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Abstract: Tar spot is a foliar disease of corn characterized by fungal fruiting bodies that resemble tar
spots. The disease emerged in the U.S. in 2015, and severe outbreaks in 2018 caused an economic
impact on corn yields throughout the Midwest. Adequate epidemiological surveillance and disease
quantification are necessary to develop immediate and long-term management strategies. This
study presents a measurement framework that evaluates the disease severity of tar spot using
unmanned aircraft systems (UAS)-based plant phenotyping and regression techniques. UAS-based
plant phenotypic information, such as canopy cover, canopy volume, and vegetation indices, were
used as explanatory variables. Visual estimations of disease severity were performed by expert plant
pathologists per experiment plot basis and used as response variables. Three regression methods,
namely ordinary least squares (OLS), support vector regression (SVR), and multilayer perceptron
(MLP), were used to determine an optimal regression method for UAS-based tar spot measurement.
The cross-validation results showed that the regression model based on MLP provides the highest
accuracy of disease measurements. By training and testing the model with spatially separated
datasets, the proposed regression model achieved a Lin’s concordance correlation coefficient (ρc)
of 0.82 and a root mean square error (RMSE) of 6.42. This study demonstrated that we could use
the proposed UAS-based method for the disease quantification of tar spot, which shows a gradual
spectral response as the disease develops.

Keywords: tar spot; corn; disease management; remote sensing; unmanned aircraft systems

1. Introduction

Tar spot is a major disease of corn caused by the fungus Phyllachora maydis and is
present in 17 countries throughout the Americas; it is an emerging threat to U.S. corn
production [1]. Documented yield losses range from 11 to 46% in Latin America and
25 to 30% in the U.S. [2–5]. First reported in the U.S. in 2015, this disease is characterized
by the generation of fungal fruiting bodies (stromata) resembling tar spot on leaves, stems,
and the husks of developing ears [1,6]. Under favorable conditions, the disease quickly
develops from the late vegetative stage to the early reproductive stage, eventually reaching
an exponential phase. Chemical protection has been proven to effectively manage the dis-
ease [7], despite a range in hybrid susceptibility and reaction to tar spot [1,5]. Nevertheless,
reliable epidemiological surveillance and disease quantification will be essential to lay
the foundation for developing immediate and long-term management strategies against
tar spot.
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Conventionally, plant disease surveillance and quantification have heavily relied on
human rater vision. The intensity of disease symptoms or signs at a given time is estimated,
recorded, and then used to understand a pathosystem of interest [8]. For instance, plant
phenotyping of field crops usually involves trained human experts who walk through
densely packed rows of plants and record observations at the plant population level. How-
ever, the limited spatial coverage of conventional disease phenotyping often impedes the
timely identification of hotspots during early epidemic stages. Moreover, significant vari-
ability in disease estimates frequently occurs between human disease raters [8]. In addition,
on relatively small plots, the repeated crop assessments required for multitemporal analy-
ses eventually disrupt the integrity of plant canopies and alter the soil compactness and
other growing conditions due to frequent walkthroughs by human raters [9]. Consequently,
these factors can compromise the quality of the data collected and impact the adequacy of
disease-management recommendations.

A successful disease-assessment scheme should be describable, efficient, and appropri-
ate for the task [8]. Researchers have explored innovative methods to detect and quantify
plant diseases at the plant population level [10–12]. Optical remote sensing technologies,
including unmanned aircraft systems (UAS) equipped with sensors, have shed light on its
potential use for disease-intensity assessment [13–16]. UAS allows rapid data collection
throughout the growing season at large population scales [11,12,17–22], and the data col-
lected can be used to extract plant physiological attributes [23–26] that reflect changes in
plant physiology and disease intensity [27,28]. Ideally, a disease assessment scheme should
be both precise and accurate. Therefore, before implementing these promising tools for
plant disease detection and quantification at the plant population level, we must test the
technology for its reliability and validate the measurements’ accuracy compared to ground
truth data [10,11,29].

A recent study showed that structural and chlorophyll vegetation indices from remote
sensing images are positively related to tar spot disease severity [30]. However, the disease
severity used in this previous study was defined by the area under the disease progress
curve (AUDPC), which was a summary statistic of the entire cropping season. Therefore,
multiple measurements of field-measured tar spot disease severity were required. To
provide tar spot disease severity at a specific date, a new disease measurement approach is
necessary that does not require information on previous disease progression.

In this regard, we hypothesize that machine learning methods using UAS-based
data can provide the capability to reliably and accurately quantify tar spot severity under
field conditions. We used visual observations obtained by expert plant pathologists every
7–14 days to estimate tar spot intensity at a specific date. This approach resulted in a
sufficient number of disease scores on a continuous scale. Compared to other studies, we
take advantage of a relatively large amount of visual and UAS data associated with a more
mechanistic approach when assessing agreement. We used a spectral phenotyping and
regression-based approach to study the agreement between visual disease assessment and
UAS-based disease measurement. We tested the hypothesis with the following steps: (i) col-
lect tar spot visual estimations and UAS data under field conditions, (ii) develop robust
disease quantification procedures for UAS data, and (iii) analyze and assess the agreement
between visual disease estimation versus UAS-based measurement of tar spot symptoms.

2. Materials and Methods
2.1. Field Experiments

Experiments were carried out in Indiana during the 2020 cropping cycle at the Pinney
Purdue Agriculture Center (PPAC) in LaPorte County (Figure 1). The experimental design
for all experiments consisted of a randomized complete block design (Table 1), wherein
four replications were divided into blocks, and fungicide was the treatment randomly
assigned into blocks. In all experiments, treatment consisted of four-row plots of which
only the middle two rows were used for visual evaluation and the estimation of yield. The
plant density in all experiments was 84,000 plants ha−1. The length of each row was 10 m,



Remote Sens. 2021, 13, 2567 3 of 19

and the distance between rows was 70 cm. The seeds were planted at 3 cm depth, and the
distance between plants was 12 cm. In addition, supplementary irrigation was provided for
the experiments at the PPAC location. Tar spot was the most prevalent disease throughout
all experiments.

All of the research plots (Tar1–4) were designed to investigate the effects of different
treatments of tar spot disease. In Tar1, the effect of nine fungicides plus a control was
investigated. Applications were carried out at the VT/R1 growth stage of the plant for
all fungicides at a dose recommended by the manufacturer. In Tar2, the effect of tillage,
three hybrids (two moderately susceptible and one susceptible), and fungicide applications
(applied and non-treated) were investigated. Application of fungicide was done at VT/R1
at a dose recommended by the manufacturer. The total treatments performed were twelve,
including the control. In Tar3, the effect of two fungicides applied at different growth
stages was investigated. Application of fungicides started at the first detection of the
disease, V8, VT, and R3, plus a combination of multiple growth stages, resulting in a total
of 18 treatments, including two controls. In Tar4, the effect of a single fungicide applied
at different growth stages was investigated. Fungicide applications were performed at
V8, V10, VT, R2, R3, R4, R5, V8/VT, 14 days after a warning system and a control. A
dose recommended by the manufacturer was applied. The spatial distribution of tar spot
treatment in the study area is briefly displayed in Figure 2.

Table 1. Description of the experiments at the Pinney Purdue Agricultural Center (PPAC) in Indiana, USA, established in the 2020
cropping cycle.

Experiment Name Planting Date Number of
Treatments

Number of
Hybrid (s)

Number of
Fungicide Treatments Tillage Type

Trial Tar 1 9 June 2020 10 1 9 + 1 (non-treated) Strip
Trial Tar 2 6 June 2020 12 3 1 + 1 (non-treated) Strip, conventional
Trial Tar 3 9 June 2020 18 1 16 + 2 (non-treated) Strip
Trial Tar 4 8 June 2020 10 1 9 + 1 (non-treated) Strip
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Figure 2. Tar spot treatment applied in the research plots. The number in each experimental unit
is the amount of fungicide applied in l/ha. The distance between research plots was modified for
visual purposes. Fungicide treatments and hybrid were withheld due to confidentiality restrictions.

2.2. Tar Spot Visual Rating

In practice, multiple types of scales and methods can be found throughout the litera-
ture. Our selection was based on published work conducted over the last decade [32–36].
In this study, disease severity was defined as the proportion of diseased leaf area in total
leaf area multiplied by 100 to obtain the percentage of disease severity [37].

Weekly, visual estimation of tar spot severity was done at the sub-subplot or plot level
on the two middle rows. The disease area included both black stromata in the early disease
stages and additional chlorotic or necrotic symptoms on the leaf or canopy that developed
afterward. A single value of disease severity estimate for every experimental unit was
recorded for each of the low, middle, and upper canopies. Considering the ear leaf as leaf 0
(L0), leaves below or above L0 were identified with a minus (−) or plus (+) sign, respectively.
The lower canopy corresponded to L − 3 to the lowest leaf (L − n), mid-canopy from L − 2
to L + 1, and the upper canopy from L + 2 to flag leaf (L + n). Visual severity evaluations
were performed on 13–14 dates (Table 2). Evaluations started at VT (tassel) and continued
to the R6 (physiological maturity) growth stage in all experiments. Instead of using the
entire area of the planted plot, the visual assessment was conducted within the two middle
rows to avoid potential treatment overlaps (Figure 3). However, visual rating in the lower
canopy was not utilized since optical sensors could not observe vegetation in the lower
canopy (Figure A1). The tar spot visual ratings showed an increasing trend over time
(Figure 4). The rate and amount of disease progress were different in each research plot.

Table 2. Data acquisition dates of tar spot visual ratings and unmanned aircraft systems (UAS) data. Dates are displayed in
MM/DD format for brevity. A: available, N/A: not available.

Tar1 Tar2 Tar3 Tar4

Visual
Rating

UAS
Data

Visual
Rating

UAS
Data

Visual
Rating

UAS
Data

Visual
Rating

UAS
Data

07/13 A A A A N/A A A A
07/23 A A A A A A A A
07/30 A A A A A A A N/A
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Table 2. Cont.

Tar1 Tar2 Tar3 Tar4

Visual
Rating

UAS
Data

Visual
Rating

UAS
Data

Visual
Rating

UAS
Data

Visual
Rating

UAS
Data

08/06 A A A A A A A A
08/13 N/A N/A A N/A N/A N/A N/A N/A
08/17 A A A A A A A A
08/20 A A A A A A A A
08/25 A A A A A A A A
09/03 A N/A A N/A A N/A A N/A
09/10 A A A A A A A A
09/15 A A A A A A A A
09/22 A A A A A A A A
09/29 A A A A A A A A
10/06 A A A A A A A A
10/13 A A A A A A N/A N/A
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2.3. Unmanned Aircraft Systems (UAS) Data Collection and UAS Data Preprocessing

Unmanned aircraft systems (UAS) data was acquired by a Phantom 4 Multispectral
(DJI, Shenzen, China) equipped with six 1/2.9′′ CMOS (complementary metal-oxide-
semiconductor) image sensors, including one RGB sensor and five monochrome sen-
sors. The spectral bands of the 5 monochrome sensors are blue (450 nm ± 16 nm), green
(560 nm ± 16 nm), red (650 nm ± 16 nm), red edge (730 nm ± 16 nm), and near-infrared
(840 nm ± 26 nm). Flight altitude and image overlap were mostly set to 30 m and 75% to
obtain fine-resolution orthomosaic and digital surface model (DSM) data with a ground
sampling distance (GSD) of approximately 1.5 cm ortho 3.0 cm, respectively. All of the UAS
flights were conducted within a day of the dates when the visual rating was performed.

Radiometric calibration was performed on the multispectral UAS images. First, raw
at-sensor irradiance was corrected using downwelling light sensor (DLS) orientation.
Second, irradiance on the ground was computed as the sum of diffuse and direct sunlight
components. Third, per-pixel radiance was calculated considering the effect of dark current,
vignetting, and exposure time [38,39]. Finally, the reflectance was computed from per-pixel
radiance and irradiance on the ground. Atmospheric correction was not performed on
the UAS images since atmospheric attenuation in 0 m to 30 m elevation can generally
be neglected [40].

We used multi-temporal UAS data to generate orthomosaic images and DSMs using
the structure from motion (SfM) algorithm. The SfM is a 3D reconstruction method widely
used for large-scale UAS data collected by consumer-grade or survey-grade cameras. A con-
ventional SfM workflow for UAS data comprises four major steps: finding common feature
points in an image dataset, feature-points matching in multiple image pairs, GCP-based
orientation to georeferenced 3D models, and the iterative execution of bundle adjustment
(BA) to recover camera external orientation parameters (EOP) and scene geometry [41,42].
This study used an SfM processing pipeline provided by Metashape (AgiSoft LLC, St.
Petersburg, Russia) to generate orthomosaic images and DSMs.

2.4. Unmanned Aircraft Systems (UAS)-Based Plant Phenotyping

We used the orthomosaic images and DSMs to obtain plant phenotypes of each
experimental unit (Figure 5). First, we generated raster images including (a) canopy and
non-canopy classification by the Canopeo algorithm [43], (b) canopy height measured from
ground surface to the uppermost canopy, (c) excessive greenness (ExG), (d) NDVI, (e) the
soil-adjusted vegetation index (SAVI), and (f) the modified soil-adjusted vegetation index
(MSAVI). The definition and implication of the vegetation indices from (c–f) can be found
in previous publications [44–46]. Second, we created a rectangular grid with a dimension
of 9 m by 1.5 m for each experimental unit named the level 1 grid (L1G, Figure 3). A total
of 24 0.75 m-by-0.75 m square grids (level 2 grid, L2G) were also created in each L1G grid
area. As in the visual assessment of tar spot severity, we calculated UAS-derived plant
phenotypes in the middle two rows. We designed the individual L2Gs to fit tightly between
the adjacent planting rows, making the vertical centerlines of the grids aligned with the
planting row. Third, we calculated zonal statistics, including the sum, average, maximum,
and standard deviation of the raster data from (a–f) using the L1G and L2G polygons. The
number of L1G and L2G phenotypes were 14 and 336 (14 times 24).

2.5. Variable Selection and Data Standardization

Variable selection was conducted to select relevant input variables for regression
analysis using L1G UAS phenotypes. An L1G phenotype with the highest positive or
negative Pearson’s correlation coefficient with visual ratings was selected for regression
with a single input variable. For regression models that use multiple input variables,
the best subset of input L1G phenotypes was chosen by Bayesian information criterion
(BIC) [47]. We first generated ordinary least square (OLS) models with every possible
combination of L1G phenotypes with all observed data, and a subset of input variables
was chosen that provides the lowest BIC. The individual input variables were standardized
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before they were entered into regression models. We transformed the distribution by
subtracting the mean, then dividing by the standard deviation, and this standardization
process was applied separately for the training and test data sets.
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2.6. Regression Methods

Three regression techniques were used to convert UAS phenotypes to tar spot sever-
ity. The ordinary least squares method was chosen because of the simplicity of model
interpretation. In addition, we also selected support vector regression and multilayer
perceptron owing to their good accuracy with generalization capability and to model
non-linear processes, respectively.

2.6.1. Ordinary Least Squares (OLS)

The ordinary least squares (OLS) is a least squares technique used to find a regression
model by minimizing the sum of squared error between observed values and fitted val-
ues [48]. We used a linear regression model with a constant term by the following equation:

yi = xi
T β + C + εi, (1)

where yi is a response of the i-th observation (visual rating); xi is an i-th observation of
explanatory variables; β is a vector of regression coefficients; C is a constant variable, and
εi is an error. The OLS was used to estimate visual ratings of middle and upper canopy
layers from single and multiple L1G phenotypes.

2.6.2. Support Vector Regression (SVR)

Support vector regression (SVR) is a regression method that finds an optimal hyper-
plane using the same principles of support vector machine (SVM). SVR attempts to find
a hyperplane that minimizes both magnitudes of the normal vector and prediction error.
The generalization capability of SVR is achieved by penalizing data points outside the
ε-tube around the estimated function. The objective function of SVR can be written as
Equation (2):

1
2

wTw + C
l

∑
i = 1

(ξi + ξ
∗
i ) (2)

where w is a normal vector; ξi and ξi
* are prediction errors from ε-tube either above

or below the estimated function, and C is a regularization parameter that trades-off the
flatness of the hyperplane and the sum of the prediction error. The SVR can also solve
nonlinear regression problems by mapping data points in a higher dimensional space [49].
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This study used a grid search method to find the best hyperparameters for the ε, C,
and kernel parameters, according to three types of kernels: linear, polynomial, and radial
basis function (RBF) (Table 3) [50,51]. The RBF kernel is defined by the following equation:

κ(u, v) = exp
(
−γ‖u− v‖2

)
(3)

where u, v are n-dimensional vectors, and γ corresponds to 1/2σ2 in the Gaussian function.
The SVR models were used to calculate visual ratings of middle and upper canopy layers
using multiple L1G phenotypes.

Table 3. List of support vector regression (SVR) hyperparameters used in the grid search.

Kernel ε C Kernel Parameters

Linear 0.05, 0.10, 0.15 0.1, 1, 10, 100 Not applicable
Polynomial 0.05, 0.10, 0.15 0.1, 1, 10, 100 Degree of polynomial = 2, 3

Radial basis function (RBF) 0.05, 0.10, 0.15 0.1, 1, 10, 100 γ = 10−5, 10−3, 10−1, 10

2.6.3. Multilayer Perceptron (MLP)

Multilayer perceptron (MLP) is a feedforward artificial neural network (ANN) that
consists of an input layer, hidden layer, and output layer. Due to the simplicity of the struc-
ture and nonlinear modeling capability, MLP has been widely used in various regression
problems in plant sciences [52,53].

The MLP was used to model the relationship between the tar spot visual rating of
three canopy layers and the L1G or L2G UAS phenotypes. The preliminary result showed
that the MLP with a single hidden layer performed better than the MLP with 2–4 hidden
layers (Figure 6). Therefore, a grid search was conducted to determine the number of nodes
in the single hidden layer. We tested MLP with 5, 10, 20, 40, 80, and 160 hidden nodes
for L1G phenotypes and 3, 5, 10, 20, 40, and 80 hidden nodes for L2G phenotypes. In
the training process, the mean square error (MSE) was optimized by the adam algorithm
(adaptive moment estimation) with a patience of 5. All processing nodes in the MLP model
used the rectifier linear unit (ReLU) as the activation function [54,55].
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Figure 6. Architecture of multilayer perceptron (MLP) used for UAS-based tar spot measurement.
An optimal number of input data and processing nodes in the hidden layer vary according to the
spatial resolution of explanatory variables (level 1 grid or level 2 grid) and response variables (visual
rating in the middle or upper canopy layer).

2.6.4. Evaluating the Performance of Regression Models

The performance of regression models was assessed by a cross-validation and transfer-
ability test. First, 3-fold cross-validation was repeated 30 times using the data from all study
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plots. The average values of the coefficient of determination (R2), root mean square error
(RMSE), and Lin’s concordance correlation coefficient (ρc) were calculated for each 3-fold
cross-validation. Subsequently, average and standard deviation of 30 cross-validation
results were obtained. An optimal regression model was chosen based on the statistics of
accuracy metrics. Second, a transferability test was conducted to obtain accuracy metrics
with spatially separated training and test data. For example, the performance of the MLP
model on Tar4 data was assessed by training regression model with Tar1, Tar2, and Tar3
data, then testing the model on Tar4 data.

3. Results
3.1. Correlation Analysis with UAS-Derived Plant Phenotypes

The correlation coefficient between L1G phenotypes and the visual ratings of the
middle and upper canopy layers revealed that the average and maximum of MSAVI, NDVI,
and SAVI had a negative correlation below−0.8 (Table 4). This indicates that the vegetation
index is inversely related to the tar spot disease severity. A higher magnitude of correlation
was observed from L1G average values than maximum values. Standard deviation statistics
showed a weaker correlation than other statistics. Canopy cover, canopy volume, and
ExG-based statistics showed a weaker relationship with visual ratings than MSAVI, NDVI,
and SAVI. The strongest correlation observed between MSAVI and the visual rating of the
middle and upper canopy was −0.87 and −0.83, respectively.

Table 4. Pearson’s correlation coefficient between visual ratings and level 1 grid (L1G) unmanned
aircraft systems (UAS) phenotypes. * avg: average, ** max: maximum, *** stdev: standard deviation.

Kernel
Correlation of Level 1 Grid UAS Phenotype and Visual Rating in the

Middle Canopy Upper Canopy

Canopy cover −0.72 −0.67
Canopy volume +0.09 −0.03

ExG avg * −0.41 −0.36
ExG max ** −0.41 −0.37

EXG stdev *** −0.39 −0.33
MSAVI avg −0.87 −0.83
MSAVI max −0.82 −0.81

MSAVI stdev +0.71 +0.62
NDVI avg −0.86 −0.82
NDVI max −0.82 −0.81

NDVI stdev +0.56 +0.45
SAVI avg −0.86 −0.82
SAVI max −0.82 −0.81

SAVI stdev +0.57 +0.47

Multicollinearity among explanatory variables (L1G phenotypes) was investigated
using a correlation matrix. As a result, a statistically significant correlation was observed
among L1G phenotypes (Figure 7). For example, the correlation between the L1G MSAVI av-
erage and the L1G NDVI average was 0.99, indicating a very high positive relationship. Sim-
ilar results were observed among the phenotypes of the same statistics (average, maximum,
and standard deviation) of MSAVI, NDVI, and SAVI. Since L1G phenotypes of multispec-
tral vegetation indices contained redundant information, we only used L1G canopy cover,
canopy volume, and statistics of ExG and MSAVI in the variable selection process.
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Figure 7. Correlation coefficients between level 1 grid (L1G) unmanned aircraft system (UAS)
phenotypes. CCCP: canopy cover derived from the Canopeo algorithm, CV: canopy volume, EXG:
average of excessive greenness, MSAVI: modified soil-adjusted vegetation index, NDVI: normalized
difference vegetation index, SAVI: soil-adjusted vegetation index, avg: average, mx: maximum, sd:
standard deviation.

A high correlation with Pearson’s correlation coefficient over 0.90 was observed among
L2G phenotypes. For example, the L2G MSAVI average from grid locations 1–24 showed
a correlation of over 0.95. A slightly lower correlation coefficient was observed between
phenotypes in the northern (grid 1, 13) and southern edges (12, 24), with a Pearson’s
correlation of 0.95. Correlation among L2G MSAVI in locations 2–11 and 14–23 produced a
correlation coefficient above 0.96. Such multicollinearity was also observable from other
L2G UAS phenotypes.

3.2. Variable Selection

Variable selection was performed to select input L1G phenotypes for regression anal-
ysis. For a regression model with a single input variable, the L1G average of MSAVI
was chosen due to the highest correlation with visual ratings in the middle and upper
canopy (Table 4).

Multiple L1G variables were selected based on BIC, as shown in Tables 5 and 6. For the
middle canopy, canopy cover, maximum of ExG, an average of MSAVI, and the standard
deviation of MSAVI were chosen. Selected variables for the upper canopy included canopy
cover, maximum of ExG, an average of MSAVI, maximum MSAVI, and the standard
deviation of MSAVI. The average of MSAVI was commonly included in the best subsets
for the middle and upper canopy layers, and the coefficient of average MSAVI had the
highest magnitude among other variables. The highest magnitude of the coefficient of
MSAVI indicated that average MSAVI is the predominant input variable that explains most
of the variance in tar spot disease severity.
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Table 5. Ordinary least square results for middle canopy. R2, adjusted R2, and BIC were 0.78, 0.78,
and 1.80 × 104, respectively.

Coefficient Standard Error t p > |t|

Constant 22.38 0.274 81.73 <0.001
Canopy cover −3.49 0.632 −5.52 <0.001

Maximum of ExG 1.84 0.354 5.12 <0.001
Average of MSAVI −44.42 0.939 −47.32 <0.001

Standard deviation of MSAVI −8.55 0.663 −12.89 <0.001

Table 6. Ordinary least square results for the upper canopy. R2, adjusted R2, and BIC were 0.76, 0.76,
and 1.53 × 104, respectively.

Coefficient Standard Error t p > |t|

Constant 14.00 0.211 66.23 <0.001
Canopy cover −3.02 0.506 −5.97 <0.001

Maximum of ExG 2.69 0.305 8.81 <0.001
Average of MSAVI −31.54 1.661 −18.98 <0.001

Maximum of MSAVI −3.49 1.050 −3.33 0.001
Standard deviation of MSAVI −9.65 0.682 −14.15 <0.001

3.3. Hyperparameter Tuning of SVR and MLP Models by Grid Search

A set of optimal hyperparameters for the regression model was fine-tuned by grid
search. Optimal parameters for SVR models are shown in Table 7. An optimal number of
nodes in the first hidden layer for MLP with L1G variables were 80 and 40 for the middle
and upper layers, respectively. For MLP models that use L2G variables, an optimal number
of nodes was 3 and 5 for the middle and upper canopy, respectively.

Table 7. Optimal hyperparameters of SVR models.

Canopy Layer Kernel ε C Kernel Parameters

Middle canopy RBF 0.05 1 γ = 0.1
Upper canopy Polynomial 0.05 0.1 Degree of polynomial = 3

3.4. Accuracy of Tar Spot Severity Measurement by Cross-Validation

The average RMSE of repeated cross-validations showed that the MLP model obtained
the most accurate results with multiple L1G phenotypes (Table 8). The average RMSE of the
MLP-L1G model for the middle and upper canopy was 10.4 and 7.9, respectively. Similar
accuracy was achieved by the MLP model of L2G phenotypes with an average RMSE
of 10.4 and 8.2 for the middle and upper canopies, respectively. Average RMSE values
from OLS or SVR were substantially higher than those obtained by the MLP models. It
should be noted that the standard deviation of cross-validated RMSE of the MLP models
was generally lower than those of the OLS and SVR, indicating a higher consistency of
model performance.

The tar spot visual ratings obtained by the optimal OLS, SVR, and MLP models
commonly showed an increasing trend as the ground reference data increased. Figure 8
displays a relationship between tar spot visual ratings and its UAS-based measurement
acquired by 3-fold cross-validation, where hollow red, orange, and blue circles represent
each test set of 3-fold cross-validation. Compared to the result from MLP models, the OLS
and SVR models had a tendency to produce higher variance when the visual rating was in
the 30–70 range. Moreover, the OLS and SVR models underestimated the disease severity
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when the visual rating was in the 60–100 range. Therefore, we conducted a transferability
test based on the MLP model with L1G phenotypes.

Table 8. Average and standard deviation of RMSE of unmanned aircraft system (UAS)-based tar spot disease measure-
ment models.

Average RMSE of
30 Cross-Validation Trials

Standard Deviation of RMSE of
30 Cross-Validation Trials

Middle Canopy Upper Canopy Middle Canopy Upper Canopy

OLS with single L1G phenotypes 12.4 10.0 0.09 0.08
OLS with multiple L1G phenotypes 11.9 9.0 0.09 0.07
SVR with multiple L1G phenotypes 11.4 10.8 0.12 0.13
MLP with multiple L1G phenotypes 10.4 7.9 0.07 0.04

MLP with all L2G phenotypes 10.4 8.2 0.06 0.06
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Figure 8. Tar spot disease rating measured by UAS-based MLP-L1G models at the (a) middle and (b) upper canopy level.
The MLP-L1G model was trained with a random split of 3-fold cross-validation of all PPAC data.

3.5. Accuracy of Tar Spot Severity Measurement by Transferability Test

The transferability test demonstrated the applicability of UAS-based tar spot measure-
ment under different field locations and management conditions (Figures 9–12). A linear
trend between visual ratings and UAS measurement was observed in Figures 9a, 10b and 12b
either with an overestimating or underestimating trend. A nonlinear trend was observed
from Figures 9b and 11a,b, showing an exponentially increasing trend as the visual rating
increases. Nevertheless, the concordance between visual ratings and UAS measurement
indicated that a statistical relationship between tar spot disease severity and spectral
information was captured using the MLP model.
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Figure 12. Tar spot disease rating in Tar4 area measured by UAS-based MLP-L1G model at the (a) middle and (b) upper
canopy level. The MLP-L1G model was trained with Tar1, Tar2, and Tar3 data.

To investigate the cause of lower accuracy in the transferability test, a relationship
between visual ratings and L1G average of MSAVI was observed. It should be noted
that the MSAVI average had the highest negative correlation with the visual ratings. The
scatter plots in Figure 13 revealed that the data distribution in the four study plots was
comparable when the visual rating was in the 0–20 range. However, a positive offset of
MSAVI was observed from Tar2 and Tar3 when the visual rating was in the 20–100 range.
For the most part, the data distribution of Tar1 and Tar4 showed a similar data distribution
in the entire range of the visual ratings. Therefore, we selectively used Tar1 and Tar4
data to test the transferability of the proposed approach. The MLP model with L1G
phenotypes was trained with Tar1 data and tested on Tar4 data. As a result, the RMSEs
of the UAS-based measurements in the middle and upper canopies were 7.61 and 6.42,
respectively (Figure 14), making the trend line between the two measures closer to a 1-to-1
line compared to the previous results (Figures 9–12).
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4. Discussion

Disease measurement based on a regression approach can perform well when training
and when the test data contains concurrent statistical data distribution. We found that
a difference in plot location and management practices can result in a change in the
relationship between visual ratings and UAS-derived plant phenotypes. In addition, the
relationships can also change according to climatic conditions and yearly fluctuations in
epidemiological factors. As shown in the transferability test, a selective approach that uses
the most relevant data as a training set was adequate if enough data is provided. Future
research is needed to define the environmental parameters that govern the relationship
between plant phenotype and disease severity to effectively confine a training dataset.

There are several drawbacks of using UAS-based plant phenotypes for disease mea-
surement. First, plant phenotype is not a direct measurement of tar spot intensity. Instead,
plant phenotypes are determined by a combination of various factors, including plant vigor,
water stress, and disease stress. Second, the quality of plant phenotypic data acquired
from the image-based approach can be reduced by strong winds, uneven illumination,
and image alignment quality. Third, there was also an ambiguity issue with the size and
number of spatial grids in plant phenotyping. Although this study tested two gridding
schemes (L1G and L2G) and found that L1G produces more accurate results, more research
might be required to determine an optimal geometry and size of grids. Despite the above
drawbacks, a disease-measurement approach with image-based plant phenotypes has been
one of the most frequently utilized methods in UAS research when spatial resolution of the
image is insufficient to capture individual disease lesions.

As a starting point of tar spot disease quantification using remotely sensed data, we
proposed a hypothesis that UAS data can be effectively used to measure disease severity.
Our data-driven approach provided a way to quantify tar spot severity with regression
techniques effectively. However, the data were collected at a single location in a single year.
Therefore, future studies are required to investigate the reproducibility of this method in
space and time. Adding datasets from different years and locations can significantly help
our approach to model the complex relationships of UAS phenotypes and the severity of
tar spot.

As an alternative method of UAS-based disease measurement, a regression approach
based on deep learning can be used. There are two significant advantages when using deep
learning methods: (a) information loss during the phenotyping process can be minimized
because deep learning uses original pixel values; (b) a complex relationship between pixel
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values and visual ratings can be established; (c) phenotyping procedure can be omitted
since deep learning models can be trained only using orthomosaic and DSM as input.

In addition, we recommend developing a spectral disease index (SDI) for tar spot,
which correlates a significant wavelength to tar spot-infected plants’ biochemical or bio-
physical characteristics [24,56,57]. The generation of SDI using hyperspectral sensors
will determine a functional spectral range throughout the different stages of the disease
epidemic [24,58], which may improve our accuracy in tar spot disease detection and
severity predictions.

This study does not provide the actual applications of the UAS-based tar spot mea-
surement technology. In the future, we will explore the possibility of using cross-analysis
and heterogeneous data to predict and manage plant diseases. The results and models
reported in this study may be implemented and tested in the next-generation decision
support systems for mitigating tar spot disease.

5. Conclusions

This study presents UAS-based disease quantification of tar spot of corn based on
spectral phenotyping and regression techniques. We showed that the highest accuracy
of the proposed method was obtained by SLP models with a reduced number of lower
resolution (L1G) phenotypes. The RMSE and ρc were 10.4 and 0.91 in the middle canopy
layer and 7.9 and 0.90 in the upper canopy layer, respectively. In addition, the performance
of SLP models that uses 336 higher spatial resolution (L2G) phenotypes was comparable
to the best results. Another important finding in this study was that UAS-based disease
measurement was possible in the upper (L + 2 to flag leaf) and middle (L − 1 to L + 1)
canopy layer. The cross-validation and transferability test results revealed that the accuracy
of UAS-based tar spot measurement could improve by training the model with a dataset
containing sufficient statistical information between spectral phenotypes and the disease
symptoms. It is expected that our demonstrated approach could provide opportunities to
detect and monitor plant diseases that show a gradual spectral response in the external
plant structures as the disease develops.
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