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Abstract: The recent development in remote sensing imagery and the use of remote sensing detection
feature spectrum information together with the geochemical data is very useful for the surface
element quantitative remote sensing inversion study. This aim of this article is to select appropriate
methods that would make it possible to have rapid economic prospecting. The Qishitan gold
polymetallic deposit in the Xinjiang Uygur Autonomous Region, Northwest China has been selected
for this study. This paper establishes inversion maps based on the contents of metallic elements
by integrating geochemical exploration data with ASTER and WorldView-2 remote sensing data.
Inversion modelling maps for As, Cu, Hg, Mo, Pb, and Zn are consistent with the corresponding
geochemical anomaly maps, which provide a reference for metallic ore prospecting in the study
area. ASTER spectrum covers short-wave infrared and has better accuracy than WorldView-2 data
for the inversion of some elements (e.g., Au, Hg, Pb, and As). However, the high spatial resolution
of WorldView-2 drives the final content inversion map to be more precise and to better localize
the anomaly centers of the inversion results. After scale conversion by re-sampling and kriging
interpolation, the modeled and predicted accuracy of the models with square interpolation is much
closer compare with the ground resolution of the used remote sensing data. This means our results are
much satisfactory as compared to other interpolation methods. This study proves that quantitative
remote sensing has great potential in ore prospecting and can be applied to replace traditional
geochemical exploration to some extent.

Keywords: remote sensing; geochemistry; metallic element; quantitative retrieval; scale transformation

1. Introduction

The traditional geochemical exploration method generally plays a major role in the
advance mapping and surveying by providing a large amount of qualitative data for
a prospective area. However, this technique itself could not fulfill the expectations of
modern exploration programs due to its high cost of data collection over a long period. The
development of remote sensing imagery offers helpful exploration databases by producing
vast amounts of high-quality spatial and spectral resolution images, which have further
revolutionized the traditional geochemical method. Thus, the combination of remote
sensing imagery and geochemical technique can provide useful guidance information for
regional-scale prospecting mineral deposits and delineate the distribution of mineralized
and barren zones [1–4]. On the other hand, such a combination can be helpful to detect
local-scale hydrothermal alteration zones associated with mineralization in the visible
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and near-infrared (VNIR) and short-wave infrared (SWIR) regions [5–8]. Hydrothermal
alteration minerals are generally linked with the ore deposits (e.g., Au, Cu, and Fe),
and can be well assessed through remote sensing imagery (advanced multispectral and
hyperspectral imaging) [6,8,9]. However, when geochemical prospecting is combined with
surface reflection spectrum [10–14], such a combination often has low accuracy for the
mapping model.

Additionally, the use of remote sensing imagery data (e.g., advanced multispectral and
hyperspectral images) for effective geochemical modeling is a challenge in desert regions.
Quantitative remote sensing inversion can obtain information of earth’s surface based on
electromagnetic wave reflection, together with geochemical exploration data for specific
sampling points [15–17]. Then, mathematical modeling through traditional model accuracy
testing methods such as the Pearson correlation coefficient (R) and root mean square error
(RMSE) can be performed for generating satellite-based mineral prospectivity maps at
local-scale [9,18]. However, geomorphological variations are challenging in the field and
spatial heterogeneity exists for the content of metallic elements at different sampling points.
This implies that the traditional model testing methods have some limitations. Moreover,
the point scale cannot accurately reflect the spatial and temporal changes information
on the Earth's surface at a large scale [19]. Thus, the authenticity of previous studies
determines the accuracy of modeling up to some extent. In mineral prospectivity modeling,
some errors exist when discrete sampling points are used to replace the continuous surface
data since the sampling point area is much smaller than the pixel resolution of remote
sensing image [19–21]. Thus, the scale inconsistency can further affect the accuracy for the
mapping model.

With regard to the limitations of traditional test methods and the low accuracy of the
existing mapping model, this paper proposes a geochemical anomaly model test method
and scale transformation based on the quantitative remote sensing inversion study of metal-
lic elements in order to improve the accuracy for mapping model at local-scale. Therefore,
this study investigates a new approach for mineral prospecting by integrating geochemical
data and multispectral/multi-sensor satellite imagery (ASTER and WorldView-2 remote
sensing data) for the Qishitan polymetallic deposit. This research aims to perform point-
to-point matching and statistical calculation errors by integrating the content of metallic
elements for geochemical sampling points and the remote sensing modeling data for the
corresponding points.

2. Geological Background

The Qishitan area is located in central Asia, in the southeast of Shanshan County,
Turpan City, Xinjiang Uygur Autonomous Region, NW China. The geographical coordi-
nates are 90◦59′–91◦04′ east longitude and 42◦00′–42◦03′ north latitude (Figure 1a). The
study area is about 26.5 km2, and the altitude is about 1200 m. This area belongs to the
South Lake Gobi Desert low hills, which exhibit gentle terrain and little vegetation cover.
In the study area around the Qishitan region, the volcanic and magmatic activities are
frequent and well-developed stratigraphic folds and faults. Furthermore, this area has
strong ductile shear tectonic zones and obvious dynamic metamorphism. The distribution
of gold and polymetallic minerals is controlled by the regional structures such as ductile
shear zones. To the north of the Qishitan area, it is 42 km away from the Kangguer deep
fault and 20 km away from the Yamansu large fault. In the north and east of the study
area, there are large nappe faults in Aqikkuduk [22]. Exposed Formation in the area mainly
includes the Lower Carboniferous Kushui Group, Gandun Group, Aqishan Formation,
Yamansu Group, and Quaternary System (Figure 1b) [23]. The formations are mainly
composed of gray calc-alkaline intermediate-acid volcanic rocks, clastic rocks, carbonates,
and hemi-abyssal island-arc complex sandstones. Gray semi-cementing conglomerates
and mud-calcareous cementation are also exposed in the mine area [22]. The formation of
metallic minerals in this region was related to the filling and alteration of hydrothermal
fluids. A series of east–west tectonic fracture zones occurred in the mining area and the
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surrounding rock was subjected to the north-south tectonic stress. The acidic magma in the
deep crust intruded continuously, and these ore-bearing hydrothermal fluids carried a large
number of ore-forming metallic elements in the surrounding area during their upward
migration along the tectonic fracture zones, and then enriched, filled, and deposited in the
surrounding cracks to make ore bodies under certain conditions (Figure 1b).
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Figure 1. (a) Tectonic sketch map of the Central Asia Orogenic Belt [24–27]. (b) Geological map and ore deposits distribution
of the Eastern Tianshan [24,28].

The Qishitan area hosts a total of four gold, four copper, and eight lead-zinc mines [23].
The main resources in this region are Au, As, Sb, Cu, Pb, Zn, Bi, Mo, and W. These elements
have advantages of good combination, high strength, and obvious zoning. In this area, ore
bodies of the Kangguer deposit (Figure 2) are trending in the E-W direction and dipping
with an angle of 38–63◦ towards the north. The ore bodies in the study area are distributed
along the mylonite in the middle of the crushing zone, with a length of 600 m and a
width of 10–20 m, interspersed with quartz veins [29]. The alteration in the area mainly
includes pyritization, silicification, and malachite petrification, and contains Au and Cu in
a certain scale. Another two gold deposits, which are located to the west of the Kangguer
deposit, have been found recently (Figure 2), which have a potential of gold polymetallic
prospecting [22].
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Figure 2. Geological map and sampling distribution of the Qishitan gold polymetallic mining area.

3. Data Sources and Methodology
3.1. Data Acquisition and Processing
3.1.1. Acquisition and Processing of Geochemical Data

Geochemical sampling was carried out in the Qishitan polymetallic mining area
according to a grid division of 100 m × 40 m (Figure 2). The sampling points were selected
within the 1/10 grid distance from the surrounding point line. The aeolian cap above the
bedrock regolith was initially removed to expose the bedrock layers. Then surface samples
were collected from the top of the bedrock regolith. After collecting them 3–5 times, they
were combined into one sample and weight of each sample was ensured to be greater
than 200 g. A total number of 2774 surface samples were collected for this study. All
the samples were dried and ground to a size of 200 meshes after the initial processing,
such as 4–20 mesh sieving. Geochemical analyses were performed for the selected metallic
elements (As, Au, Cu, Hg, Mo, Pb, and Zn) at the Institute of Geophysical Exploration
of the General Administration of Metallurgical Geology of China. We randomly selected
200 samples out of the 2774 analyzed samples for the establishment of a regression model
(Table 1).
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Table 1. Statistics of geochemical sampling data from the Qishitan area.

Elements Au Cu Pb Zn Mo As Hg

Number of samples 200 200 200 200 200 200 200
Mean value 3.495 14.858 25.922 31.044 2.705 12.574 15.620

Standard error of the mean 0.284 1.374 7.563 9.694 0.306 0.821 1.260
Mid-value 1.700 8.850 6.600 15.050 1.495 8.800 10.000

Mode 1.000 5.000 5.000 5.000 1.160 4.200 * 10.000
Standard deviation 4.018 19.430 106.952 137.097 4.332 11.612 17.825

Variance 16.148 377.529 11,438.798 18,795.615 18.766 134.829 317.724
Overall spread 23.00 207.00 1361.50 1813.50 44.99 75.60 169.00

Note: * There are multiple modes, here is showing the minimum value. The element Au in the table is measured in ppb, others in ppm.

3.1.2. Satellite Remote Sensing Data

In the visible near infrared (VNIR) region, ASTER data has three bands and a reflected
radiation ranging between 0.52 µm and 0.86 µm. The spatial resolution of the VNIR
data is up to 15 m and can be useful to assess vegetation and iron oxide minerals on soil
and rock surfaces [8,30,31]. In the short-wave infrared (SWIR) region, ASTER data has
six bands with a spatial resolution of 30 m and a reflected radiation of 1.6–2.43 µm [32],
which reflects the spectrum characteristics of clay minerals and carbonate minerals and
helps for the identification of such minerals. In the thermal infrared (TIR) region, ASTER
data has five bands with a spatial resolution of 90 m and a wavelength ranging from
8.125 to 11.65 µm, which is useful for determining the surface temperature and silica
content [8,33]. Overall, ASTER VNIR, SWIR, and TIR spectra are powerful tools for the
identification of minerals and lithology. An ASTER level 1 B scene [8] covering the studied
area was acquired on 29 April 2015 through the methods mentioned in [6,8]. This image
has been geometrically corrected and rotated to a north UTM projection. Digital Globe
Incorporated from Vandenberg Air Force Base [6] launched the WorldView-2 satellite in
October 2009. This satellite provides two types of data: (i) commercial panchromatic
images with a resolution of 0.48 m, and (ii) multi-spectral images with an eight-band
resolution of 1.84 m [34]. Besides four typical bands (red band, green band, blue band, and
near-infrared band), this satellite further provides four new bands (coastal band, yellow
band, red edge band, and near-infrared 2 band), which are helpful for conducting accurate
change detection and mapping. The WorldView-2 data used in this study were acquired
on 20 December 2011. Technical characteristics of the WorldView-2 and ASTER sensors are
shown in Table 2.

Table 2. Technical characteristics of the Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) and WorldView-2 sensors.

ASTER WorldView-2

No. of Bands Wavelength
(µm)

Resolution
(m) No. of Bands Wavelength

(µm)
Resolution

(m)

B1 0.52–0.60 15 Pan 0.450–1.040 0.5
B2 0.63–0.69 15 B1 0.450–0.510 1.8
B3 0.76–0.86 15 B2 0.510–0.580 1.8
B4 1.600–1.700 30 B3 0.630–0.690 1.8
B5 2.145–2.185 30 B4 0.770–0.895 1.8
B6 2.185–2.225 30 B5 0.585–0.625 1.8
B7 2.235–2.285 30 B6 0.400–0.450 1.8
B8 2.295–2.365 30 B7 0.705–0.745 1.8
B9 2.360–2.430 30 B8 0.860–1.040 1.8
B10 8.125–8.475 90
B11 8.475–8.825 90
B12 8.925–9.275 90
B13 10.25–10.95 90
B14 10.95–11.65 90
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3.1.3. Remote Sensing Data Pre-Processing

It is necessary to pre-process the remote sensing data in order to remove the in-
terference on data and better reflect the reflectivity of ground objects. The ASTER and
WorldView-2 images were georeferenced to UTM zone 33 North map projection using the
WGS84 datum [35,36]. The Environment for Visualizing Images (ENVI) software version [8]
was used to perform radiometric calibration on both remote sensing data, followed by at-
mospheric correction using Fast Line-of-sight Atmospheric Analysis of Spectral Hypercube
(FLAASH) [37] algorithm along with Mid-Latitude Summer atmospheric and Tropospheric
aerosol models (Research Systems, Inc., HongKong, China, 2008). Geometric fine correction
was further applied to the WorldView-2 data using the geological map of the studied area.
Then, the calibrated WorldView-2 image was used to perform geometric fine correction on
the ASTER image.

3.2. Feature Band Selection

A correlation analysis between the band and the content of metallic element is com-
monly needed for the multispectral remote sensing data. This involves calculating the
correlation between the content values of each metallic element for a sample point and
the reflectance values of ASTER and WorldView-2 remote sensing image bands. In this
work, the choice of a strong correlation between bands is to optimize the inversion results
of regression model. The poor correlations between bands or non-positive effects of the
target element and inversion prediction with useless information are not introduced in
the model calculation. This is because to reduce their impact on accuracy and push the
inversion results closer to the real geochemical model.

3.3. Remote Sensing Modeling and Inversion Methods
3.3.1. Multiple Linear Regression Modeling

Regression analysis can accurately predict the response of dependent variables with
respect to the change in the number of independent variables by judging the interdepen-
dent relationship between variables. In multiple regression analysis, the multiple linear
regression plays an important role, which is widely used in various research fields.

Y = β0 + β1X1 + β1X1 + · · ·+ βnXn + ε (1)

The Equation (1) represents an n-element linear regression model, in which there are
n independent variables. Y corresponds to the dependent variable, also known as the
response variable or the explanatory variable, whereas ε is the value of random error, also
known as the residual value. The latter is the remaining value after the dependent variable
Y is explained by the independent variables (X1· · ·Xn). β0 is the regression constant,
while β1· · · βn is called the regression coefficient. In this study, a correlation analysis was
made between independent variables to eliminate those dependent variables that are not
strongly correlated. Then, a stepwise regression modeling method was introduced, in
which independent variables related to dependent variables were substituted into the
regression model one by one and the significance test was carried out sequentially. When
the original import was no longer significant due to the introduction of a later variable,
the original import was removed. This was repeated until the optimal variable factor was
obtained [38].

3.3.2. Model Accuracy Test

In this study, the regression model of each element was established by taking the re-
flectance data of the remote sensing image for a sampling point as an independent variable
and the content of metallic element for a sampling point as a dependent variable. Then,
Pearson correlation coefficient (R) and root mean square error (RMSE) were introduced to
test the fitting degree of the model as well as to evaluate and determine the final prediction
model. The closer the absolute value of correlation coefficient is to 1, the stronger the linear
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correlation between the two variables. Additionally, the smaller the root-mean-square error,
the higher the precision of the model.

3.3.3. Interpolation of Geochemical Anomalies

In order to better describe and express the macroscopic anomaly information reflected
by the geochemical sampling data, this paper uses 6768 sample data to carry out ordi-
nary Kriging interpolation operation for each element and gets the geochemical anomaly
interpolation map of each element sampling data.

4. Results and Analysis
4.1. Remote Sensing Modeling and Inversion Methods

Based on the multiple linear regression method, YAu, YCu, YPb, YZn, YMo, YAs, and
YHg are the predicted content values of Au, Cu, Pb, Zn, Mo, As, and Hg. The equation
models established by combining the geochemical data and the eliminated spectrum are
shown as follows (Table 3):

Table 3. Multivariate linear regression inversion model of remote sensing geochemistry of each element.

Predicted Elements Models Annotation

Au YAu = 2.454 − 0.004 * b1 − 0.001 * b3 + 0.004 * b4 − 0.009 *
b5 + 0.012 * b6 − 0.006 * b7 + 0.1 * b8 − 0.006 * b9

Among them, b1, b2, b3, b4, b5, b6, b7, b8,
and b9 correspond to the reflectivity of

the first, second, third, fourth, fifth, sixth,
seventh, eighth, and ninth bands of the

ASTER image.

Cu YCu = 23.404 + 0.036 * b1 − 0.118 * b2 + 0.096 * b3 − 0.008 *
b4 − 0.011 * b5 + 0.113 * b6 − 0.045 * b7

Pb YPb = 87.989 + 0.271 * b2 − 0.02 * b3 + 0.08 * b4 − 0.069 * b5
+ 0.087 * b6 − 0.134 * b7 + 0.115 * b8 − 0.102 * b9

Zn YZn = −6.27 − 0.133 * b1 − 0.112 * b3 − 0.012 * b4 + 0.087 *
b5 − 0.013 * b6 − 0.162 * b7 + 0.141 * b8 − 0.008 * b9

Mo YMo = 21.286 − 0.011 * b1 + 0.024 * b2 − 0.015 * b3 + 0.003 *
b4 − 0.009 * b5 + 0.013 * b6 − 0.007 * b7 − 0.018 * b9

As YAs = 53.34 − 0.029 * b1 + 0.05 * b3 + 0.035 * b4 − 0.066 * b5
+ 0.023 * b6 − 0.014 * b7 + 0.007 * b8 − 0.003 * b9

Hg YHg = 34.608 + 0.016 * b1 − 0.072 * b2 + 0.047 * b3 + 0.04 * b4
− 0.082 * b6 + 0.025 * b7 + 0.127 * b8 − 0.118 * b9.

4.2. ASTER Data Modeling Accuracy Test

Pearson correlation coefficient (R) and root mean square error (RMSE) accuracy tests
of the model established with ASTER data for the metallic elements are shown in Table 4.
These elements display R varying from 0.2881 (Mo) to 0.5477 (Zn). Other metallic elements
(Au, Cu, As, Hg, and Pb) have R ≈ 0.4 (Table 4). In contrast, the analyzed elements show
variable RMSE ranging from 3.706 (Au) to 65.9341 (Pb). The RMSE order for these elements
is Au < Mo < Zn < As < Cu < Hg < Pb, whereas their R order is Zn > As > Hg > Pb > Cu >
Au > Mo. By integrating above results, these elements were classified based on high (Zn,
As, and Au), moderate (Hg and Cu), and low (Mo and Pb) accuracy. Thus, seven inversion
model maps were drawn using the three accuracy types, and shown in Figures 3–9. It
is noteworthy that the ASTER remote sensing images are not strongly correlated with
the content of the metallic elements, and the RMSE of these elements is quite variable.
Comprehensive analysis of remote sensing data reveals that the pixel resolution of ASTER
image is low (30 m), which implies that the surface details cannot be well described. On
the other hand, if the content of metallic elements is low at the surface and the surface
morphology is complex, the predicted results are certain to be unsatisfactory. Moreover,
the accuracy of inversion of the analyzed elements can also be different at the same scale
due to the large variation in the content of these elements.
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Table 4. Multiple linear regression modeling indicators with ASTER and WorldView-2.

Metallic Element Remote Sensing Data Correlation Coefficient (R) Root Mean Square Error (RMSE)

As
ASTER 0.4970 9.7049

WorldView-2 0.3178 11.7641

Au
ASTER 0.3688 3.7060

WorldView-2 0.2898 4.1520

Cu
ASTER 0.4359 15.3130

WorldView-2 0.4290 15.0366

Hg ASTER 0.4472 19.2390
WorldView-2 0.3000 32.7280

Mo
ASTER 0.2881 4.2876

WorldView-2 0.3332 3.3931

Pb
ASTER 0.4450 65.9341

WorldView-2 0.4848 18.8064

Zn
ASTER 0.5477 7.4552

WorldView-2 0.3178 23.7206
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5. Discussion
5.1. Test Method Based on Geochemical Anomaly Contrast

The test of inversion model cannot only depend on the accuracy of the content value
for small-scale sampling points. Therefore, this study compares the element inversion map
generated by ASTER with the geochemical anomaly map for the corresponding element
(Figures 3–9). This is helpful to analyze the accuracy of the modeling results in terms
of the number of anomalies, the location of the anomaly center, the size of the anomaly
range, and the shape of the anomaly center. On the Au inversion and geochemical maps
(Figure 4), the high anomalies are mostly located from the northeast to the central part of
the Qishitan mining area. Similarly, Au anomalies are found in the Kangguer gold deposit
map (Figure 4a). Due to the low resolution of ASTER data, the inversion anomaly is not
obvious in the central part of the studied area. The southern part of the studied area also
displays medium Au anomalies, which are consistent with the linear Au anomaly in the
geochemical anomaly map. On the Pb inversion and geochemical maps (Figure 8), there
are six aggregation points with high anomalies (150–510 ppm), which are located in the
southwest part of the mining area. The shape of abnormal aggregation was round and
elliptic. The anomalous location is mainly concentrated in the southwest and the northwest
corner of the study area. The geochemical anomaly map shows that there are 5 anomalies
with Pb element values above 150 ppm, which are mainly located in the southwest of the
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study area, and the shape is mainly circular and stripy. The inversion results are consistent
with geochemical anomalies, so the ASTER data obtained from remote sensing inversion
modeling has high accuracy on the macro level.

5.2. The Modeling Precision Is Improved by Scaling Transformation

For the purpose of this study, the ground sampling density will always be limited [39];
ground geochemical sampling data are point data in a small range, and each sampling
point is about 20 × 20 cm2. Samples were taken at 100 m × 40 m intervals. However,
remote sensing data can be considered similar to surface data with continuous surface
characteristics compared with ground sampling points. If ground sampling point data
is simply used to represent the surface data of remote sensing image, large errors can
be caused [40]. Hence, this results in low accuracy prediction of the established model.
According to Table 4, compared with other elements, the inversion model of Cu content
established based on ASTER image has moderate accuracy. In the southwest of the study
area, high Cu anomaly is noticeable. The Cu content and anomaly are used to verify
whether the scale conversion is effective or not and has a good expression effect. Thus, this
paper takes Cu as an example for further discussion based on the scale inconsistency.

5.2.1. The Experimental Idea and Process of Scaling Transformation

ASTER data has a resolution image of 15 m, while the sampling point spacing is
100 m × 40 m. In practice, the effective range represented by geochemical sampling sites is
uncertain. Therefore, the resolution can be constantly scaled down to match the unknown
range in order to make the pixel range match with the effective range represented by
the point and improve the predicted accuracy of the inversion model [40,41]. Specific
operations are as follows: 6 square sizes of 15 × 15 m2, 30 × 30 m2, 45 × 45 m2, 60 × 60 m2,
75 ×75 m2, and 90 × 90 m2 were set between 15 and 100 m. After increasing the scale
through pixel re-sampling method, then interpolating 2741 geochemical sampling points
in the region, we combined both steps to perform remote sensing inversion and record the
inversion results.

5.2.2. Modeling Results of Scaling Transformation and Inversion

The total number of original sampling sites is 2774. After successive interpolation
of 15 × 15 m2, 30 × 30 m2, 45 × 45 m2, 60 × 60 m2, 75 × 75 m2, and 90 × 90 m2 sizes, a
total of 47,424, 11,808, 5248, 2976, 1911, and 1312 new sampling points and its coordinates
were obtained. Then, the original 2741 samples without interpolation were compared with
these six groups of data and there were three groups for testing. Since the sample size
of each group was large, 100 samples were randomly selected from each group of data.
Then, 75 samples out of 100 were selected as modeling sample points and 25 samples were
used as test sample points in a ratio of 3:1. It can be seen from the results in Table 5 that
the inversion model after scale transformation has high accuracy compared to that of the
direct inversion modeling with the original geochemical exploration data. Compared with
Table 4, the RMSE of Cu element modeling is relatively high at the initial pixel scale of
the original geochemical sampling point. The average RMSE of the original modeling
sample point in the three testing groups is 17.4291, and the average RMSE of the verified
modeling sample point is 11.1796. When the square size expands from the initial size of
the pixel to the size of the sampling interval, the RMSE and the standard estimation error
gradually decrease and then increase. In the scaling process, the RMSE modeled within the
square size range of 45–60 m is the smallest, and the R2 coefficient and R2 adjusted are the
largest, indicating that the model precision is high. When the 60 m2 size is exceeded, the
RMSE of the model increases, whereas the R2 coefficient and R2 adjusted decrease. Among
the 7 scale modeling methods, the interpolation results are the best and the accuracy is
highly improved. Compared with the models obtained without scale transformation, both
modeling accuracy and predicted accuracy are significantly improved.
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Table 5. Modeling and precision of different square sizes.

Modeling Type R R2 Adjustment of R2 Standard
Estimate Error

RMSE
(Modeling Samples)

RMSE
(Test Samples)

Original 0.2427 0.0593 0.0007 13.8601 17.4291 11.1798
15 m Modeling 0.4853 0.2423 0.1373 11.5146 10.7196 12.2857
30 m Modeling 0.4303 0.1877 0.0750 12.8802 11.9906 12.0169
45 m Modeling 0.4673 0.2200 0.1120 10.7719 10.0278 11.6456
60 m Modeling 0.4397 0.2060 0.0960 11.4800 10.6875 10.0813
75 m Modeling 0.3627 0.1317 0.0117 13.1094 12.2041 10.6881
90 m Modeling 0.4683 0.2267 0.1197 12.6265 11.7546 14.0108

5.3. Research on Downscaling Transformation
5.3.1. Downscaling Study Based on Worldview-2 Data

Compared with ASTER data, WorldView-2 data has a higher image resolution, more
standard bands, and smaller corresponding scales. This can provide accurate change
detection and mapping. Therefore, this study uses the WorldView-2 and ASTER data for
comparison to explore the effect of downscaling on modeling accuracy. YAu, YCu, YPb,
YZn, YMo, YAs, YHg are the predicted content values of Au, Cu, Pb, Zn, Mo, As, and Hg.
The inversion model for the band operation of the WorldView-2 data is shown as follows
(Table 6).

Table 6. The inversion model for the band operation of the WorldView-2 data.

Predicted Elements Models Annotation

Au YAu = −0.49582 + 0.00396 * b1 + 0.00253 * b2 − 0.01642 * b3 + 0.01081
* b4 + 0.01059 * b5 − 0.00596 * b6 − 0.00688 * b7 + 0.00395 * b8

Among them, b1, b2, b3, b4, b5,
b6, b7, and b8 correspond to the
reflectivity of the first, second,

third, fourth, fifth, sixth,
seventh, and eighth bands of the

WordView-2image.

Cu YCu = 29.37829 − 0.00836 * b1 − 0.07866 * b2 + 0.05617 * b3 + 0.08459
* b4 − 0.01616 * b5 − 0.01923 * b6 − 0.06784 * b7 + 0.02992 * b8

Pb YPb = 44.57155 − 0.09794 * b2 + 0.20719 * b3 − 0.21651 * b4 + 0.05417 *
b5 + 0.24541 * b6 − 0.10542 * b7 − 0.06244 * b8

Zn YZn = 36.57033 + 0.02811 * b1 + 0.18157 * b3 + 0.09715 * b4 − 0.17465 *
b5 + 0.02874 * b6 + 0.06305 * b7 − 0.03995 * b8

Mo YMo = 7.25795 − 0.00484 * b1 + 0.00060 * b2 − 0.00308 * b3 − 0.00797 *
b4 − 0.01103 * b8

As YAs = 19.46359 − 0.04767 * b3 − 0.04955 * b4 + 0.02080 * b5 + 0.07710 *
b6 − 0.01323 * b7 − 0.01897 * b8

Hg YHg = 2.31494 + 0.01885 * b1 + 0.00425 * b2 − 0.08809 * b3 − 0.00980 *
b4 + 0.06119 * b5 + 0.10195 * b6 − 0.03692 * b7 − 0.04869 * b8

5.3.2. Inverse Modeling Results

After color segmentation and median filtering, the fast inversion results of each metal-
lic element from the studied area were obtained. In the inversion maps of metallic elements
(Figures 3–9), the color changes from dark green to dark red. Warm color corresponds to
the positive anomaly of elements, indicating the existing of ore bodies. In these inversion
maps, dark red color represents highly positive anomaly of the element and the mostly
like existence of ore bodies. In contrast, dark blue color represents the negative anomaly.
The Qishitan polymetallic deposit is located in the southwest proton of the inversion map,
and the sampling points are uniformly distributed, while the sampling points are not set
in other parts of the map. It can be seen from the inversion maps that As, Au, Hg, and
Pb elements show anomaly distribution in the study area. These elements have strong
anomalies in the southeast part. According to previous data [24], it can be seen that the
southeast corner of the inversion maps is the Kangguer polymetallic ore deposit. The
model established by the known sampling points can reflect the level of anomaly for a
metal element in the unknown region, indicating that the inversion accuracy is relatively
ideal. By comparing the inversion map obtained from ASTER and WorldView-2 data
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(Figures 10–16), it can be noticed that the inversion maps for the same element in ASTER
and WorldView-2 are generally consistent with the anomaly centers (high anomalies),
which are mostly located in the southwest of Qishitan and in the southeast of Kangguer
gold deposit. Some of the anomaly centers are located in the northeast of Qishitan. As
the spatial resolution of ASTER data is too low (Figures 3–9), the inversion accuracy is
relatively low and the corresponding map is poor compared to the inversion map obtained
with WorldView-2 data (Figures 10–16).

5.3.3. ASTER and WorldView-2 Data Modeling Accuracy Comparison Results

The models mentioned in Sections 4.1 and 5.3.1 were tested by the RMSE and R meth-
ods. The accuracy of the multivariate linear regression model established with the ASTER
and WorldView-2 data were removed from the less correlated bands (Table 4).

From the comparison results of multiple linear regression modeling indexes of the
two types of data, it can be observed that the correlation of the regression model based
on ASTER data is higher than that of the model based on WorldView-2 data, and the
RMSE is lower. This is because ASTER data has more bands and more abundant spec-
tral information.WV-2 data has a total of 8 bands; the band range includes visible and
near-infrared parts, while ASTER data has a wider spectral range and higher radiation
resolution. The spectrum ranges from 0.52 to 11.6 microns, with 14 bands, including visible,
near-infrared, short-wave infrared, and thermal infrared. Wide band range means more
abundant ground feature information and stronger ground feature identification ability.
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On the other hand, from the perspective of space, WV2 data is more helpful for
prospecting work in actual engineering because of its higher spatial resolution and more
detailed description. Compared with ASTER data with low spatial resolution, WV2 data
can better depict the surface mineralized bodies or mineralized zones with relatively
narrow width. Therefore, different data have different application characteristics and can
be combined or selected according to the actual needs of the appropriate data.

5.4. The Inversion Experiment Is Supplemented by Adding New Modeling Methods

It is possible to improve the modeling accuracy by changing the modeling method.
In this paper, the multiple linear regression method was used for the quantitative remote
sensing inversion of metallic elements. Although this method provides ideal accuracy, it
still has some insufficiency. For example, the interpretation ability is weak when there is
not necessarily a linear relationship between the spectral bands of the current geochemical
exploration data. However, based on machine learning methods such as b-t neural network
and random forest methods, it is possible to solve this deficiency. When there are high spec-
tral bands in the image and with a certain degree of data redundancy, partial least squares
method can provide a better solution. Therefore, the appropriate modeling methods need
to be applied flexibly, and one needs to consider selecting the current ground-based and
space-based data. This requires a lot of experimental verification to get the optimal results.

6. Conclusions

In this paper, ASTER and WorldView-2 remote sensing images were processed, inter-
preted, and integrated with geochemical data in the Qishitan polymetallic deposit, NW
China. The quantitative inversion models of the contents of Cu, Pb, Zn, Mo, As, and Hg
were established, respectively. The inversion maps of the contents of each element were
calculated according to the established models. At the same time, the effects of the reso-
lution of remote sensing image and the existing scale problem on the modeling accuracy
were further discussed. The results show that:

(1) The inversion map is consistent with the geochemical anomaly map. By comparing
the geochemical interpolation anomaly map and remote sensing inversion map of each
metal element in the study area, it is obvious that Au, As, Cu, Hg, Mo, Pb, Zn, and
other elements have a high coincidence degree with the anomaly map. Moreover, in the
southeast of Qishitan deposit, where there is no geochemical data, there are high anomalies
of metal elements, and the anomaly range is close to that of the known mining area, which
comprehensively indicates that the reliability of this inversion effect is high.

(2) The two types of resolution images have their specific advantages, and the compre-
hensive utilization of the two datasets can meet different needs. When the reflectance is
modeled in the same band range of two image types, the accuracy of the model based on the
WorldView-2 data is better than that based on ASTER data. In contrast, when all the bands
are modeled, the accuracy of the model based on ASTER data is better than that based
on WorldView-2 data. The latter has very high spatial resolution, and the corresponding
inversion map is more detailed.

(3) Scale transformation can reduce the problem of scale inconsistency between remote
sensing images and geochemical data. Experimental results show that the resolution of
geochemical sampling data through resampling and Kriging interpolation is closer to that
of remote sensing data used in inversion; compared with other interpolation methods, the
interpolation model has higher accuracy in modeling and prediction.
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