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Abstract: High-frequency disturbance forest ecosystems undergo complex and frequent changes at
various spatiotemporal scales owing to natural and anthropogenic factors. Effectively capturing the
characteristics of these spatiotemporal changes from satellite image time series is a powerful and
practical means for determining their causes and predicting their trends. Herein, we combined the
spatiotemporal cube and vegetation indices to develop the improved spatiotemporal cube (IST-cube)
model. We used this to acquire the spatiotemporal dynamics of forest ecosystems from 1987 to 2020
in the study area and then classified it into four spatiotemporal scales. The results showed that the
cube-core only exists in the increasing IST-cubes, which are distributed in residential areas and forests.
The length of the IST-cube implies the duration of triggers. Human activities result in long-term
small-scope IST-cubes, and the impact in the vicinity of residential areas is increasing while there
is no change within. Meteorological disasters cause short-term, large scope, and irregular impacts.
Land use type change causes short-term small scope IST-cubes and a regular impact. Overall, we
report the robustness and strength of the IST-cube model in capturing spatiotemporal changes in
forest ecosystems, providing a novel method to examine complex changes in forest ecosystems via
remote sensing.

Keywords: improved spatiotemporal cube model; spatiotemporal information; characteristics extraction

1. Introduction

Forests are the habitat of numerous natural species and serve multiple economic
functions for human society [1–3]. Conditions conducive to stable forest growth include
the absence of disturbances which includes meteorological disasters, human activities,
etc. [4–6]. High-frequency disturbances will likely produce more severe impact on forests.
However, high-frequency disturbances are closely related to long-term and repetitive
human activities and are difficult to avoid. These may change the composition, structure,
and ecosystem function of the forest, leading to nutrient and water cycle changes, soil
erosion, lower carbon sequestration, and other negative outcomes [1,3,7]. Furthermore,
they may affect other biological communities, as well as humans [8,9]. Hence, investigating
the forest response to high-frequency disturbances is important [10,11].

High-frequency disturbances result in different types of changes that eventually cause
complex alterations in the forest ecosystem through a series of spatiotemporal interactions.
The decomposition of changes in the forest ecosystem and information regarding the time,
place, and nature of these changes are crucial for revealing the regularities and causes of
environmental change. Remote sensing is particularly useful for acquiring spatiotemporal
information on forest ecosystem changes [12–15]. Traditional analysis methods are mainly
divided into bi-temporal change detection [16,17], object-oriented methods [18–22], and
temporal trajectory analysis [23,24]. The advantage of these methods is that they can
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easily and intuitively obtain the information of change or no change and land conversion
types. However, different changes in forest ecosystems have different spatiotemporal
scales. Most of the current research addressing changes in the forest ecosystem only
use temporal or spatial information, or adopt a two-stage independent mode, i.e., using
one before the other [25–28]. These approaches notably no longer meet the needs of
forest ecosystem change monitoring. Therefore, the use of spatiotemporal information to
capture forest ecosystem changes remains a challenge and has attracted the attention of
numerous researchers.

As a novel analytical method, the space-time cube has been applied in numerous
fields. Kang et al. [29] used the space-time cube to analyze the changes in spatial and
temporal characteristics of traffic accidents over time among the elderly population of Seoul.
Mo et al. [30] reported the spatial and temporal patterns of the 2019 novel coronavirus
disease outbreaks; they found the spatial and temporal distribution type and case trends
based on the space-time cube. However, in these two methods, the size of each cube is a
fixed value set by researchers, and the values are independent of the actual ground objects.
This means that the space-time cube analysis method cannot represent the ecological change
process. Xi et al. [31] proposed the ”spatiotemporal cube (ST-cube)“ to improve application
of land-cover classification and change detection with satellite image time series. ST-cubes
are the units for representing actual ground objects and have a one-to-one correspondence
with actual ground objects. In the high-frequency disturbance area, although disturbance
occurs frequently, the effect of disturbance does not necessarily change the appearance
of the forest [32,33]. It may be reflected in the appearance only when it accumulates to a
certain amount, which makes it difficult for ST- cube model to detect the real temporal and
spatial changes of forest function in the high frequency disturbance area. Thus, this study
improved the ST-cube model.

To capture the spatiotemporal dynamics of the high-frequency disturbance forest
ecosystem, we combined the ST-cube and vegetation index to develop the improved spa-
tiotemporal cube (IST-cube) model. The normalized difference vegetation index (NDVI) is a
useful and frequently used tool for analyzing the distribution and photosynthetic capacity
of vegetation [34–36]. Likewise, the enhanced vegetation index (EVI) is strongly associated
with the leaf area index (LAI), canopy cover, biomass, and the fraction of absorbed photo-
synthetically active radiation [37–39]. Thus, using the combination of the NDVI, EVI, and
ST-cube may facilitate a better representation of the changes in forest ecosystems.

In this study, we used Landsat time series data to provide insight into the spatiotem-
poral variability in forests in Hunan, China. The aims of this study were as follows: (i)
to analyze changes in the forest ecosystem that reveal high-frequency disturbance back-
grounds, (ii) develop the IST-cube by combining the ST-cube with vegetation indices (NDVI,
EVI), and (iii) extract spatiotemporal variation features using the IST-cube model in the
study area from 1987 to 2020.

2. Materials and Methods
2.1. Study Area

The Shizhuyuan Ore District is located in southern Hunan Province, China (Figure 1).
Topographically, this area consists mainly of undulating hills that are high in the southeast
and low in the northwest. This area is characterized by a subtropical monsoon climate with
an annual average temperature and precipitation of 17.4 ◦C and 1522 mm, respectively,
which provide favorable conditions for forest growth. Another feature of this area is the
abundance of metal mineral resources, as it represents one of the most important mineral
resources in China [40]. Mining is the primary economic activity in the region. In terms
of land use, approximately 84% of the land is occupied by forests; the rest is used for
mining and comprises residential settlements, factories, agricultural farms, and roads.
The diversity in land use makes this region an ideal research area to reveal trend changes
in the forest. Therefore, we chose the Shizhuyuan Ore District as our study area.
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Figure 1. Location of the study area in Hunan Province, China.

2.2. Data Preparation
2.2.1. Landsat Time Series and Annual Composite Data

Landsat data are suitable for long time series investigations of forests in the study
area because they provide a data record initiated in 1972 with a medium spatial resolution
of 30 m [15,41] and six channels ranging from the visual band to the short wave infrared
band [42]. Therefore, the Landsat 5 TM, 7 ETM+, and 8 OLI sensors were used as data
sources. We used 34 years (1987–2020) of Landsat data (Tier 1, Collection 1), where the
effects of atmospheric, topographic, reflectance, and satellite sensors have previously been
corrected [43]. All Landsat data were obtained from the Google Earth Engine (GEE) Python
API, a cloud computing platform for geospatial analysis [44]. The simpleComposite algorithm
on the GEE platform was used to generate annual cloud-free composite scenes of the study
area by accessing the median of the least cloudy pixels after converting the images to
top-of-atmosphere (TOA) reflectance from all images that fell within each date range [45].
This composite achieved consistency and coherence for forest dynamics monitoring [46,47].

2.2.2. Meteorological Data

Forests are sensitive to meteorological conditions. To account for the fact that the
study area is an area with frequent floods and droughts. Therefore, we assume that the
major meteorological disasters in the study area are floods and drought. To establish
whether the appearance of IST-cubes is related to meteorological disasters, we acquired
precipitation data from the Precipitation Estimation from Remotely Sensed Information
Using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR), which pro-
vided daily global precipitation data from 1983 to the present, with a spatial resolution of
0.25◦ [48,49]. According to the classification standard of flood and waterlogging weather
in Hunan Province, which was developed by the local government [50], a flood is defined
as precipitation during any 10 days of more than 200 mm.

Whether drought and IST-cubes appear at the same time is also needs to be compared.
Therefore, we introduced Palmer drought severity index (PDSI) as validation data to
perform a quantitative evaluation on IST-cubes. PDSI is a widely used drought index to
assess the degree of drought [51,52]. PDSI data were acquired from Terra Climate, a global
dataset of long-term monthly climate and climatic water balance, with a spatial resolution
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of 0.04◦ [53]. The averaged value of all the points of the two data sets in the study area was
utilized as the basis for qualitative description of the research area.

2.3. Methodology
2.3.1. Overview of ST-Cube Model

(1) Expression and representative significance of ST-cube

In order to correctly describe the spatial-temporal continuity and distribution of
geographical objects, Xi [31] proposed the ST-cube model. ST-cubes can reflect the ho-
mogeneous state of geographical objects in a certain continuous spatiotemporal range.
This feature allows researchers to obtain the spatiotemporal context quantitatively by
analyzing the spatiotemporal neighborhood of the ST-cube. As shown in Figure 2a, cube
4 represents an ST-cube with a duration from t0 to t2. During this period, it is homoge-
neous and has no change. However, cube 1 changes at t1, because it splits into cube 2 and
cube 3 at t2.
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Figure 2. (a) Expression of ST-cube. The X and Y axes represent the spatial domain, and the T-axis
represents the temporal domain. (b) Schematic diagram of spatiotemporal neighborhoods.

(2) Spatiotemporal neighborhoods

The main idea of ST-cube model is to express geographic objects using a cube and
realize it by merging pixels or cubes. For a cube, the potential merging objects are the
surrounding temporal and spatial neighbors. The definition of a spatial neighbor is that
it is adjacent in the spatial domain and intersects in the temporal domain. As shown in
Figure 2b, cube 2 and cube 4 are both the spatial neighbors of cube 3 and cube 1. The
definition of time neighbor is that it is adjacent in the temporal domain and intersects in
the spatial domain. For example, cube 3 is the temporal neighbor of cube 1 and cube 4
is the temporal neighbor of cube 2. After comparing different organizational structures,
Xi [31] asserted that the most effective way is as follows: the smallest scale cube is first
represented by a pixel, while the large scale cube is generated iteratively by merging small
cubes. Therefore, the ST-cube model is an independent pixel at the beginning, which is
merged with the spatiotemporal neighbors that meet the merging conditions and have the
least heterogeneity to form a large-scale cube. When a pixel merges with its neighbors,
they will be regarded as a whole large-scale cube for the next merge judgment.

(3) Spatiotemporal heterogeneity criterion

Spatiotemporal heterogeneity is used to measure the heterogeneity before and after
merger. The judgment basis of spatiotemporal heterogeneity is divided into spatial hetero-
geneity and temporal heterogeneity. The spatial heterogeneity Sh is defined as a weighted
combination of spectral and shape heterogeneity. Temporal heterogeneity Th is defined
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as the difference of spectral heterogeneity of spatial cubes before and after merging. Two
cubes (cube 1 and cube 2) should be merged into cube0, at least to meet the following
requirements:

Sh = ωshape · Hshape + (1 − ωshape) · Hcolor (1)

where ωshape is the weight of the shape heterogeneity difference. Hshape and Hcolor measure
the shape difference and spectral difference before and after merging, respectively.

Th = ncb·∆Tcb·Hcb
t −

(
ncb1·∆Tcb1·Hcb1

t + ncb2·∆Tcb2·Hcb2
t

)
(2)

where n is the number of pixels of the bottom of the cube, ∆T is the length of the ST- cube
in the time domain, Ht is the average spectral variance of the ST-cube in the time domain,
cb1 and cb2 are the two cubes before merging, and cb is the ST-cube obtained by merging
cb1 and cb2. Each ST-cube will find the spatiotemporal neighbor that meets the merging
condition and has the least heterogeneity to merge with it until no spatiotemporal neighbor
meets the merging condition.

Each ST-cube will find the spatiotemporal neighbor that meets the merging condition
and has the least heterogeneity to merge with it until no spatiotemporal neighbor meets
the merge condition.

2.3.2. IST-Cube Model

The ST-cube model proposed by Xi [31] has been used and improved in this study.
We combined the ST-cube and vegetation indices to develop IST-cube. The essence of this
model is to merge IST-cubes or pixels. Before merging, the model successively performs a
merger judgment with adjacent IST-cubes, finally merging with the adjacent IST-cube that
meets the merger conditions and has the smallest heterogeneity difference.

It has been demonstrated that the NDVI provides important information that can be
used to estimate vegetation photosynthesis activity and detect vegetation phenology [54,55].
At the same time, previous studies have established that the EVI can be used to estimate
the gross primary production (GPP) [56–58]. The EVI has been widely used to monitor the
conditions of plants [59,60], which can be calculated using blue and red reflectance bands,
as well as near infrared. Both indices have a range between –1 and 1 [61]. Furthermore,
previous studies have experimentally demonstrated that using multiple indices yields
better performance than the use of a single spectral index [25,62]. Consequently, we chose
the parameters and threshold reported in a previous study [31] while adding the EVI and
NDVI. Figure 3 presents these details.

A cell cube is the smallest computing unit in the IST-cube model. In this study, a cell
cube is defined as a pixel, as in the original model [31], which is determined by the feature
that raster data are composed of pixels in a matrix structure. Figure 3a shows that this
model reconstructs satellite images into cell cubes before the IST-cube merging. The first
step of the IST-cube model (Figure 3b) merges the IST-cube or pixel in the spatial domain
every year. This merging method is similar to the region growing method [63]. During this
merge, five indicators [i.e., the perimeter of the IST-cube, minimum possible side length
of the minimum bounding box (MSOMB) of the IST-cube, standard deviation of the band
value, standard deviation of the NDVI, and standard deviation of the EVI] were included
in the decision on whether to merge. As shown in Figure 3c, the second step of the IST-cube
model merges the IST-cube with adjacent years in the temporal domain. In this study,
a two-step procedure (first merge in the spatial domain, followed by merge in the temporal
domain) was used for IST-cube merging.
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Two IST-cubes must satisfy two conditions to make a merge decision in the temporal
domain: 1. they must be adjacent in the temporal domain and 2. they must have at least one
pixel with the same X, Y coordinates, as shown in Figure 4, where the red, yellow, and blue
IST-cubes represent individual cubes resulting from merging in the spatial domain. Figure 4a
shows the red and blue IST-cubes in a time merge judgment because they satisfy two conditions
required for a merge decision in the temporal domain. Similarly, Figure 4b displays the result
after the red and blue IST-cubes merge into one IST-cube, which is represented by the red
IST-cube. The red and yellow IST-cubes then form a time merge judgment. Finally, the yellow
and red IST-cubes merge. Figure 4 illustrates that two different IST-cubes can be combined into a
single cube by merging with other adjacent IST-cubes in the temporal domain.

Remote Sens. 2021, 13, x FOR PEER REVIEW 7 of 22 
 

 

 
Figure 4. Schematic merging of the spatial results for the IST-cube in the temporal domain. Red, 
yellow, and blue cubes represent individual cubes resulting from merging in the spatial domain. (a) 
Red and blue IST-cubes in the merge judgment in the temporal domain; (b) red and yellow IST-
cubes in the merge judgment in the temporal domain; and (c) final merge into a single cube. 

Based on a previous study [31], we set the spatial heterogeneity value, Sh, as the sum 
of the weighted combination of the spectra, shape, EVI, and NDVI: ܵ௛ = ߱௦௛௔௣௘ ∙ ௦௛௔௣௘ܪ + ൫1 − ߱௦௛௔௣௘൯ ∙ ሺܪ௖௢௟௢௥ + ா௏ூܪ +  ே஽௏ூሻ, (3)ܪ

where ߱௦௛௔௣௘ ranges between 0 and 1, as decided by the user. In general, ωshape is a small 
number that reduces the influence of the shape while spectral has a large weight to scale-
up its effect [64]. In this study, the value of ߱shape was set as 0.1 which is a default value 
[65,66]. The weight of the sum of ܪ௖௢௟௢௥ ா௏ூܪ , , and ܪே஽௏ூ  is determined by 1–߱௦௛௔௣௘ . 
Here, ܪ௦௛௔௣௘ determines the shape difference of the IST-cube before and after the merger. 
In the same manner, ܪ௖௢௟௢௥ denotes the spectral difference, as measured by the difference 
in the standard deviation of all bands before and after merging. ܪா௏ூ and ܪே஽௏ூ indicate 
the differences in the vegetation function or greenness, as measured by the difference in 
the standard deviation of the EVI and NDVI before and after merging. ܪா௏ூ and ܪே஽௏ூ 
were calculated as follows: ܪா௏ூ = ߱ா௏ூሾ݊௖௕ ∙ ∆ ௖ܶ௕ ∙ ℎா௏ூ௖௕ − ሺ݊௖௕ଵ ∙ ∆ ௖ܶ௕ଵ ∙ ℎா௏ூ௖௕ଵ + ݊௖௕ଶ ∙ ∆ ௖ܶ௕ଶ ∙ ℎா௏ூ௖௕ଶሻሿ and (4) ܪே஽௏ூ = ߱ே஽௏ூሾ݊௖௕ ∙ ∆ ௖ܶ௕ ∙ ℎே஽௏ூ௖௕ − ሺ݊௖௕ଵ ∙ ∆ ௖ܶ௕ଵ ∙ ℎே஽௏ூ௖௕ଵ + ݊௖௕ଶ ∙ ∆ ௖ܶ௕ଶ ∙ ℎே஽௏ூ௖௕ଶ ሻሿ, (5) 

where ℎா௏ூ and ℎே஽௏ூ are the variance in the EVI and NDVI of the IST-cube, respectively, 
and ߱ா௏ூ and ߱ே஽௏ூ are the weights of EVI and NDVI, respectively. For the purpose of 
forest change detection, this study set ߱ா௏ூ and ߱ே஽௏ூ as five times the weight of other 
bands and set ߱ா௏ூ and ߱ே஽௏ூ as 1.5625 in order to maintain the range of spatiotemporal 
heterogeneity criterion consistent with the original model. ߪா௏ூ௜  and ߪே஽௏ூ௜  indicate the 
standard deviation of the EVI and NDVI at time i, respectively, as follows: ℎா௏ூ = ∑ ா௏ூ௜௜்ୀଵܶߪ  and 

(6) 

ℎே஽௏ூ = ∑ ே஽௏ூ௜௜்ୀଵܶߪ , (7) 

where n is the number of pixels in the spatial domain of the IST-cube at time i, ݌௝ா௏ூ and ݌௝ே஽௏ூ are the EVI and NDVI values of the jth pixel, respectively, and ̅݌ா௏ூ and ̅݌ே஽௏ூ are 
the average EVI and NDVI values of n pixels, respectively. Next, ߪா௏ூ௜  and ߪே஽௏ூ௜  were 
calculated as follows: 

ா௏ூ௜ߪ = ඨ∑ ൫݌௝ா௏ூ − ா௏ூ൯ଶ௡௝ா௏ூୀଵ̅݌ ݊  and 
(8) 

Figure 4. Schematic merging of the spatial results for the IST-cube in the temporal domain. Red,
yellow, and blue cubes represent individual cubes resulting from merging in the spatial domain.
(a) Red and blue IST-cubes in the merge judgment in the temporal domain; (b) red and yellow
IST-cubes in the merge judgment in the temporal domain; and (c) final merge into a single cube.

Based on a previous study [31], we set the spatial heterogeneity value, Sh, as the sum
of the weighted combination of the spectra, shape, EVI, and NDVI:

Sh = ωshape·Hshape +
(

1 − ωshape

)
·(Hcolor + HEVI + HNDVI), (3)
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where ωshape ranges between 0 and 1, as decided by the user. In general, ωshape is a
small number that reduces the influence of the shape while spectral has a large weight to
scale-up its effect [64]. In this study, the value of ωshape was set as 0.1 which is a default
value [65,66]. The weight of the sum of Hcolor, HEVI , and HNDVI is determined by 1–ωshape.
Here, Hshape determines the shape difference of the IST-cube before and after the merger.
In the same manner, Hcolor denotes the spectral difference, as measured by the difference in
the standard deviation of all bands before and after merging. HEVI and HNDVI indicate
the differences in the vegetation function or greenness, as measured by the difference in
the standard deviation of the EVI and NDVI before and after merging. HEVI and HNDVI
were calculated as follows:

HEVI = ωEVI

[
ncb·∆Tcb·hcb

EVI −
(

ncb1·∆Tcb1·hcb1
EVI + ncb2·∆Tcb2·hcb2

EVI

)]
and (4)

HNDVI = ωNDVI

[
ncb·∆Tcb·hcb

NDVI −
(

ncb1·∆Tcb1·hcb1
NDVI + ncb2·∆Tcb2·hcb2

NDVI

)]
, (5)

where hEVI and hNDVI are the variance in the EVI and NDVI of the IST-cube, respectively,
and ωEVI and ωNDVI are the weights of EVI and NDVI, respectively. For the purpose of
forest change detection, this study set ωEVI and ωNDVI as five times the weight of other
bands and set ωEVI and ωNDVI as 1.5625 in order to maintain the range of spatiotemporal
heterogeneity criterion consistent with the original model. σi

EVI and σi
NDVI indicate the

standard deviation of the EVI and NDVI at time i, respectively, as follows:

hEVI =
∑T

i=1 σi
EVI

T
and (6)

hNDVI =
∑T

i=1 σi
NDVI

T
, (7)

where n is the number of pixels in the spatial domain of the IST-cube at time i, pjEVI and
pjNDVI are the EVI and NDVI values of the jth pixel, respectively, and pEVI and pNDVI are
the average EVI and NDVI values of n pixels, respectively. Next, σi

EVI and σi
NDVI were

calculated as follows:

σi
EVI =

√
∑n

jEVI=1
(

pjEVI − pEVI
)2

n
and (8)

σi
NDVI =

√
∑n

jNDVI=1
(

pjNDVI − pNDVI
)2

n
, (9)

where Ht refers to the average spectral variance in the IST-cubes in the temporal domain
and is normalized as follows:

Ht =
∑n

i=1
(
∑m

k=1 ωk·σi
tk + ωEVI ·σi

tEVI + ωNDVI ·σi
tNDVI

)
n

, (10)

where m represents the number of bands in the Landsat image, n is the number of pixels at
the bottom surface of an IST-cube, and σi

EVI and σi
NDVI refer to the EVI and NDVI standard

deviations in the temporal pixel column formed by pixels of all time point layers in the
i-th pixel of the spatial domain, respectively. The normalization of σi

EVI and σi
NDVI was

calculated as follows:

σi
EVI =

√
∑T

j=1
(

pjEVI − pEVI
)2

∆T
and (11)

σi
NDVI =

√
∑T

j=1
(

pjNDVI − pNDVI
)2

∆T
. (12)
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Similarly, σi
EVI and σi

NDVI , indicate the EVI and NDVI standard deviations of the
temporal pixel column formed by the pixels of all time point layers in the i-th pixel of the
spatial domain, respectively.

2.3.3. Characteristic Analysis of the IST-Cube

The year when the IST-cube ends is defined as the time when the change occurs;
however, numerous IST-cubes fractured suddenly in 2020, as this was the last year of
the study period. To avoid this, results were only calculated for 1987–2019. Different
changes shape different IST-cubes. Therefore, through the analysis of IST-cubes at different
spatiotemporal scales, this study reveals the change law of the study area and explores
the corresponding relationship between the change and IST-cubes. The IST-cubes were
divided into four types according to the spatiotemporal scale (Table 1): long-term-large
scope IST-cube, long-term-small scope IST-cube, short-term-large scope IST-cube, and short-
term-small scope IST-cube, which were abbreviated as LL, LS, SL, and SS, respectively.
This study obtained the trend and slope of the number of pixels per year for the long-term
IST-cube (the short-term IST-cube had no trend as their duration was short) using the Mann–
Kendall test and Theil-Sen’s slope estimator [67]. This study then further subdivided the
long-term IST-cube into four types according to the trends in the number of pixels per year
for the long-term IST-cube: monotone increasing, unchanged, alternating increasing and
decreasing, and monotone decreasing trends, which are referred to as increasing, stable,
fluctuating, and decreasing, respectively. Figure 5 is a schematic diagram of the long-term
IST-cube classification process. First, according to the trend obtained by the Mann–Kendall
test, it can be divided into the increasing type and the decreasing type. Then, for the
IST-cube without trend, it can be further classified according to the slope estimated by
Theil-Sen’s slope estimator: if the slope is zero, it is stable type, and if the slope is not zero,
it is fluctuating type.

Table 1. IST-cube classification and abbreviations based on spatiotemporal scale.

Duration ≥ 5 Years Average Number of Pixels
per Year ≥ 300 Pixels IST-Cube Type Abbreviations

Yes Yes long-term-large scope LL
Yes No long-term-small scope LS
No Yes short-term-large scope SL
No No short-term-small scope SS

The dynamic time warping (DTW) algorithm is particularly useful in comparing the
similarity of unequal time series [68–70]. As shown in Figure 6, this study compares the
similarity of the time series of the short-term IST-cubes in the same category with the same
location but different time points by the DTW. The DTW was calculated by the dtaidistance
python module [71]. The smaller the value of DTW, the more similar the two-time series
are. To make the DTW value comparable between large scope IST-cube and small scope
IST-cube, data were normalized by Z-normalization, which is widely recommended for
time series analysis before calculating the DTW [72,73]. However, if there is a large number
of situations in that DTW equal to zero, it indicates that there are many similar IST-cubes
on the timeline at this location. Further, similar cubes imply the derivation from similar
influences, which means a particular change repeatedly affects the IST-cube at this place.
Similar changes over and over again mean that the region is changing regularly. In the
same way, if DTW is above 0, it means that the region is changing irregularly. Therefore, we
referred to these changes that cause these IST-cubes as irregular and regular, respectively.
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Figure 6. Schematic diagram of DTW calculation method for short-term IST-cube.

Different changes resulted in different IST-cubes. Consequently, IST-cubes with diverse
spatiotemporal characteristics revealed the regularities of change that shape their structure.
This change is unavoidable, and the resulting change for the IST-cube was highly complex
and may cause fragmentation of the cube or the merger. The chunk of pixels that was
always present in this IST-cube maintained the LL IST-cube structure and acted as a hard
core. In this study, we named this the cube-core. A cube-core was defined as a block of
pixels inside the LL IST-cube from the beginning to end.

3. Results

According to the IST-cube method, 34 years and 123,827 pixels per year formed 1414
cubes after the calculation. Figure 7 provides an overview of the constituent pixel numbers
of the IST-cubes. Most IST-cubes consisted of fewer than 50 pixels. Each cube consisted
of an average of 2977 pixels. The smallest cube consisted of only one pixel, whereas the
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largest cube consisted of 218 283 pixels. Among them, the number of LL IST-cubes, LS
IST-cubes, SL IST-cubes, SS IST-cubes are 66, 69,160 and 1119, respectively.
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3.1. Long-Term Large Scope IST-Cube

In Figure 8a, the value represents the average duration of the long-term large scope
IST-cube in the region, where the higher value is more likely to be dominated by changes
that cause this long-term IST-cube. Figure 8a shows that LL IST-cubes exist everywhere in
the study area. Figure 8b portrays one cube of the calculated result for the IST-cube model,
which contains six layers representing six years, where the number of pixels per year
increases, conforming to the LL and increasing IST-cubes. Figure 8d portrays one cube of
the calculated result for the IST-cube model, which contains eight layers representing eight
years, where the number of pixels per year fluctuates, conforming to the LL and fluctuating
IST-cubes. Figure 8a,c show that the principal constituent of LL IST-cubes is the increasing
IST-cube, followed by the fluctuating IST-cube. The increasing IST-cube indicates that the
spatiotemporal heterogeneity of this cube with its environment is decreasing, whereas a
fluctuating change indicates that there is a fluctuation in the spatiotemporal heterogeneity.
Figure 8 shows that the LL IST-cube is not characterized by the decreasing and the stable
types. However, a specific trigger of the LL could not be determined.

The fluctuating IST-cubes were observed to have no cube-core (Figure 9). The increas-
ing IST-cube core was mainly distributed in residential areas and scattered in the forest.
The cube-core located in the forest resembled a disturbance refugia that suffers from severe
or frequent disturbances less than the surrounding areas. The cube-core located in the
residential area indicated expansion of the area.
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3.2. Long-Term Small Scope IST-Cube

As shown in Figure 10a, the value represents the average length of the long-term
IST-cube in the region. Figure 10b shows one cube from the calculated results for the IST-
cube model, which contains five layers representing five years, where the number of pixels
per year is increasing, conforming to the LS and increasing IST-cube classes. Figure 10d
is one cube from the calculated results for the IST-cube model, which contains six layers
representing six years, where the number of pixels per year is fluctuating, conforming to the
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LS and fluctuating IST-cube classes. Figure 10d is one cube from the calculated results for the
IST-cube model, which contains 13 layers representing 13 years, where the number of pixels
per year is stable, thus conforming to the LS and stable IST-cube classes. As shown in Figure
10, the LS IST-cube does not contain the decreasing type.

Figure 10 shows that a significant constituent of the LS IST-cube is the increasing
IST-cube, followed by the fluctuating IST-cube and stable IST-cube. In parallel with the
increasing and fluctuating IST-cubes, the stable IST-cube indicates spatiotemporal hetero-
geneity of this cube with its environment with little change. As shown in Figure 10a,g,
the stable IST-cube duration is the longest and exists primarily inside residential areas.
Residential areas are difficult to change, as their primary component is architecture. There-
fore, stable IST-cubes occur inside residential areas. In contrast to the cube-core of the LL
IST-cube inside the residential area, but adjacent to the residential area boundary, the LS
and stable IST-cube location is closer to the hinterland of the residential area. Accordingly,
the hinterland of the residential area, where the LS and stable IST-cubes are located, does
not change significantly with time.

Figure 10c shows that the increasing IST-cube is adjacent to residential areas. The
residential areas are surrounded by forests and are easily affected by indirect human
impacts. An indirect human impact, as defined here, is the impact of daily human life and
excludes the vandalism of forests, such as deforestation. The characteristic of the LS and
increasing IST-cube classes is long duration, where the spatiotemporal heterogeneity of
this cube and its vicinity is decreasing. However, the range of influence is small, which is
in accordance with indirect human impacts. Consequently, the LS and increasing IST-cubes
classes can be attributed to indirect human impacts.

As shown in Figure 10e, the LS and fluctuating IST-cube classes exist in the mountains,
which are located in the western region of the study area, precisely where mining activities
are concentrated. A possible explanation for the presence of the LS and fluctuating IST-cube
classes may be mining. In summary, this study found that the LS and fluctuating IST-cube
classes may be affected by mining. At the same time, the LS and increasing IST-cube classes,
occurring around residential areas, are a result of frequent human activity. The LS and
stable IST-cube classes exist inside residential areas, which are rarely subject to change.

3.3. Short-Term Large Scope IST-Cube

In contrast to Figures 8 and 10, the index in Figure 11b and Figure 14b denotes the
occurrence of short-term IST-cubes. The higher the value, the more frequent the changes
that cause such short-term IST-cubes in the study region. Figure 11b shows that the SL
IST-cube most often exists in forests, which are located in the eastern region of the study
area. Forests are sensitive to meteorological conditions. However, the study area is prone
to meteorological disasters. The SL IST-cube is characterized by a short period, but a large
influence range, which reflects the characteristics of meteorological disasters. Consequently,
SL changes may be explained by meteorological disasters. Figure 12 shows the precipitation
and drought from 1987–2019. Figure 12 and Table 2 indicate that the years in which change
was detected were those characterized by floods or droughts.
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Figure 12. Precipitation and drought for 1987–2019. (a) Maximum precipitation and flood threshold
for 10 consecutive days and (b) proportion of drought periods.

Table 2. Occurrence of floods, droughts, and changes detected by the IST-cube for 1987–2019.

Year Flood Drought Class Is Detected

1987 none Severe no
1988 none Moderate yes
1989 moderate Moderate no
1990 none Mild yes
1991 none Severe no
1992 moderate Mild yes
1993 none Mild no
1994 none None no
1995 none None no
1996 mild Moderate yes
1997 mild Moderate no
1998 mild Mild yes
1999 none Severe no
2000 mild Moderate no
2001 mild None no
2002 none Mild no
2003 none Mild no
2004 none Severe no
2005 none Severe no
2006 severe Moderate yes
2007 mild Moderate no
2008 none Severe yes
2009 none Severe no
2010 mild Severe yes
2011 none Severe no
2012 none Mild yes
2013 mild None no
2014 none Mild yes
2015 none Moderate no
2016 mild None yes
2017 none Moderate no
2018 none Mild no
2019 mild Mild no



Remote Sens. 2021, 13, 2537 15 of 22

In contrast to Figures 8 and 10, the index in Figure 11b and 14b denotes the occurrence
of short-term IST-cubes. The higher the value, the more frequent the changes that cause
such short-term IST-cubes in the study region. Figure 11b shows that the SL IST-cube most
often exists in forests, which are located in the eastern region of the study area. Forests are
sensitive to meteorological conditions. However, the study area is prone to meteorological
disasters. The SL IST-cube is characterized by a short period, but a large influence range,
which reflects the characteristics of meteorological disasters. Consequently, SL changes may
be explained by meteorological disasters. Figure 12 shows the precipitation and drought
from 1987–2019. Figure 12 and Table 2 indicate that the years in which change was detected
were those characterized by floods or droughts.

To assess whether the impact of SL IST-cubes that occur in the same region are similar,
we used 159 sets of SL IST-cube pixel time series in the DTW computation. The DTW
results (Figure 13) indicate that the distance is 0.86 with a standard deviation of 1.13. The
25th, 50th, and 75th percentiles are 0, 0.6, and 0.9, respectively, showing that the SL change
is irregular.
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3.4. Short-Term Small Scope IST-Cube

Similar to Figure 11b, the index in Figure 14b denotes the occurrence number of short-
term IST-cubes. As shown in Figure 14b, the SS IST-cubes are distributed in the residential
areas inside, outside, and in one part of the mountain. These areas are high human activity
areas characterized by land use changes. The characteristic of the SS IST-cube endures
for a short period, where the influence range is small, which is in accordance with the
characteristics of land use changes. The SS IST-cubes are likely related to land use change.
To validate this hypothesis that the change of land use type leads to the appearance of SS
IST-cube, we selected places that exist in the SS IST-cube and visually compared the land
use types of the year when the SS IST-cube broke and the following year on Google Earth.
Figure 15 shows the comparison results, where the land use in the red box is different
before and after the change.

To observe whether the impact of the SS IST-cube that exists in the same region is
similar, we used 93 sets of SS IST-cube time series in the DTW computation. The DTW
results (Figure 16) exhibited a mean distance of 0.02 and a standard deviation of 0.16, where
more than 95.7% of the results were zero, indicating that there are numerous instances of
the SS IST-cube, not only in the same place, but also that each impact timing was highly
similar. A possible explanation for this may be that most of the changes that caused an SS
IST-cube were periodic, e.g., logging.
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Figure 14. (a) Actual SS IST-cube diagram, containing three layers representing three years. The average number of pixels
per year is 13, conforming to the criterion for the SS IST-cube class. (b) Spatial distribution map of occurrence number of the
SS IST-cube.
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Figure 15. Assessment examples of SS change. (a) SS change in the study area (Figure 14b) with two marked examples of
change. Images from Landsat and Google Earth show the changes before and after in the forests. (b) Land use change in
2001 and (c) land use change in 2019.
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3.5. Overlap of Different IST-Cube Types

As shown in Figure 17, the study area is primarily composed of different types of
IST-cube overlap. Among these, the overlap between the LL IST-cube and LS IST-cube
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is the most common (82.49% of the study area), followed by the overlap among the LL
IST-cube, SL IST-cube, and SS IST-cube (10.44% of the study area). There are three overlap
types that were not presented: only the LL IST-cube, only the SS IST-cube, and the overlap
between the LS IST-cube and SS IST-cube. Moreover, Figure 16 shows that the changes in
the study area are complex.
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4. Discussion

We improved the spatiotemporal cube model to provide more detailed spatiotemporal
information on forest dynamics and obtained different spatiotemporal scale IST-cubes. Dif-
ferent changes cause different IST-cubes. Consequently, combining the spatial distribution
and spatiotemporal features of different IST-cubes can capture the multi-scale spatiotem-
poral changes in the forests. Our method was tested in a forest rich in mineral resources
in China. We mapped the spatial distribution of the IST-cubes at different spatiotemporal
scales and analyzed their causes.

4.1. Validation with Literature

The LS IST-cube results support evidence from a previous study that human impact can
have long-lasting effects on forests [74–76]. Previous studies have shown that meteorological
disasters have significant and rapid impacts on forest ecosystems [74,77], which is consistent
with the SL IST-cube results. The meteorological disasters shown in Figure 10 and Table 2 have
likewise been reported, such as floods in 1998 [78–80], drought in 1988 [80], ice disasters in
2008 [81], and other disasters in Chinese meteorological disaster yearbooks [82]. Furthermore,
evidence for SS change results was supported by previous studies on forests, which revealed
that land use changes have an immediate and partial impact on forests [83,84].

4.2. Advantages of IST-Cube and Other Potential Uses

The IST-cube combines spatiotemporal context information with the forest function
index, recognizing and utilizing spatial and temporal changes hidden in spatiotemporal
data to analyze regularities and explore causes. Furthermore, the results obtained in this
study are consistent with those in the literature (Section 4.1). Figures 10 and 13 and Table 2
show that IST-cube detection is reliable and valid.

Apart from the main aim of developing IST-cube to capture forest dynamics, there are
other potential uses. Understanding spatiotemporal changes is important for wetlands [85],
which may be fragmented [86]. Nevertheless, the IST-cube can still identify wetland frag-
ments as the same wetland. Thus, the IST-cube may offer a useful method for wetland
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change detection. Disturbance refugia are locations that suffer severe or frequent distur-
bances less than their surroundings and can aid in forest recovery from disturbances [9,87].
Fortunately, the cube-core in the long-term IST-cube is such an area that is unaffected by
changes. Hence, using the IST-cube model to find disturbance refugia and further analyze
the type and duration of disturbance refugia is feasible. Spectral traits will change if plants
experience stress, processes, disturbances, and resource limitations [88]. Thus, these traits
can also change the appearance of the IST-cube. Therefore, the IST-cube model can also be
used to assess vegetation health.

4.3. Limitations and Future Research

Despite these results, questions remain. Table 2 indicates that the SL IST-cube is
not characterized by false detections for change years in which meteorological disasters
occurred but does contain several missed detections. There is no rule found in these missed
detections, and more studies and experiments are needed to explore. Furthermore, we
were unable to investigate changes in the vertical structure of the forest, as this study did
not include information on these changes. This computationally expensive task results
in the small size of the study area, which indicates that capturing large-scale changes in
the spatiotemporal domain is not possible. Further studies should attempt to achieve a
higher detection accuracy, include more forest structure data, and optimize the algorithm.
Long-term earth observation data are limited, and their spatial resolution and temporal
resolution depend on sensors. The reason why we chose Landsat as the data source is that
Landsat can provide the longest stable earth observation images [89,90]. However, the
geographic phenomena observed by a sensor with a determinate spatiotemporal resolution
are limited by spatiotemporal scale. Geographic phenomena captured by cell cube are also
limited by the spatiotemporal resolution of the sensor. Thus, more studies should focus on
using different remote sensing data for the IST-cube model [31].

5. Conclusions

This study aimed to capture and analyze multi-scale spatiotemporal changes. To ob-
tain better results, we improved the ST-cube, renaming it the IST-cube. With the GEE
platform, this study used the IST-cube model on the forests of Hunan Province, China,
from 1987–2020. Different changes yielded different IST-cubes. Consequently, combining
the spatial distribution and spatiotemporal features of different IST-cubes captured the
multi-scale spatiotemporal changes. Therefore, this study classified the IST-cube into four
spatiotemporal scales according to the spatiotemporal characteristics. For the long-term
IST-cube, four types were proposed according to the trends in the number of pixels per
year for the long-term IST-cube. The similarity was computed for the short-term IST-cube.
The results showed a cube-core that, similar to a hard core, prevented the LL IST-cube
from breaking into a short IST-cube. The cube-core in the forest was similar to disturbance
refugia. Human activities caused the LS IST-cube, where the impacts surrounding residen-
tial areas were increasing with no interior changes. Meteorological disasters led to the SL
IST-cube, where the impact of meteorological disasters was irregular. The changes in land
use or logging, as well as fires, caused SS IST-cubes and similar impacts. The results of this
study provide enhanced insights into forest changes. The IST-cube model we improved in
this paper is a novel and useful model for forest change detection.
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