B, where A

is an (n,n) matrix that contains the estimation of the blending functions at the parameters’
nobs
location, i.e., its elements are a,; = jgl Bi(uj, v]-)Bg(u]-, vj), g,i=1...n, Pisthe (n1)

nobs
vector of control pointsand B = {by, ¢ =1...n}, by = Y 1(u;,v;) B¢ (u;, v;). The matrices
i=1

R and P depend on the underlying T-mesh via the two knot vectors Ub, Vb.

-1
The solution P = (AT) B is unique due to the linear independence of the blending

functions. It determines the estimates of the control points P that form the parametrized
T-spline surface S given by S(u,v) = Y""_; R;(u,v)P;, where * is used for “estimates.” The
error term is defined point-wise as

ei=||S (ui, v;) — 1(u;, v;)|

o i =1...n0bs, 6)

A refinement is performed in the element regions that contain a minimum of, e.g.,
three observations associated with an error term higher than a given threshold TH, i.e.,
e; > TH. All cells containing such data points are refined following the algorithm pro-
posed in the previous section. The refinement is not obligatorily dyadic, i.e., in the two
parametric directions: this is the main difference to a NURBS refinement. The value of three
observations is the choice of the user and could be reduced or increased to avoid too fine
or too coarse a refinement, respectively. Similarly, the choice of the threshold is left to the
user’s convenience. A few cells are refined with a large threshold. On the contrary, all cells
will be halved for a low TH; this is the same as performing a global approximation with
NURBS and may lead to an overfitting. In this contribution, we propose setting TH ~ o7,
with oz being the standard deviation of the z-component of the Cartesian observations, to
prevent unnecessary refinement that would make the surface estimated closer to the noisy
observations than to the true one. The refinement is stopped when either no cells need to
be refined or a maximum number of iterations is reached.

The methodology used is summarized in a flowchart form in Figure 4.

1. Parametrization
xyl=> [u,v]

2.
Initialization T-
mesh

3.
Control points,
least squares
adjustment

4.
Compare error with

Threshold
5. no — + smaller (3 points yes -
Refinement | —— — per cell)? - 1::‘ T-splines ‘
in marked ' *  max Iterations? surface
cells ~ —

Figure 4. Methodology of the iterative refinement with T-splines.
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2.4. Criterion to Judge the Goodness of Fit
The main indicators used to judge the goodness of fit are usually:

e  The RMSE regarding the points to be approximated and also called average distance

nobs
Rmse = —~—,| ¥ e2. Alternatively, an a posteriori variance factor could be com-
Vnobs \[ /=4 !

nobs

—— Y (¢?), as the mean of the error term computed with LS is 0.
i=1

puted, i.e., 02 = 1

Since in this contribution nobs > n, we will use the average distance RMSE, which
has similarities to the average distance, as used in [26].

The maximal error, max = max(e;).

The number of points outside the tolerance n-.7py, i.e., for which ¢; > TH once the
maximum of iterations allowed is reached. Note that the refinement is performed only
if at least three points are outside the tolerance in this contribution. Consequently,
even if the refinement stops, some cells may contain one or two points outside the
tolerance. This strategy was chosen to avoid unnecessary cell refinement linked with
the computational burden, when the observations may contain outliers.

We note that the RMSE is based on the scattered and noisy points to be approximated
and not on the reference surface, which is unknown in a real case. It is possible that a small
RMSE is linked with an unwanted fitting of the noise and is not favorable. This challenge
is addressed in the next section.

3. From the 3D Printing of the Reference Surface to Its Scanning and Fitting

In this section, we will assess the goodness of fit to a known reference by printing a
mathematical surface in 3D, approximated with T-splines. The methodology is summarized
in a flowchart form in Figure 5. We will, firstly, briefly present how the 3D printing of
a mathematical surface can be performed (steps 1, 2 and 3 in Figure 5). We will further
explain the challenges solved to eliminate the noise and artefacts introduced from the 3D
printer (Figure 5, steps 4 and 5), what we call “droplet modeling” (step 6 in Figure 5). This
elimination is made necessary for the sake of comparison with the reference surface after
the fitting. In further steps (steps 7 and 8 in Figure 5), we will explain how the surface
was scanned with a TLS under various scanning configurations. Finally, the results of the
T-splines approximation of the calibrated 3D body will be discussed.

+

Unknown artefacts

0;‘:.

minus

!

Given: TLS measurements
T-Spline fitting of a reference surface: F Sn
1. M i " ' ' h‘
. Mathematical surface Reference surface s
> known +
2. T-Mesh given il ” Artefacts ‘
k +
* TLS Noise .
3D printing: ‘ ‘ ‘
. +
3. = e
Reference surface _),‘ 100 Mal 2m 0 quality high

!
IR

Comparison:
Mesh, RMSE 6. Calibrated surface representing the
artefacts

Figure 5. Methodology for the calibration of the 3D-printed surface scanned with TLS under various
scanning configurations.
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3.1. Mathematical Surface

We will generate a reference T-spline surface using a 3D printer with the aim to verify
the trustworthiness of a surface fitting with T-splines with respect to NURBS from TLS
point clouds. The area of the chosen shape is completely defined using the following
formula, whereby the range of values for x and y is between —1 and 1 for the generation of
the surface.

Figure 6 shows the various components of the mathematical surface and their corre-
sponding equations. The red part corresponds to a Gaussian bell, which could represent
a mountain in real life. The blue part is a kind of dam. The waves serve to stabilize the
surface to enable 3D printing and are obtained from the green part.

2(t) =((tanh(9-y — 9-z) + 1)/6) + [...]

2(t) = [...] + exp(—(0.3 - (10 — 4)* + 0.3 - (10 -y + 4)*)) - 0.1

Figure 6. Mathematical surface serving as a reference for the 3D printing after the T-spline surface approximation.

This surface was discretized and parameterized using the uniform method. Another
parametrization strategy would be the chord length method; such investigations are
beyond the scope of this paper but will not affect the generalizability of our results about
the goodness of fit using T-splines. The 40,000 points generated were approximated with
T-splines. We chose a threshold of 0.001 and a refinement strategy for which the cells are
refined if they contain more than three points outside the tolerance. We justify this choice
to avoid a level of refinement at the edges of the scanned printed surface, where a mixed
pixels effect may happen [39]. We obtained an error-free approximated surface after seven
iterations. The final T-mesh is shown in Figure 7 and will serve as a reference for the
following investigations (step 1 in Figure 5).

Figure 7. T-mesh of the reference surface.
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3.2. 3D Printing

In this section, we shortly introduce how the mathematical surface from Figure 6
could be printed in 3D.

3.2.1. Principle

Three-dimensional printing is an additive manufacturing process in which material
is joined layer by layer to create a 3D object. The starting point is a digital volume model
created on the computer that describes the surface of the object to be manufactured. This
model is converted into a file that is compatible with the 3D printer so that it can be
processed. The STL format has established itself as the standard. In this format, the surface
of the object is described by a network of triangular areas. The object described by the
file generated is divided into layers. A common and widespread method is fused layer
modeling, which is a cost-effective and fast variant. This method was chosen here to reduce
the cost for a first investigation to test our methodology for assessing the goodness of
fit with T-splines. Other larger surfaces will be printed in a higher quality using other
methods in the future. Since a calibration of the object will be performed, the results of our
investigations are not affected by the 3D printing method.

A prerequisite for 3D printing is the use of materials that melt or can be deformed
when exposed to heat, such as thermoplastics or modeling wax. The material selected was
a polyactid (PLA-HAT), which is melted by a heating element on the printhead and applied
to the location desired using the movement possible in three spatial axes. The subsequent
cooling hardens the material and the next layer can be applied over it.

3.2.2. Preprocessing

In a pre-step and following Section 3.1, we generated a point cloud using the equation
proposed. This point cloud consists of 40,000 points, which are built up in a uniform grid
of 200 x 200 points. The distance of a point to its four direct neighbors in the x and y
directions corresponds to 0.005. The plane produced by 3D printing was chosen to have a
size of 50 x 50 cm, limited by the specificity of the 3D printer used: we wished to print the
surface as a whole corpus and not as patches to avoid junctions and increase the quality of
the printing. The unit of the coordinates of the 3D model was mm. Consequently, the point
cloud generated was scaled with a scale factor of 250. The resulting distance between the
points and the four direct neighbors was 2.5 mm in the x and y directions.

The points were meshed with one another with the help of triangular areas to meet
the requirements of a file for 3D printing. We carried out a Delaunay triangulation: three
points are connected to triangles in such a way that there is no other point within a circle
of three points. As a result, the individual triangular areas do not overlap and there are
no gaps. Three walls were drawn down from the edge to create a volume model from the
surface model. This allows the level being printed to be set up lying on all three walls or
standing on one wall. The resulting volume model was then divided into layers. The 3D
printing process selected (fused layer modeling) for manufacturing the object is accounted
for to optimally adapt the formation of the layers. The layers were each 0.2 mm thick. The
surface obtained is shown in Figure 8 (top, left).
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Figure 8. Top: left: the printed surface scanned at the laboratory of the Geodetic Institute in
Hanover; right: the corresponding T-mesh. Bottom: the 3D point cloud visualized using the free
software Cloudcompare.

3.3. TLS Measurements

The measurements of the printed surface took place in the measuring laboratory of
the Geodetic Institute in Hanover. We made use of a phase scanner, Zoller + Frohlich
Imager 5016 from Zoller & Frohlich GmbH, Wangen, Allgédu, which is well designed for
short-range indoor measurements. We varied the angles of incidence under which the
printed surface was scanned from 0° to 60° and the distance from 2 to 6 m by steps of 2 m.
We ensured that the angle of incidence for the reference configuration used for calibration
purposes [2 m, 0°] is almost parallel to the face normal of the panel. We did not ensure a 0°
tilting by using more accurate devices as we aim to model the artefacts, i.e., what we call
“calibration” in this contribution. The measurements were conducted with the resolution
high and quality high, i.e., a laser measuring frequency of 136 719Hz and 10,000 pixels/360°.
The choice of this setting for the calibration is justified by the fact that the approximation
with T-splines remains manageable on a normal computer, while, simultaneously, the level
of detail is sufficient.

The 3D-printed planes were cut out of the whole point cloud in a preprocessing step:
The free software CloudCompare was used to process the 3D point clouds (Figure 8 down).
The edges of the plane were treated with care with the aim of avoiding mixed pixels [39].
After removing the other objects contained in the point cloud that do not belong to the
plane, the latter was adapted to the digital reference model. In this way, the measured
plane, the reference model and the T-meshes calculated from the T-splines approximation
can be easily compared. We used the iterative closest point algorithm to minimize the
difference between the point clouds by rotating and translating them [40].

3.4. Calibration of the Printed Surface

Unfortunately, the printed surface shown in Figure 8 (top, left) is not exactly the
reference which we expected. Some artefacts coming from 3D printing arose, such as
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droplets, meaning that the printed surface was ground at some points. When performing
the approximation with T-splines with a threshold of 1 mm, the T-mesh in Figure 8 (top,
right) after eight iterations shows that the algorithm tried to approximate artefacts; this is a
logical result. In this section, we follow the idea of subtracting from each point cloud or
approximated point cloud these “mathematical droplets,” independently of the scanning
configuration (tilt, distance), as we wish to fit the mathematical reference surface and
not the reference surface with the droplets (steps 4 and 5 in Figure 5). This so-called
“calibration” will allow a comparison of the mesh and the RMSE obtained with the true
reference, as defined in 3.1.

To reach that goal, we performed 100 repetitions of measurements, known as “Monte
Carlo” measurements. They serve to prevent undesired effects that cannot be repeated
from influencing the calibration. The resulting 100 point clouds were approximated with
T-splines with the threshold of 1 mm and a maximum of ten iterations. The resulting
mathematical surfaces and the reference were evaluated on 250,000 equidistant parameters
in both directions (500 x 500). The differences between the reference and the 100 approx-
imations were then formed and averaged, as shown in Figure 5 (steps 4 and 5). As a
result, the “mathematical droplets” remained. They are depicted in Figure 9 (left). These
artefacts are a peculiarity of 3D printing: more material was used at the Gaussian bell, and
a grinding was performed along the dam.

x

-

=
A

%10
18

calibrated surface [m]
error in the z-direction after calibration [m]

© =4 N W b O O

b oRoA

Figure 9. Left: artefacts coming from 3D printing; right: the point-wise error after calibration.

The obtained surface was finally subtracted from each approximated point cloud
in order to enable a comparison with the unnoisy mathematical reference surface. The
point-wise error in the z direction after calibration and re-approximation of the calibrated
point cloud is shown in Figure 9 (right). It highlights the goodness of the calibration: no
outliers or spurious patterns can be seen, and the null hypothesis that the point-wise error
term should correspond to white noise could not be rejected with a confidence level of 5%
using the Lilliefors test [41].

Table 1 summarizes the results of the approximation obtained before and after calibra-
tion using the criteria introduced in Section 2.4. The following remarks can be made:

e  There is no error after the calibration compared to the 41 before calibration. This result
confirms the presence of artefacts on the printed surface that were approximated
by the iterative algorithm before calibration, leading to cells that still contain one or
two errors.

e  The Monte Carlo measurements permit the generation of a highly accurate calibrated
surface: the point cloud approximated after the subtraction of the “droplets surface”
became close to the printed reference; the RMSE reached 3.2 x 10~2 mm, which
corresponds to a decrease of 40% w.r.t. the RMSE before calibration. This small value
after calibration highlights the high trustworthiness of the approximation, i.e., the
closeness to the mathematical surface.

e  The T-mesh is similar to the reference one, up to four points that were added supplementarily.
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Table 1. Results of the approximation of the printed reference. The results of the approximation of
the scanned printed surface before and after the calibration.

RMSE/Reference Max Error (mm)/Nb Nb of Control
(mm) of Errors Points/Iterations
Before calibration 1.6 1.2/41 709/8
After calibration 32 x 1072 9.0 x 10-1/0 593/7
Printed reference to the 81 x 10-2 7.1 % 1010 5977

mathematical reference

The result of the calibration indicates that T-spline surfaces permit the approximation
of a noisy and scattered point cloud corresponding to a smooth surface with a high
confidence regarding a known reference. The same procedure will be used in the future for
surfaces with sharp edges to analyze the goodness of fit. We are highly confident that the
approximation will also be of good quality; T-splines are widely used in computer graphics
where such challenging geometries occur [18].

4. Approximation: Impact of the Scanning Configuration

In this section, we vary the scanning configuration (distance and tilting) and more
specifically investigate the following:

e  The approximation with T-splines and NURBS after calibration of the surface;
e The extent to which the original T-mesh can be reused for various configurations to
avoid repeating the adaptive refinement and save computational time.

4.1. T-Splines Approximation by Varying the Scanning Configuration

The printed surface was scanned under different configurations by varying both the
distance to the scanner and the tilting of the printed surface. In this section, we perform an
adaptive T-spline surface approximation following the methodology presented in Section 3.
The results are presented in Table 2.

4.1.1. Varying the Distance
When the distance is varied from 2 to 6 m, we notice the following:

e  The RMSE for the reference surface increases by a factor between 1.2 and 1.5 approxi-
mately between the distances 4-2 and 6—4 m. This result seems strongly plausible as
the number of scanned points decreases with the scanning distance. The number of
points is about 140,000 for the distance of 2 m, 36,000 for 4 m and 18,000 for 6 m.

e  There are no points outside tolerance except for the challenging tilting of 60° for which the
number of errors reaches 25. This value is small compared with the size of the point clouds.

e  Thenumber of control points decreases slightly as the number of points to approximate
becomes smaller, which is highlighted in Figure 10 with the corresponding T-meshes.

0° 10° 20° 60°

Figure 10. T-meshes corresponding to the different scanning configurations, as presented in Table 2.
Both the scanning distance angles were varied.
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Table 2. Results of the approximation after calibration for different scanning configurations. The
same criteria as in Table 1 are chosen to judge the goodness of fit. In brackets are the values obtained
from the NURBS approximation.

RMSE/Reference (mm) Max Error/Nb of Errors Nb of Control
(NURBS) (Max Error NURBS) Points/Iterations (NURBS)

2m0° 32 x 107227 x 107 T) 9.0 x 10-1/0(3.3) 593/7 (665/6)
2m10° 44 x 10225 x 1071) 6.3 x 1071/0 (3.5) 589/7 (665/6)
2m20° 55 x 1072 (2.7 x 1071) 9.7 x 10-1/0 (8.6) 611/10 (665/6)
2m60° 7.8 x 1072 (54 x 107 1) 2.8/21 (11) 622/10 (665/6)
4m0° 5.0 x 1072 (2.6 x 107 1) 8.9 x 10~1/0 (3.1) 581/7 (665/6)
4m10° 6.7 x 107225 x 1071) 9.3 x 1071/0(3.3) 580/7 (665/6)
4m20° 72 x107%(2.6 x 107 1) 7.7 x 1071/0 (9.5) 562/8 (665/6)
4m60° 1.0 x 10~ (7.5 x 1071) 1.3/13 (34) 573/10 (665/6)
6m0° 6.5 x 1072 (2.6 x 10~ 1) 9.1 x 10-1/0(3.3) 563/8 (665/6)
6m10° 95 x1072(24 x 10°1) 9.8 x 1071/0(3.2) 536/7 (665/6)
6m20° 88 x102(34x 1071) 1.1/0 (3.2) 479/7 (665/6)
6m60° 1.1 x10°1 (5.2 x 10°1) 1.7/25 (3.7) 541/8 (665/6)

4.1.2. Varying the Tilting
Similarly, for a given distance, the tilting

e Leads to an approximative increase in the RMSE by a factor 2 between 0° and 60°. The
maximum error becomes higher by up to a factor 3 for the distance of 2 m.

o  Affects the repartition of the control points along the diagonal, i.e., along the dam.
There are slightly less control points at the edges than for the reference T-mesh. This
effect is linked with the repartition of the scanned points in space. This result has to
be weighted by the very small value of the RMSE, making the differences statistically
nearly insignificant.

e Does not lead to a strong variation in the number of control points to estimate. A
maximum difference of 20 is observed due to the decrease in the number of scanned
points, or the inclusion of lines in the T-mesh by the refinement algorithm caused by
challenging geometries. Once more, the difference cannot be considered as significant
and is not synonymous with a higher computational time.

e Increases the number of iterations needed to reach the tolerance. This effect is due
to data gaps, shadowing effects or systematic errors, which necessitates a higher
refinement level to reach the tolerance.

4.1.3. Further Comments and Conclusion

Table 2 shows that the RMSE for the reference surface stays below the millimeter level,
independently of the scanning configuration. This highlights (i) the high trustworthiness
of the approximation with T-splines with respect to the reference surface as well as (ii) the
goodness of the calibration that was able to eliminate artefacts. The T-meshes are close
to the reference for all other scanning configurations. We propose using this property in
Section 4.3. to investigate the extent to which the computational time can be saved to avoid
adaptive refinement in the case of rigid body motion.

The same investigations were performed for other scanning settings (super high and
middle at a scanning frequency of 546,876 Hz and 136,719 Hz, respectively, for the setting
normal). The results are not presented for the sake of brevity but can be made available on
demand. They are similar to the results described in this contribution.

4.2. Comparison with NURBS

For the sake of completeness, we performed a comparison with NURBS (see Section 2.1)
with the aim to highlight the potential of local refinement with T-splines for approximating
TLS point clouds under various scanning configurations. NURBS surfaces are a particular
case of T-spline surfaces for which the threshold for refinement is set extremely low so that
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each cell of the mesh is halved. No local refinement is possible due to the tensor product
formulation: even if the errors inside a domain are below the noise level, the noise level
will be refined at each following iteration. The risk is the fitting of the noise, the so-called
“overfitting”. We intuitively illustrate this challenge: Figure 11 exemplarily shows what
an overfitting would look like for an original smooth surface approximated from a noisy
point cloud; depending on the level of iteration, the fitted surface is altered by the noise in
a different way, becoming more and more scattered (Figure 11 left versus right) if too many
iterations are performed. This effect is strongly unwanted as outliers/Gaussian noise can
potentially be fitted.

example of overfitting iteration 6 )i120-3 example of overfitting iteration 10 %103

0.015 0.015

\4
S(u,v)

=
S(u,v)

0.01 0.01

0.005

— 4 0.005
0.2

Figure 11. Two examples of overfitting -fitting of the noise of the point cloud- in the approximation
for an arbitrary smoothed surface in the parametric domain. Right: after 10 iterations; left: after
6 iterations.

In this contribution, we aim to perform a fair comparison between the T-splines and
the NURBS surface fittings. Consecutively, we fixed the number of parameters to estimate
for both strategies so that the computational time for the two approximation methods is
similar. The closest number of control points compared to the T-splines fitting is 665 points
for NURBS, reached after six iterations. The corresponding results for the approximation
are presented in Table 2 under brackets. The lack of local refinement leads to an increase in
the RMSE of the reference by up to a factor 5 as well as a higher maximum error with respect
to the results using T-splines. Increasing the number of iterations would evidently decrease
the RMSE. Using our Matlab implementation, seven iterations led to a slow decrease in the
RMSE by a factor 1.2 linked with an increase in the computational time by a factor 3 due to
the high number of basis functions to evaluate. Consecutively, it is mandatory to weight
the extent to which further iterations should be performed in terms of computational time
and overfitting when approximating with NURBS. Overfitting can additionally lead to an
artificial and risky decrease in the RMSE. T-spline surface approximation grandly avoids
this drawback due to the powerful local refinement.

4.3. Avoiding Adaptive Refinement in Case of Rigid Body Motion

The similarity of the meshes, as shown in Figure 10, raises the question of the opportu-
nity to use the reference mesh of Figure 2 to approximate other point clouds from the same
object, provided that its shape does not change strongly but only its orientation in space
(distance, tilting). We call such a deformation a “rigid body motion”. The proposed strategy

e  Would be validated if the RMSE or the number of points outside tolerance does
not change drastically between the reference and the T-mesh as used in Section 4.1
(Figure 10) to approximate the point clouds.

e  Would avoid the re-computation of the basis functions and save computational time
drastically when the same object is scanned at different epochs but only its orientation
in space changes: no adaptive refinement would have to be performed for the second
point cloud, and the approximation could be directly computed.
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e  Makes use of the property of a T-mesh: the T-mesh acts as a filter so that additional
effects (systematic or stochastic information arising, e.g., when varying the tilting)
could be eliminated.

The corresponding results for the approximation of the point clouds using the refer-
ence T-mesh are given in Table 3. The RMSE for the reference remains below the millimeter
level and increases slightly as the number of errors increases, i.e., mainly for the angle of
60°, exemplarily from 2 x 1072 to 4 x 10~ mm for [2 m, 0°] to [2 m, 60°]. As it has been
mentioned previously, the reference T-mesh we used acts as a filter of “rest effects” that
were not modeled after the calibration, which results in a slightly lower RMSE regarding
Table 2 for some configurations.

Table 3. Results of the approximation after calibration for different scanning configurations using the
reference T-mesh. The same criteria as in Table 1 are chosen to judge the goodness of fit.

Distance, Angle RMSE for Reference (mm)  Max Error (mm)/Nb of Errors
2m0° 2.8 x 1072 9.0 x 10°1/0
2 m 10° 29 x 1072 7.0 x 10~1/0
2 m 20° 46 x 1072 7.5 x 10~1/22
2 m 60° 40 % 1071 1.0/335
4m0° 40 x 1072 8.0 x 10°1/0
4m 10° 48 x 102 1.1/0
4 m 20° 3.8 x 102 9.5 x 10-1/35
4 m 60° 7.4 x 1071 1.1/287
6 m 0° 28 x 102 9.1 x10°1/0
6 m 10° 6.1 x 1072 7.7 x 10°1/0
6 m 20° 92 x 102 7.1 x 10~1/25
6 m 60° 75 x 1071 1.0/59

Similar to Table 2, Table 3 highlights the goodness of fit of the approximation with
T-splines from a noisy and scattered point cloud, even if an approximated T-mesh is
used. The number of points outside the tolerance stays under 1% of the total number of
scanned points. The RMSE stays constant independent of the tilting or distance used for
the scanning, i.e., no sharp increase is noticed. As previously mentioned, the impact of
shadowing, data gaps or outliers can be reduced due to the approximated T-mesh. The
approximated T-mesh may be coarser with regard to the original one used in Table 2.

4.4. Concluding Remarks
The following conclusions are drawn from the previous investigations:

e  We can be highly confident about the goodness of fit of a T-spline surface to a point
cloud from a smooth surface.

e  When the point clouds are rigidly deformed, an approximated mesh can be used with
high confidence and a low impact on the RMSE for the reference, as only 1% of the
points were outside the tolerance.

e  Compared with the global refinement performed with NURBS, the main advantage of
the local refinement strategy is to approximate the point cloud with a high definition
only in some specific domains. Global refinement with NURBS may lead to an
overfitting as the number of iterations increases. It is further linked with a strong
increase in the computational time as the number of parameters to estimate increases.
Local and adaptive refinement strategies should be preferred in the case of noisy and
scattered point clouds.

5. Application: A Bridge under Load

In this section, we apply the results of the analysis from the 3D-printed surface.
Accordingly, we will fit two epochs of TLS observations with T-splines. Due to the assumed
rigid body motion between the epochs, we will make use of the strategy developed in 3.5.
to simplify the iterative refinement and save computational time.
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5.1. Short Description of the Dataset

In this section, we use a real dataset of a historic masonry arch bridge over the river
Aller near Verden in Germany to judge the extent to which T-splines are appropriate to
approximate a dataset from TLS. The TLS observations stem from an experiment carried
out within the framework of the interdisciplinary project “Application of life cycle concepts
to civil engineering structures” [42]. Loads of increasing weights were artificially added
onto specific parts of the bridge to simulate the impact induced, e.g., by car traffic. The
deformation is, thus, expected to have happened in the vertical direction and have the
strongest magnitude for the last point clouds named E55. The profiles were captured using
a Z + F Imager 5006H at a sampling rate of 500,000 points per second.

Using a specific software (CloudCompare), a small patch was selected on the point
clouds E00 and E55 (reference and fifth load step, respectively). It is depicted in Figure 12.
We aim to

approximate the two patches with T-splines;

compare the T-meshes;

perform the approximation for epoch E55 on the same T-mesh as epoch E00, i.e.,
without iteration. This will allow us to judge the feasibility of our methodology in the
case of rigid body motion.

Figure 12. Top: visualization of the bridge for EO0 using the software CloudCompare and localization
of the patches of interest (bottom).

We parametrized the point clouds using the uniform method, justified by the relatively
smooth and uncomplicated geometry of the point clouds selected [27]. We note that with
real data, the reference surface, i.e., the “truth”, is unknown.

5.2. Results of the T-Splines Approximation and Comparison with NURBS

The approximation with T-splines was performed intentionally with a coarse threshold
of 1 mm with the aim not to approximate the noise. Its standard deviation was estimated
at 0.5 mm for the range, following the manufacturer’s datasheet. The threshold was chosen
slightly over the estimated value for the standard deviation of the Cartesian coordinates.
This way, adaptive refinement is performed only in the domain when necessary. This
threshold is high enough to avoid a uniform and global refinement corresponding to a
NURBS fitting: (i) computational time is saved, and (ii) overfitting is reduced. A maximum
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of ten iterations was fixed. The algorithm converges after eight iterations for both patches.
The T-spline surface is depicted in Figure 13 (left), for EO0 and the corresponding residuals
in Figure 13 (right). The results of the approximations are summarized in Table 4. We
highlight that for the T-spline surface fitting:

The residuals do not show a spurious pattern, are nearly white and are below the
millimeter level in norm. We note further that the number of errors is small regarding
the size of the point clouds (170,000 points). Both remarks confirm the goodness of the
approximation for the threshold chosen.

The number of control points and errors was similar for both surfaces, which has to
be linked with the fact that the patch did not change in shape but only in orientation.
The maximum error may seem large: it fortunately concerns only a few points as the
small RMSE of 1 mm indicates.

Figure 13. Left: T-spline surface E00 in (m) with reduced z-component (m); right: residuals of the

approximation in (m).

Table 4. Results of the approximation for EO0 and E55. The same criteria as in Table 1 are chosen to

judge the goodness of fit. Threshold: 0.5 mm; number of iterations: nine.

RMSE for Max Error Nb of Control
Reference (mm)  (mm)/NDb of Errors  Points/Computational Time (s)
E00 9.0 x 101 3.8/8 1141/45
E00 with NURBS 7.8 x 10 ¢ 3.6/56 3550/305
E55 9.1 x 10T 4.0/12 898/43
ES5with Tmesh = g5 )1 5/65 1141/10
from E0Q

Compared with NURBS, the T-splines approximation has strong advantages:

The RMSE is similar to that for the NURBS approximation. The difference is approx-
imately 0.1 mm for EOO (similar for E55 but not shown for the sake of shortness)
and cannot be considered as significant. We insist that an RMSE that is too small
is not synonymous with a good approximation, as the noise may have been fitted,
as illustrated in the previous section. A good balance has to be found, by avoiding
oscillations in the residuals. The residuals can be visually detected by inspecting the
fitted surface.

The number of control points to estimate for NURBS is three times higher than for
T-splines for the same RMSE. This drawback increases the computational time by
a factor 6 from 45 to 300 s. The corresponding NURBS mesh is shown in Figure 14
(bottom). Compared with the T-meshes of the two epochs (Figure 14, top), a lot more
control points need to be introduced: 3550 versus 1141.

The number of errors for NURBS increases with respect to the T-spline approxima-
tion due to the global refinement since all the cells of the mesh are halved, which
corresponds to an extremely small threshold in an adaptive scheme.
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Figure 14. Top: T-mesh corresponding to E00 (link) and E55 (right). Bottom: the NURBS mesh
for E0O.

This short example should convince the readers of the flexibility and computational
advantage of a T-spline over a NURBS surface.

5.3. “Re” Using the T-Mesh for Deformation Analysis

Following the investigations of Section 4.3, we computed the patch of the second
epoch E55 with the mesh of the first epoch E00. Since the patch of E55 is not expected to
have strongly varied in shape with the load but only in orientation, this strategy is optimal
to save computational time for the fitting of the second epoch: a re-computation of the
basis function is avoided. We found that the computational time saved was 31 s, compared
to the 45 s needed for the first epoch. This time may seem high; we should mention that our
algorithm is not fully optimized yet and implemented in Matlab. The RMSE was slightly
higher (9.9 x 107! versus 9.1 x 10~1). We link this discrepancy with the fact that the point
clouds were not recorded at the same time for the load of E55 as for E00. We mention that
the difference stays below the millimeter level.

The Hausdorff distance between the two surfaces was not affected by reusing the T-
mesh [27]: we found a value of 8.9 mm using the original accurate T-meshes versus 9.0 mm
for the simplification. The difference below the millimeter level cannot be considered as
statistically significant and has to be weighed against the computational time saved.

5.4. Summary

This real case study of a bridge under load confirmed the potential of a local refinement
strategy for fitting point clouds from TLS observations. The advantages were already
highlighted in Section 3 by means of a 3D-printed reference surface. With the adaptive
refinement method, we were able to

e  Reduce the computational time regarding a global surface fitting using NURBS. The
adaptive local refinement strongly decreases the number of parameters to estimate for
the same order of the RMSE.

e  Simplify the computation of the control points of the second epoch by using the same
mesh as for the first epoch. This was made possible since the deformation of the patch
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was rigid, i.e., only its orientation changed and its shape was not strongly affected by
the load.

e  Show that the distance between the two point clouds was not affected by the simplifi-
cation, which is an important property for further deformation analysis.

6. Conclusions

The potential of TLS-based deformation analysis is high due to the fast and simple
data acquisition, the high point density and the possibility of scanning whole areas of
interest. Unfortunately, the processing of point clouds with millions of observations may
be computationally demanding. Surface fitting with splines provides an alternative by
storing the observations in a compact form with only a few parameters to be estimated. At
the same time, rigorous test statistics are possible, which can include stochastic information
about the observations. Without using any gridding of the observations, local refinement
strategies to fit the scattered and noisy point clouds are a promising alternative to the
widely used NURBS in geodesy. In this contribution, we have shown that T-spline—a
generalization of NURBS using a T-junction in a mesh—is a promising approach: an
adaptive local refinement is carried out only at the problematic regions. The latter can be
stopped based on a threshold or after a given number of iterations. The algorithm enables
one to output a more compact surface with fewer control points to be estimated than with
NURBS. In this contribution, we have highlighted that the computational time saved is
far from negligible. Furthermore, we assessed the goodness of fit by using a reference
3D-printed surface (i) scanned with a TLS under various scanning configurations and
(ii) calibrated to eliminate the artefacts of 3D printing. We demonstrated that a reference
mesh can be used in the case of rigid body motion for two epochs of observations without
affecting the approximation. We applied these results successfully to a real data analysis
corresponding to a bridge under load.

Our results pave the way for new applications of local refinement strategies, from
surface fitting to registration or deformation analysis. The approach of finding the control
points is global, i.e., it has to be updated at each iteration by the LS method. Correspond-
ingly, the T-spline surface is optimal in the L2 norm for a given T-mesh topology, but
the iterative fitting remains time-consuming. In the next study, we will implement other
methodologies based on local least squares and assess how point clouds with edges or
more challenging geometries can be fitted optimally with T-spline surfaces.

Author Contributions: G.K.: conceptualization, methodology, investigation, analysis and writing;
N.S. and J.H.: investigation and review. All authors have read and agreed to the published version of
the manuscript.

Funding: This study is supported by the Deutsche Forschungsgemeinschaft under the project
KE2453/2-1. The authors warmly thank Morgenstern for interesting discussions. The publication of
this article was funded by the Open Access Fund of Leibniz Universitat Hannover.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Data available on demand.

Conflicts of Interest: The authors declare no conflict of interest.

1.  Vosselman, G.; Maas, H.-G. (Eds.) Airborne and Terrestrial Laser Scanning; Whittles: Dunbeath, UK, 2010.
2. Hohenthal, J.; Alho, P; Hyyppa, J.; Hyyppa, H. Laser scanning applications in fluvial studies. Prog. Phys. Geogr. 2011, 35,

782-809. [CrossRef]

3. Pu, S; Vosselman, G. Knowledge based reconstruction of building models from terrestrial laser scanning data. ISPRS ].
Photogramm. Remote Sens. 2009, 64, 575-584. [CrossRef]
4. Watt, PJ.; Donoghue, D.N.M. Measuring forest structure with terrestrial laser scanning. Int. |. Remote Sens. 2005, 26, 1437-

1446. [CrossRef]


http://doi.org/10.1177/0309133311414605
http://doi.org/10.1016/j.isprsjprs.2009.04.001
http://doi.org/10.1080/01431160512331337961

Remote Sens. 2021, 13, 2494 20 of 21

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

25.
26.

27.

28.
29.

30.

31.

32.

33.
34.

35.

Liang, X.; Kankare, V.; Hyyppad, J.; Wang, Y.; Kukko, A.; Haggrén, H.; Yu, X.; Kaartinen, H.; Jaakkola, A.; Guan, F; et al. Terrestrial
laser scanning in forest inventories. ISPRS ]. Photogramm. Remote Sens. 2016, 115, 63—77. [CrossRef]

Lindenbergh, R.; Uchanski, L.; Bucksch, A.; van Gosliga, R. Structural monitoring of tunnels using terrestrial laser scanning. Rep.
Geod. 2009, 87, 231-238.

Heritage, G.L.; Large, A.R.G. Laser Scanning for the Environmental Sciences; Wiley-Blackwell: New York, NY, USA, 2009.

Teza, G.; Galgaro, A.; Zaltron, N.; Genevois, R. Terrestrial laser scanner to detect landslide displacement fields: A new approach.
Int. ]. Remote Sens. 2007, 28, 3425-3446. [CrossRef]

Monserrat, O.; Crosetto, M. Deformation measurement using terrestrial laser scanning data and least squares 3D surface matching.
ISPR ]J. Photogramm. Remote Sens. 2008, 63, 142-154. [CrossRef]

Lague, D.; Brodu, N.; Leroux, J. Accurate 3D comparison of complex topography with terrestrial laser scanner: Application to the
Rangitikei canyon (N-Z). ISPRS |. Photogramm. Remote Sens. 2013, 82, 10-26. [CrossRef]

Lichti, D.; Gordon, S.; Tipdecho, T. Error models and propagation in directly georeferenced terrestrial laser scanner networks. J.
Surv. Eng. 2005, 135-142. [CrossRef]

Schuhmacher, S.; Boehm, J. Georeferencing of terrestrial laser scanner data for applications in architectural modelling. In
Proceedings of the ISPRS Working Group V/4Workshop 3DARCH 2005: Virtual Reconstruction and Visualization of Complex
Architectures, Mestre-Venice, Italy, 22-24 August 2005.

Barbarella, M.; Fiani, M.; Lugli, A. Landslide monitoring using multitemporal terrestrial laser scanning for ground displacement
analysis. Geomat. Nat. Haz. Risk. 2015, 6, 398-418. [CrossRef]

Dierckx, P. Curve and Surface Fitting with Splines; Report Monographs on Numerical Analysis; Clarendon Press: Oxford, UK; New
York, NY, USA; Tokyo, Japan, 1993.

Holst, C.; Schmitz, B.; Kuhlmann, H. TLS-Basierte Deformationsanalyse unter Nutzung von Standardsoftware. DVW e.V.: Terrestrisches
Laserscanning 2016; DVW Schriftreihe, 85/2106; Wifiner: Augsburg, Germany, 2016; pp. 39-58.

Zhang, Y.; Neumann, I. Utility theory as a method to minimize the risk in deformation analysis decisions. J. Appl. Geod. 2014, 8,
283-294. [CrossRef]

Bartels, R.H.; Beatty, J.C.; Barsky, B.A. An Introduction to Splines for Use in Computer Graphics & Geometric Modeling; Morgan
Kaufmann Publishers Inc.: San Francisco, CA, USA, 1987.

Wang, Y. Free-Form Surface Representation and Approximation Using T-Splines; Nanyang Technological University: Singapore,
2009. [CrossRef]

Piegl, L.; Tiller, W. The Nurbs Book. In Monographs in Visual Communication, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1997.
Forsey, D.R.; Bartels, R.H. Surface fitting with hierarchical splines. ACM Trans. Graph. 1995, 14, 134-161. [CrossRef]

Giannelli, C; Jiittler, B.; Speleers, H. THB-splines: The truncated basis for hierarchical splines. Comput. Aided Geom. Des. 2012, 29,
485-498. [CrossRef]

Bressan, A. Some properties of LR-splines. Comput. Aided Geom. Des. 2013, 30, 778-794. [CrossRef]

Dokken, T.; Pettersen, K.E; Lyche, T. Polynomial splines over locally refined box-partitions. Comput. Aided Geom. Des. 2013, 30,
331-356. [CrossRef]

Kiss, G.; Giannelli, C.; Zore, U,; Jiittler, B.; GroSmann, D.; Barner, ]. Adaptive CAD model (re-)construction with THB-splines.
Graph. Model. 2014, 76, 273-288. [CrossRef]

Jiittler, B. Surface fitting using convex tensor-product splines. |. Comput. Appl. Math. 1997, 84, 23-44. [CrossRef]

Skytt, V.; Barrowclough, O.; Dokken, T. Locally refined spline surfaces for representation of terrain data. Comput. Graph. 2015, 49,
48-58. [CrossRef]

Kermarrec, G.; Kargoll, B.; Alkhatib, H. On the impact of correlations on the congruence test: A bootstrap approach. Acta Geod.
Geophys. 2020, 55, 495-513.

Sederberg, T.W.; Zheng, J.; Bakenov, A.; NASRI, A.H. T-splines and t-nurccs. ACM Trans. Graph. 2003, 22, 477-484. [CrossRef]
Sederberg, TW.; Cardon, D.L.; Finnigan, T.; North, N.S.; Zheng, J.; Lyche, T. T-spline simplification and local refinement. ACM
Trans. Graph. 2004, 23, 276-283. [CrossRef]

Zheng, ].; Wang, Y.; Seah, H.S. Adaptive T-spline Surface Fitting to Z-Map Models. In Proceedings of the 3rd International
Conference on Computer Graphics and Interactive Techniques in Australasia and South East Asia (GRAPHITE ‘05), Dunedin,
New Zealand, 29 November—2 December 2005; Association for Computing Machinery: New York, NY, USA, 2005; pp. 405—411.
Skytt, V.; Harpham, Q.; Dokken, T.; Dahl, H.E.I. Deconfliction and surface generation from bathymetry data using LR B-splines.
In Scattered Data Interpolation with Multilevel B-Splines; Mathematical Methods for Curves and Surfaces. MMCS 2016; Floater, M.,
Lyche, T., Mazure, M.L., Morken, K., Schumaker, L., Eds.; Springer: Cham, Switzerlan, 2016; Volume 10521. [CrossRef]

Lee, S.; Wolberg, G.; Shin, S.Y. Scattered data interpolation with multilevel B-splines. IEEE Trans. Visual. Comput. Graph. 1997, 3,
229-244. [CrossRef]

Yang, X.; Zheng, ]. Approximate spline surface skinning. Comput. Aided Des. 2012, 44, 1269-1276. [CrossRef]

Bracco, C.; Giannelli, C.; GroSmann, D.; Sestini, A. Adaptive fitting with THB-splines: Error analysis and industrial applications.
Comput. Aided Geom. Des. 2018, 62, 239-252. [CrossRef]

Morgenstern, P.; Peterseim, D. Analysis-suitable adaptive T-mesh refinement with linear complexity. Comput. Aided Geom. Des.
2015, 34, 50-66. [CrossRef]


http://doi.org/10.1016/j.isprsjprs.2016.01.006
http://doi.org/10.1080/01431160601024234
http://doi.org/10.1016/j.isprsjprs.2007.07.008
http://doi.org/10.1016/j.isprsjprs.2013.04.009
http://doi.org/10.1061/(ASCE)0733-9453(2005)131:4(135)
http://doi.org/10.1080/19475705.2013.863808
http://doi.org/10.1515/jag-2014-0012
http://doi.org/10.32657/10356/19090
http://doi.org/10.1145/221659.221665
http://doi.org/10.1016/j.cagd.2012.03.025
http://doi.org/10.1016/j.cagd.2013.06.004
http://doi.org/10.1016/j.cagd.2012.12.005
http://doi.org/10.1016/j.gmod.2014.03.017
http://doi.org/10.1016/S0377-0427(97)00100-3
http://doi.org/10.1016/j.cag.2015.03.006
http://doi.org/10.1145/882262.882295
http://doi.org/10.1145/1015706.1015715
http://doi.org/10.1007/978-3-319-67885-6_15
http://doi.org/10.1109/2945.620490
http://doi.org/10.1016/j.cad.2012.07.003
http://doi.org/10.1016/j.cagd.2018.03.026
http://doi.org/10.1016/j.cagd.2015.02.003

Remote Sens. 2021, 13, 2494 21 of 21

36.

37.
38.

39.

40.

41.

42.

Bureick, J.; Alkhatib, H.; Neumann, I. Robust spatial approximation of laser scanner point clouds by means of free-form curve
approaches in deformation analysis. J. Appl. Geod. 2016, 10, 27-35. [CrossRef]

Koch, K.R. Fitting free-form surfaces to laserscan data by nurbs. Allgemeine Vermessungs-Nachrichten 2009, 116, 134-140.
Hennig, P; Kastner, M.; Morgenstern, P.; Peterseim, D. Adaptive mesh refinement strategies in isogeometric analysis—A
computational comparison. Comput. Methods Appl. Mech. Eng. 2017, 316, 424—448. [CrossRef]

Chaudhry, S.; Salido-Monzt, D.; Wieser, A. A modeling approach for predicting the resolution capability in terrestrial laser
scanning. Remote Sens. 2021, 13, 615. [CrossRef]

Zhang, Z. Iterative point matching for registration of free-form curves and surfaces. Int. J. Comput. Vision 1994, 13, 119-
152. [CrossRef]

Lilliefors, H.W. On the Kolmogorov-Smirnov test for normality with mean and variance unknown. J. Am. Stat. Assoc. 1967, 62,
399-402. [CrossRef]

Schacht, G.; Piehler, J.; Marx, S.; Miiller, ].Z.A. Belastungsversuche an einer historischen Eisenbahn-Gewolbebriicke. Bautechnik
2017, 94, 125-130. [CrossRef]


http://doi.org/10.1515/jag-2015-0020
http://doi.org/10.1016/j.cma.2016.07.029
http://doi.org/10.3390/rs13040615
http://doi.org/10.1007/BF01427149
http://doi.org/10.1080/01621459.1967.10482916
http://doi.org/10.1002/bate.201600084

	Introduction 
	Surface Fitting Using T-Splines 
	Basis Concepts 
	Refinement Strategy 
	Iterative T-Spline Surface Approximation Using Least Squares 
	Criterion to Judge the Goodness of Fit 

	From the 3D Printing of the Reference Surface to Its Scanning and Fitting 
	Mathematical Surface 
	3D Printing 
	Principle 
	Preprocessing 

	TLS Measurements 
	Calibration of the Printed Surface 

	Approximation: Impact of the Scanning Configuration 
	T-splines Approximation by Varying the Scanning Configuration 
	Varying the Distance 
	Varying the Tilting 
	Further Comments and Conclusion 

	Comparison with NURBS 
	Avoiding Adaptive Refinement in Case of Rigid Body Motion 
	Concluding Remarks 

	Application: A Bridge under Load 
	Short Description of the Dataset 
	Results of the T-Splines Approximation and Comparison with NURBS 
	“Re” Using the T-Mesh for Deformation Analysis 
	Summary 

	Conclusions 
	References

