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Abstract: MODIS land surface temperature data (MODIS Ts) products are quantified from the earth
surface’s reflected thermal infrared signal via sensors onboard the Terra and Aqua satellites. MODIS
Ts products are a great value to many environmental applications but often subject to discrepancies
when compared to the air temperature (Ta) data that represent the temperature measured at 2 m
above the ground surface. Although they are different in their nature, the relationship between
Ts and Ta has been established by many researchers. Further validation and correction on the
relationship between these two has enabled the estimation of Ta from MODIS Ts products in order
to overcome the limitation of Ta that can only provide data in a point form with a very limited
area coverage. Therefore, this study was conducted with the objective to assess the accuracy of
MODIS Ts products, i.e., MOD11A1, MOD11A2, MYD11A1, and MYD11A2 against Ta and to
identify the performance of a modified Linear Scaling using a constant and monthly correction factor
(LS-MBC), and Quantile Mapping Mean Bias Correction (QM-MBC) methods for lowland area of
Peninsular Malaysia. Furthermore, the correction factor (CF) values for each MBC were adjusted
according to the condition set depending on the different bias levels. Then, the performance of
the pre- and post-MBC correction for by stations and regions analysis were evaluated through root
mean square error (RMSE), percentage bias (PBIAS), mean absolute error (MAE), and correlation
coefficient (r). The region dataset is obtained by stacking the air temperature (Ta_r) and surface
temperature (Ts_r) data corresponding to the number of stations within the identified regions. The
assessment of pre-MBC data for both 36 stations and 5 regions demonstrated poor correspondence
with high average errors and percentage biases, i.e., RMSE = 3.33–5.42 ◦C, PBIAS = 1.36–12.07%,
MAE = 2.88–4.89 ◦C, and r = 0.16–0.29. The application of the MBCs has successfully reduced the
errors and bias percentages, and slightly increased the r values for all MODIS Ts products. All
post-MBC depicted good average accuracies (RMSE and MAE < 3 ◦C and PBIAS between ±5%) and
r between 0.18 and 0.31. In detail, for the station analysis, the LS-MBC using monthly CF recorded
better performance than the LS-MBC using constant CF or the QM-MBC. For the regional study, the
QM-MBC outperformed the others. This study illustrated that the proposed LS-MBC, in spite of its
simplicity, managed to perform well in reducing the error and bias terms of MODIS Ts as much as
the performance of the more complex QM-MBC method.
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1. Introduction

Air temperature (Ta) is one of the parameters measured at meteorological station. By
a standard, Ta is measured 2 m above the ground surface to represent the surrounding
air temperature. Ta has been widely used in various fields of study such as monitoring of
temperature trend [1], global warming [2], crop yield modelling [3], and urban planning [4].
Although Ta measured at meteorological station is highly accurate and has high temporal
frequency, the data provided are dedicated for a point location of the meteorological sta-
tions. Hence, Ta can only portray the temperature at a local scale and is unable to describe
heterogeneous temperature over a large area. This is worsened by the sparse distribution of
meteorological stations due to limitations such as topography and operational cost. Since
temperature studies for vast and continuous areas are important for many climatic-related
applications, numerous studies have been carried out in attempts to solve this limitation,
mainly via interpolation of the air temperature data from different localities. However,
given the inconsistent distance between weather stations and poorly distributed locations
between each retrieval station, the accuracy of the interpolated Ta is often compromised [5].

The limitation imposed by the weather stations could be overcome with remotely
sensed land surface temperature (LST) data that comes in spatially wide coverages with
high temporal resolution. LST measures the skin temperature that is based on the radiations
reflected from the earth surface and detected by satellite sensors. The radiation observed
are largely controlled by the type of land surface and atmospheric condition such as air
temperature, solar radiation, and cloud condition [6,7]. The launch of Moderate Resolution
Imaging Spectroradiometer (MODIS) sensors on board of Terra and Aqua satellite has
enabled remotely sensed day and night-time skin temperature data to be retrieved daily
and every 8-days at 1 km resolution. The Terra satellite provides skin temperature data
known as MOD11A1 (daily) and MOD11A2 (every 8-days) at acquisition times approx-
imately 10:30 a.m. and 10:30 p.m. local time, while the Aqua satellite measures skin
temperature data known as MYD11A1 (daily) and MYD11A2 (every 8-days) at acquisition
times approximately 1:30 a.m. and 1:30 p.m. local time. These skin temperature data are
calculated from band 31 (10.78–11.28 µm) and 32 (11.77–12.27 µm), which are designated
for skin temperature.

Since these MODIS LST (Ts) products can provide temperature data for mixed el-
ements of targeted earth’s land surface [8], they have been a great input in many envi-
ronmental applications such as hydrology [9], agriculture [10], ecology [11], drought [12],
evapotranspiration [13], and soil moisture estimation [14]. Although Ts can provide high
spatial and temporal temperature data, it suffers from data uncertainty and should be
assessed for accuracy; the quality of the day Ts is highly dependent on the radiant tem-
perature of the land surface elements, seasonality [15], and the atmospheric condition
of particular days [16]. Day Ts is more complex than the night Ts because the former is
acquired from a mix 1 km2 targeted earth surface that are much affected by solar radiation
and other factors [17,18]. Additionally, Zhang et al. [19] revealed that presence of clouds or
mixed clouds-earth surface tended to distort minimum and maximum Ta estimations.

Prior to utilization of Ts to estimate Ta values, researchers such as Jin and Dickinson [6],
Simó et al. [20], and Sobrino et al. [21] suggested that the complex relationship between
both temperatures need to be understood. The vital difference between the Ts and Ta is that
both are measured at certain different heights from the earth surface. While Ta is recorded
at 2 m above an open cleared land, day Ts is acquired from a mix 1 km2 targeted earth
surface, and prone to wind and solar radiation interference. Furthermore, estimation of Ta
from Ts data is also affected by the changes in elevation. Phan et al. [22] revealed that with
every increase in elevation by 1000 m, Ts value would drop by 3.8 to 6.1 ◦C for night Ts
and 1.5 to 5.8 ◦C for day Ts.

Many studies had indicated the performance of MODIS Ts to estimate Ta in various
regions of the world. For instance, Lu et al. [23] conducted a comparison between day-time
daily Ts with in-situ data for arid area in Northwest China. The finding disclosed that the
relationship between both data varied accordingly to seasonality and weather conditions
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with RMSE between 2.39 and 3.05 ◦C. Furthermore, Marques da Silva et al. [24] evaluated
the performance of accumulated monthly MODIS-derived Ts against the accumulated
monthly Ta, in continental and near sea regions of Portugal. It was discovered that both
data were highly linearly related to each other with R2 > 0.98. In addition, Zhang et al. [25]
reported that the MAE between MODIS-derived Ts to maximum Ta was between 2.8 and
4.1 ◦C, whereby these values were highly affected given the presence of partial cloud
covered pixels. Moreover, El Kenawy et al. [15] in a study to compare day Ts against
maximum and minimum Ta in Egypt reported an overestimation with an average of 5 ◦C
according to different seasons. The difference was the highest during the summer and
lowest during the winter, while comparison between the night Ts against the min Ta
demonstrated low over-/underestimations with an average lower than 1.5 ◦C according to
different seasons.

Apart from evaluating the Ts products accuracy, many researchers have dedicated
their efforts into applying various Ts to Ta correction methods. Benali et al. [26] applied
statistical models and MODIS Ts to accurately estimate maximum, minimum, and average
Ta data of 106 meteorological stations in Portugal for 10 years (2000–2009) period. The
study revealed that Ta could be accurately estimated from MODIS Ts with RMSE between
1.83 and 1.74 ◦C. Furthermore, Huang et al. [10] estimated and mapped daily mean Ta of
23 meteorological stations from Ts using a linear calibration method for data range from
2003 to 2011. The proposed model was able to estimate Ta with RMSE and MAE of 2.41
and 1.84 ◦C, respectively. In another study, Zhu et al. [27] incorporated the temperature-
vegetation index method into the estimation of Ta from day Ts over Xiangride river basin
at north Tibetan Plateau. The method was able to improve the estimation of maximum Ta
from day Ts with RMSE and MAE of 3.79 and 3.03 ◦C from 7.45 and 6.21 ◦C, respectively.
Williamson et al. [28] developed an interpolated curve mean daily surface temperature
(ICM) method that interpolates MOD11A1 data values by utilizing ground air temperature
curves in southwest Yukon, Canada. Validation for the ICM method recorded R2 and
RMSE between 0.72–0.85 and 4.09–4.90 ◦C, respectively. Further south, Meyer et al. [29]
conducted a study to map daily air temperature from spatial MODIS LST data using linear
regression and machine learning approaches for Antarctica. The air temperatures from
32 weather stations and the MODIS products, i.e., MOD11A1 and MYD11A1 were used
as the absolute and simulated data, respectively. The machine learning method (R2 = 0.71
and RMSE = 10.51 ◦C) slightly outperformed the simple linear regression (R2 = 0.64 and
RMSE = 11.02 ◦C).

The Ts to Ta correction methods for regional study were also actively carried out by
a number of researchers. The analysis at a regional scale has enabled a validated map of
estimated Ta to be produced. Recently, Hereher and El Kenawy [30] made use of MYD11A2
to produce regional daytime, monthly, and annual surface air temperature map for Egypt
using regression correlation and statistical significance analysis. Agreement between both
daytime and monthly daytime LST data to air temperature data are R2 = 0.87–0.95 and 0.77,
respectively. It is reported that the produced gridded map with spatial resolution of 1 km
(MODIS LST) can act as an effective tool to delineate a temperature variation throughout a
region. Meanwhile, Rhee and Im [31] proposed a diurnal air temperature change model for
air temperature estimation in South Korea regions with limited ground data. The model
considered the sunrise, sunset, and solar noon times as the input parameters. Ground air
temperature data retrieved from 60 weather stations and two MODIS LST data were used
(MYD11A1 and MYD11A2) as the absolute and the simulated data, respectively. The model
produced a monthly corrected air temperature estimation with MAE values between 1.73
and 1.86 ◦C.

Despite all the mentioned Ts to Ta correction methods above, mean bias correction
method is one of the promising methods that has been widely used to correct Regional
Climate Models’ (RCMs) simulated temperature data but are still not widely explored for
MODIS LST application. Recently, Luo et al. [32] applied five bias correction methods, i.e.,
linear scaling (LS), daily translation (DT), variance scaling (VARI), distribution mapping
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(DM), and empirical quantile mapping (EQM) onto the Regional Climate Models’ (RCMs)
simulated temperature and rainfall data with a reference to the ground meteorological data
(1965–2005) for Kaidu River Basin in Xinjiang, China. The findings indicated that all the
bias correction methods performed well and improved the RCMs data with MAE values
= 0.76–0.89 ◦C, PBIAS = 0.20–0.00%, and R2 = 0.99. A similar research was conducted
by Fang et al. [33] in an arid area in northwestern China. Three bias correction methods
were applied using daily data from 1975 to 2005 for RCM-simulated temperature data,
i.e., LS, VARI, and DM. The monthly scaled bias correction approach for LS, VARI and
DM were able to gain PBIAS between 3.04% and 4.78%, R2 between 0.88 and 0.95, and
MAE between 2.35 and 2.52 ◦C. Another similar research was done by Teutschbein and
Seibert [34] in order to remove the bias from RCM-simulated temperature data using four
bias correction method, i.e., LS, VARI, DM, and delta change. The evaluation was carried
out for five catchments in Sweden using RCM temperature data from 1961 to 1990. All the
bias correction method excepts the delta change resulted in MAE between 0.13 and 1.36 ◦C.

While many researchers have demonstrated the potential of day Ts to estimate Ta,
most of the studies were conducted in temperate, non-equatorial regions. In light of this,
we attempted to (1) evaluate the performance of four types of MODIS Ts products, namely,
MOD11A1, MOD11A2, MYD11A1, and MYD11A2 for lowland area along east and west
coast of Peninsular Malaysia. Our study is the first to conduct such a test for equatorial
regions, which extend from 0◦ to 10◦ in the North as well as the South, and whose climate
is characterized by hot and humid weather with moderate temperature range between 24
and 35 ◦C, high humidity (>80%), high rainfall distribution depending on the monsoonal
seasons and high cloud cover throughout the year. Additionally, (2) we comparatively
assessed the performance of two mean bias corrections (MBC) approaches, i.e., linear
scaling (LS) and quantile mapping (QM), in improving the estimation of Ta from the four
Ts products.

2. Materials and Methods
2.1. Study Area

Peninsular Malaysia or also known as West Malaysia is located at the south end of
Asia continental plate (Figure 1). It is geographically located between 1◦ N and 7◦ N and
99◦ E to 105◦ E. It is characterized by hot and humid tropics with temperature ranging
between 23 and 35 ◦C, daily humidity levels exceeding 80%, and high rainfall and cloud
cover throughout the year [35]. The weather characteristic is dependent on two monsoonal
wind seasons, i.e., Southwest and Northeast monsoons and elevation. The Southwest
monsoon outsets from June to September while the Northeast outsets from November to
March, with the latter brings higher rainfall density than the former [35]. The coastal region
is characterized by lowland regions, and there is an increase in elevation towards the center
of peninsular, where mountain ranges such as the Titiwangsa, Benom and Tahan mountain
ranges act as the backbone and separates between the eastern and western part. This
geographic condition results in lower temperature towards the center of the peninsular
compared to the coastal areas.

2.2. Data Collection
2.2.1. Ground Measurement

The ground measurements of air temperature (Ta) were collected from 36 automatic
weather stations (AWS) belonging to Department of Environment (DOE) for year 2003
until 2016. The AWS provided three type of daily Ta, known as maximum, minimum, and
average Ta. The maximum Ta is the maximum temperature and highly associated with
the highest solar radiation during the day approximately at 11:00 a.m. until 2:00 p.m. [36]
while the minimum Ta is the minimum temperature during the night of a particular day
and the average Ta is the average temperature for the whole particular day. Nonetheless,
for this study, only maximum Ta were utilized for further analysis due to its compatibility
with day Ts which are acquired at approximately 10:30 a.m. and 1:30 p.m. local time.
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The AWSs are measured 2 m above open cleared ground and commonly located at the
government facilities such as hospitals, government offices, and schools. Additionally, the
AWSs location are located away from human activities on the land, i.e., agricultural activity,
that may change the earth’s surface in order to ensure there are no drastic changes in the
Ta readings. Figure 1 illustrate the location of AWSs in Peninsular Malaysia, while Table 1
tabulates the information in greater details. The AWSs are mainly distributed around the
east and west coastal region of the peninsular, while the digital elevation model (DEM)
highlights that the AWS are located at lowland region with elevation below than 60 m.

Figure 1. Location of Peninsular Malaysia and distributions of Ta meteorological stations overlaid with digital elevation
model (DEM) in meter.

2.2.2. MODIS LST Product

Four MODIS LST products were used in this study: MOD11A1, MOD11A2, MYD11A1,
and MYD11A2 with 1 km spatial resolution in a 1200 by 1200 km grid that were obtained
from https://search.earthdata.nasa.gov/search (accessed on 2 January 2020). A total
of 2 tiles data was used to cover Peninsular Malaysia with horizontal line 27 to 28 and
vertical line 08 (H27V08 and H28V08). The data were downloaded from January 2003 until
December 2016. The MOD11A1 and MOD11A2 were retrieved from the MODIS sensors
onboard Terra satellite with the acquisition day-time at approximately 10:30 a.m. and
night-time 10:30 p.m. for daily and 8-days composite data, respectively. Additionally, the
MYD11A and MYD11A2 were retrieved from the MODIS sensors onboard Aqua satellite
with the acquisition day-time at approximately 1:30 a.m. and 1:30 p.m. for daily and 8-days
composite data, respectively.

https://search.earthdata.nasa.gov/search
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Table 1. The AWS location and details.

No. Station ID Location Latitude Longitude Altitude (m)

1 CA0001 Johor Bahru, Johor N01◦ 28.225 E103◦ 53.637 22
2 CA0002 Kemaman, Terengganu N04◦ 16.260 E103◦ 25.826 17
3 CA0003 Perai, Pulau Pinang N05◦ 23.470 E100◦ 23.213 8
4 CA0006 Bukit Rambai, Melaka N02◦ 15.510 E102◦ 10.364 18
5 CA0008 Ipoh, Perak N04◦ 37.781 E101◦ 06.964 57
6 CA0009 Seberang Jaya, Pulau Pinang N05◦ 23.890 E100◦ 24.194 8
7 CA0010 Nilai, Negeri Sembilan N02◦ 49.246 E101◦ 48.877 49
8 CA0011 Klang, Selangor N03◦ 00.620 E101◦ 24.484 0
9 CA0014 Indera Mahkota, Pahang N03◦ 49.138 E103◦ 17.817 20

10 CA0015 Kuantan, Pahang N03◦ 57.726 E103◦ 22.955 8
11 CA0016 Petaling Jaya, Selangor N03◦ 06.612 E101◦ 42.274 38
12 CA0017 Sungai Petani, Kedah N05◦ 37.886 E100◦ 28.189 12
13 CA0019 Larkin, Johor N01◦ 29.815 E103◦ 43.617 49
14 CA0020 Taiping, Perak N04◦ 53.940 E100◦ 40.782 7
15 CA0022 Kota Bahru, Kelantan N06◦ 09.520 E102◦ 15.059 14
16 CA0024 Paka-Kerteh, Terengganu N04◦ 35.880 E103◦ 26.096 12
17 CA0025 Shah Alam, Selangor N03◦ 06.287 E101◦ 33.368 9
18 CA0032 Pulau Langkawi, Kedah N06◦ 19.903 E099◦ 51.517 14
19 CA0033 Kangar, Perlis N06◦ 25.424 E100◦ 11.046 6
20 CA0034 Kuala Terengganu, Terengganu N05◦ 18.455 E103◦ 07.213 7
21 CA0038 USM, Pulau Pinang N05◦ 21.528 E100◦ 17.864 14
22 CA0040 Alor Setar, Kedah N06◦ 08.218 E100◦ 20.880 5
23 CA0041 Seri Manjung, Perak N04◦ 12.038 E100◦ 39.841 7
24 CA0043 Bandaraya Melaka, Melaka N02◦ 12.789 E102◦ 14.055 8
25 CA0044 Muar, Johor N02◦ 03.715 E102◦ 35.587 9
26 CA0045 Tanjung Malim, Perak N03◦ 41.267 E101◦ 31.466 49
27 CA0046 Ipoh, Perak N04◦ 33.155 E101◦ 04.856 38
28 CA0047 Seremban, Negeri Sembilan N02◦ 43.418 E101◦ 58.105 56
29 CA0048 Kuala Selangor, Selangor N03◦ 19.592 E101◦ 15.532 0
30 CA0053 Presint 8, Putrajaya N02◦ 55.915 E101◦ 40.909 28
31 CA0054 Cheras, Kuala Lumpur N03◦ 06.376 E101◦ 43.072 42
32 CA0056 Port Dickson, Negeri Sembilan N02◦ 26.458 E101◦ 51.956 25
33 CA0057 Kota Tinggi, Johor N01◦ 33.50 E104◦ 13.31 15
34 CA0058 Batu Muda, Kuala Lumpur N03◦ 12.748 E101◦ 40.929 45
35 CA0059 Tanah Merah, Kelantan N05◦ 48.671 E102◦ 08.000 25
36 CA0060 Bukit Changgang, Selangor N02◦ 49.001 E101◦ 37.381 7

2.3. Data Processing
2.3.1. Pre-Processing of Ta

The AWSs data were first pre-processed for outlier identification and removal using
the boxplot outlier analysis [37], following Equations (1) and (2).

lowerboundary = Q1− 1.5(Q3−Q1) (1)

upperboundary = Q3 + 1.5(Q3−Q1), (2)

where Q1 and Q3 is the first and third quartile of the data. The extreme values exceeding
these quartiles were masked out. Then, the 8-days average Ta data were calculated by
averaging each 8-days of Ta data from 2003 until 2016. A total of 5113 daily Ta and
630 8-days Ta rows data were prepared for pairing with daily Ts and 8-days Ts, respectively.
Figure 2 illustrates the mean Ta distribution from 2003 to 2016. The east coast region
possessed lower mean Ta values than the west coast region, of which the center to northern
part showed higher mean Ta than its southern counterpart.
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Figure 2. Map of mean Ta distribution from 2003 to 2016.

2.3.2. Pre-Processing of Ts

The downloaded tiles were projected to WGS 1984 UTM Zone 47N and 48N. The
original temperature in Kelvin (K) were then converted to degree Celsius (◦C) according to
Equation (3) [38].

Ts = 0.02 T − 273.15, (3)

where 0.02 is the scale factor, T is the absolute temperature in Kelvin and Ts is the land
surface temperature in ◦C. Cloud-contaminated pixels were identified using boxplot out-
lier analysis as in Equations (1) and (2). On the average, high numbers of the cloud-
contaminated pixels showed unreasonably low temperature value that was less than 15
and 10 ◦C for lowland and highland region, respectively. The pixels with extreme values
were removed and consequently, resulted in the missing data values. Further, the Ts at the
same location with the AWSs was extracted and the available pixels of Ts and Ta of the
same locality were paired.

Figure 3 illustrates the map of Ts distribution in Peninsular Malaysia for clear days
on 30 March 2016, 9 March 2014, and 14 June 2012 whereby the Ts were able to depict the
heterogeneity of surface temperature for the Peninsular Malaysia, despite presence of white
patches indicating the missing data; mostly because of cloud cover. The images reflect that
Ts are highly associated with elevation: towards the center region of Peninsular Malaysia
where the mountain ranges are located at, and the temperatures are lower compared to the
coastal region. Besides, the east coast region reflects lower temperatures range than the
west coast, because of the Northeast monsoon that outsets from November until March each
year bringing heavy rains on the east coast region and results in lower surface temperature.
In general, the MOD11A1 product depicts a lower temperatures range than the MYD11A1
due to the acquisition time of MODIS sensors onboard of Terra and Aqua.
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Figure 3. The map of Ts distribution in Peninsular for selected clear days, (a) 30 March 2016, (b) 9 March 2014, and (c) 14 June
2012. The Ts pixel with the same point location as the Ta AWS location was collocated together. Result in only 36 pixels
were used for each daily (MOD11A1/MYD11A1) or 8-days (MOD11A2/MYD11A2) data. The mean temperature of the
collocated pixels from MOD11A1 and MYD11A1 from 2003 to 2016 as shown in Figure 4. It can be noticed, MYD possess a
higher surface temperature range (from 30.86 to 41.65 ◦C) than MOD (from 29.13 to 38.10 ◦C). Besides, the west coastal area
demonstrates a higher temperature range than the east coastal.

2.4. Region Delineation

To portray the heterogenous nature of Ta, the estimation of Ta from Ts at a regional
scale is necessary. Besides the analysis for each station, the analysis is also carried out for
specific climatic regions outlined following Suhaila and Yusop [39]. The determination of
the boundary for each region is based from the temperature and rainfall trends and the
geographic condition of Peninsular Malaysia. The west and east regions depict different
temperature trends as the east regions revealed lower mean temperature values than the
west region for both Ta and Ts (Figures 2–4). The Titiwangsa Range that runs through the
central Peninsula acts as a barrier to hinder the heavy rainfall and cooler weather from
reaching the west region during the Northeast Monsoon [39]. In addition, for this study,
the west region [39] is further divided into central and northcentral. This is because the
Klang Valley areas (Kuala Lumpur, Putrajaya, and Central of Selangor) revealed higher
mean temperature values than the northcentral region (North of Selangor) [40]. Besides,
the central region is associated with urban and industrial area and exhibits the effect of
urban heat island (UHI) [1,39,40]. Figure 5 illustrates the lowland areas along east and west
coast of Peninsular Malaysia (DEM = 1–60 m) that are applicable for Ts to Ta estimation
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and the outline for the five regions, i.e., northwest, northcentral, central, southwest, and
east regions.

Figure 4. Mean Ts in degree Celsius (◦C) for daily MOD and MYD data from 2003 to 2016.

Figure 5. Map showing the lowland areas (0–60 m) along east and west coast regions, i.e., northwest,
northcentral, central, southwest, and east regions.



Remote Sens. 2021, 13, 2589 10 of 28

Preparing Regional Data

The pre-processed Ta and Ts from 36 stations were stack as regional data according to
the information in Figure 5 and Table 2. There were 5 sets of regional datasets, and the Ta
and Ts were labelled as Ta_r and Ts_r, respectively.

Table 2. Region information.

Region No. of Stations Stations

Central 10 CA0058, CA0025, CA0011, CA0016, CA0054, CA0054, CA0053, CA0060, CA0010,
CA0047, CA0056

East 8 CA0022, CA0059, CA0034, CA0024, CA0002, CA0015, CA0014, CA0057
Northcentral 5 CA0008, CA0046, CA0041, CA0045, CA0048
Northwest 8 CA0033, CA0032, CA0040, CA0017, CA0009, CA0003, CA0038, CA0020
Southwest 5 CA0006, CA0043, CA0044, CA0001, CA0019

2.5. Data Analysis
2.5.1. Evaluation Metrics

Four sets of Ts/Ts_r data from MOD/MYD11A1 and MOD/MYD11A2 with the
same locality as the AWSs were paired with their daily and 8-days Ta/Ts_r. Then, the
evaluation was carried out in leave-two-years-out cross validation manner for both by
station and by region analysis [41]. The leave-two-years-out validation indicates that for
each station/region, 2 years data from the collocated data were excluded from the training
set and was used as the validation set. The evaluation was repeated for 13 times with
different sets of leave-two-years-out data, and the results were averaged to gain the final
values for the evaluation metrics.

The assessment of the Ts/Ts_r against Ta/Ta_r was carried out for both pre- and
post-bias corrected data using four evaluation metrics: root mean square error (RMSE),
percentage bias (PBIAS), mean absolute error (MAE), and correlation coefficient (r) [10,26].
The equation for RMSE, PBIAS, MAE, and r as shown as Equations (4)–(7), respectively.

RMSE =

√√√√ 1
N

N

∑
i=1

(Tsi − Tai)
2, (4)

where Tsi = land surface temperature data, Tai = air temperature data, and N = sample size.
Root mean square error (RMSE) is a measure to determine error between two variables
comparing between simulated and observed value. A low RMSE indicates a good fit
between two variables.

PBIAS = 100× ∑N
i=1(Tsi − Tai)

∑N
i=1 Tai

. (5)

Percentage bias (PBIAS) is a measurement of the average tendency of the simulated
values to be larger or smaller than the observed one. PBIAS of 0.0 indicates optimal value
while positive values indicate overestimation and negative values indicate underestima-
tion bias.

MAE =
1
N

N

∑
i=1
|Tsi − Tai|. (6)

Mean absolute error (MAE) determines the average absolute difference between two
variables. Likewise, RMSE, a low MAE indicates a good fit between two variables.

r =
∑N

i=1
(
Tsi − Ts

)(
Tai − Ta

)√
∑N

i=1
(
Tsi − Ts

)2
∑N

i=1
(
Tai − Ta

)2
, (7)
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where Ts is the average land surface temperature data and Ta is the average air temperature
data. Correlation coefficient, r, measures strength and direction of relationship between
both variables. The r value of 1 indicates a very strong positive correlation, 0 indicates no
correlation, and −1 indicates strong negative correlation.

2.5.2. Mean Bias Correction (MBC)

There are many types of MBC method that are commonly used in climate study to
reduce the error value in estimated data; they vary from the simple methods such as linear
scaling, daily translation, and variance scaling to the more complicated approaches such as
distribution mapping and empirical quantile mapping [32]. In this study, linear scaling
(LS-MBC) and quantile mapping (QM-MBC) techniques are used for the estimation of Ta
from Ts. Both techniques can yield high bias correction and suitable for climate study in
region with less extreme temperature range [32]. Moreover, in our study, the LS technique
is modified by manipulating the CF values according to a number of set conditions in
the equation.

The LS-MBC technique utilizes a single correction factor retrieved from the subtraction
result between the mean observation and simulated data over a period of time [32]. For
temperature, the simulated data are corrected by an additive function of CF. The LS-
MBC can perform the correction either using monthly or daily mean value throughout the
year [34]. Nonetheless, the former is more suitable for extreme weather region with extreme
daily temperature throughout the year such as in region with four seasons, while the latter
is appropriate for region with moderate temperature range such as Peninsular Malaysia.
Despite that, this study will examine the correction factor value from both monthly and
constant daily average. The LS-MBC are shown in Equation (8):

Tsc,d = Ts,d + (µTa − µTs), (8)

where Tsc,d is known as the corrected Ts,d for the particular d day that has undergone
additional term from subtraction of µTa = mean Ta to µTs = mean Ts. The mean values are
the average obtained from the whole tested days and the average monthly data throughout
2003 until 2016. For the correction, each AWS station will have one constant daily CF
and 12 monthly CF values as in Equation (9) and the calculation can be simplified to
Equation (10),

CF = (µTa − µTs) (9)

Tsc,d = Ts,d + CF. (10)

Since each station will undergo an addition of CF values as written in the LS-MBC
formulation, Equation (10) will result in an over correction of bias values especially for
the Ts,d that already approximate the Ta range. Therefore, a modification of the LS-MBC
formula is needed to change the bias correction method into a more robust formula.
This problem could be overcome by identifying the product of Ts,d − µTa and further
manipulation of the CF range value depending on the product of Ts,d − µTa.

The CF values are manipulated into 6 conditions, based on the positive or negative
value of the particular CF. A larger µTa than the µTs will result in positive CF. When the CF
is positive, the calculation will be as follows (Equation (11)):

Tsc,d =



Ts,d − CF, i f (Ts,d − µTa) > CF)
Ts,d − 3

4 CF, i f (Ts,d − µTa >
1
2 CF)

Ts,d − 1
4 CF, i f (Ts,d − µTa > 0)

Ts,d + CF, i f (Ts,d − µTa < (−CF))
Ts,d +

3
4 CF, i f

(
Ts,d − µTa <

(
− 1

2 CF
))

Ts,d +
1
4 CF, Otherwise(Ts,d − µTa < 0)

. (11)
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The followings are the calculation for the modified MBC, when the µTa is smaller than
the µTs and results in negative CF values (Equation (12)):

Tsc,d =



Ts,d + CF, i f (Ts,d − µTa) > |CF|
Ts,d +

3
4 CF, i f ( Ts,d − µTa >

∣∣∣ 1
2 CF

∣∣∣)
Ts,d +

1
4 CF, i f ( Ts,d − µTa > 0)

Ts,d − CF, i f (Ts,d − µTa < CF)
Ts,d − 3

4 CF, i f
(

Ts,d − µTa <
1
2 CF

)
Ts,d − 1

4 CF, Otherwise (Ts,d − µTa < 0)

. (12)

Depending on the subtraction result from Ts,d − µTa as the condition, an adjustment
of CF values will take place. Each Ts,d − µTa will only satisfy one condition.

Meanwhile, quantile mapping mean bias correction (QM-MBC) works by identifying
the empirical cumulative density functions (ecdf) of Ta as the absolute data and Ts as
the simulated data. The generated correction function depends on the quantile values
between 0% and 100%. Simultaneously, the correction function is applied to unbiasedness
the Ts data according to the temperature pattern distribution [42]. The calculation can be
expressed as Equation (13) [32]:

Tsc,d = ecd f−1
Ta

(ecd fTs ,d (Ts,d)), (13)

where ecd f−1 denotes the inverse ecd f .

3. Results
3.1. Evaluation Metrics for Pre- and Post-MBC against Ta by Station
3.1.1. RMSE

Table 3 tabulates the maximum, minimum, and average value of RMSE, MAE, PBIAS,
and r for pre-MBC (Ts), post-MBC linear scaling using constant daily CF (Tscd), post-MBC
linear scaling using monthly CF (Tscm) and post-MBC quantile mapping (Tscq) against Ta
according to the leave-two-years-out evaluation for 36 AWS station. For the pre-MBC (Ts),
the average RMSE values were much higher for the MYD products (MYD11A1/11A2), i.e.,
5.13 and 5.09 ◦C compared to the MOD products (MOD11A1/MOD11A2), i.e., 3.42 and
3.48 ◦C. The error value for MYD products was approximately 1.5 times higher than the
MOD products. Generally, the same pattern was observed for the maximum and minimum
RMSE values.

On the contrary, the average RMSE values of all post-MBC products (Tscd, Tscm, and
Tscq) depicted lower error range compared to the pre-MBC products (Ts), ranging from
2.11 to 2.39 ◦C, 2.06 to 2.35 ◦C, and 2.07 to 2.74 ◦C for Tscd, Tscm, and Tscq, respectively.
For all post-MBC products, the 8-days MOD/MYD11A2 showed lower average RMSE
values (Tscd = 2.11 ◦C/2.32 ◦C, Tscm = 2.06 ◦C/2.31 ◦C, and Tscq = 2.12 ◦C/2.07 ◦C) than
the daily MOD/MYD11A1 (Tscd = 2.39 ◦C/2.37 ◦C, Tscm = 2.35 ◦C/2.34 ◦C, and Tscq
= 2.74 ◦C/2.67 ◦C). Moreover, the same pattern was shown for the maximum RMSE
values. The maximum RMSE values for the 8-days MOD/MYD11A2 were recorded
lower, i.e., 3.04 ◦C/3.07 ◦C, 3.00 ◦C/3.20 ◦C, and 3.66 ◦C/3.57 ◦C compared to the daily
MOD/MYD11A2, i.e., 3.56 ◦C/3.86 ◦C, 3.54 ◦C/3.71 ◦C, and 4.37 ◦C/4.34 ◦C for Tscd, Tscm,
and Tscq, respectively.

A greater detail as illustrated in Figure 6 revealed that for pre-MBC (Ts), MOD11A1/11A2
had lower RMSE values ranging from 1.85 to 5.83 ◦C with only three of the stations showing
RMSE > 5 ◦C: CA0002 for MOD11A1 and CA0019 and CA0058 for MOD11A2. Meanwhile,
MYD11A1/11A2 depicted higher RMSE values ranging from 2.37 to 8.28 ◦C with 54.67% of
the stations showing RMSE > 5 ◦C. MYD11A1/MYD11A2 data exhibited 21 and 18 stations
with RMSE > 5 ◦C. Generally, the distribution of stations with higher RMSE values was
mainly in the west coast region rather than the east coast region.
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Table 3. RMSE, MAE, PBIAS, and r for pre-MBC (Ts), post-MBC linear scaling using constant daily CF (Tscd), post-MBC
linear scaling using monthly CF (Tscm), and post-MBC quantile mapping (Tscq) against Ta according to the leave-two-years-
out evaluation for 36 AWS station.

Pre-MBC
Ts

Post-MBC LS
(Daily CF) Tscd

Post-MBC LS
(Monthly CF) Tscm

Post-MBC
QM Tscq

Metrics Av. Max Min Av. Max Min Av. Max Min Av. Max Min

RMSE
(◦C)

MOD11A13.42 5.83 1.85 2.39 3.56 1.48 2.35 3.54 1.48 2.74 4.37 1.87

MOD11A23.48 5.12 2.15 2.11 3.04 1.57 2.06 3.00 1.45 2.12 3.66 1.28

MYD11A1 5.13 7.34 2.37 2.37 3.86 1.43 2.34 3.71 1.43 2.67 4.34 1.77

MYD11A2 5.09 8.28 2.47 2.32 3.07 1.65 2.31 3.20 1.69 2.07 3.57 1.24

PBIAS
(%)

MOD11A11.36 9.90 −14.27 −1.85 2.43 −6.33 −1.47 2.10 −5.63 −3.20 −0.62 −6.11

MOD11A24.40 14.22 −11.70 0.97 3.76 −3.55 1.20 3.82 −2.85 −0.37 1.20 −2.11

MYD11A1 8.88 22.02 −11.77 −0.17 3.35 −6.34 0.21 3.15 −5.51 −3.26 −1.07 −5.51

MYD11A210.74 25.56 −6.74 2.46 4.78 −3.37 2.55 4.73 −2.71 −0.42 1.02 −1.65

MAE
(◦C)

MOD11A12.88 5.20 1.46 1.94 3.15 1.19 1.90 3.17 1.21 2.23 3.71 1.46

MOD11A23.01 4.65 1.71 1.73 2.54 1.23 1.68 2.62 1.12 1.74 3.11 1.00

MYD11A1 4.56 7.09 1.86 1.92 3.10 1.23 1.90 3.07 1.18 2.16 3.64 1.38

MYD11A2 4.57 7.97 1.97 1.90 2.62 1.41 1.87 2.66 1.39 1.69 3.07 0.97

r

MOD11A10.24 0.47 0.04 0.23 0.48 0.01 0.30 0.54 0.08 0.24 0.48 0.04

MOD11A20.20 0.43 0.01 0.18 0.42 0.00 0.29 0.52 −0.04 0.20 0.44 0.01

MYD11A1 0.28 0.48 0.08 0.27 0.49 0.06 0.31 0.62 −0.02 0.29 0.49 0.08

MYD11A2 0.20 0.42 −0.04 0.20 0.42 −0.08 0.27 0.56 −0.06 0.21 0.43 −0.05

Nonetheless, the RMSE distributions for post-MBC products (Tscd, Tscm, and Tscq)
showed that the majority of the RMSE values were between 1 and 3 ◦C. Specifically, for
Tscd and Tscm, only 9.72%/12.50% and 6.94%/9.72 stations showed RMSE value > 3 ◦C for
MOD11A1/11A2 and MYD11A1/11A2, respectively. Meanwhile, for Tscq, 16.67% stations
showed RMSE values > 3 ◦C for both MOD11A1/2 and MYD11A1/2. Lower numbers of
stations with RMSE values > 3 ◦C were recorded for the 8-days MOD/MYD11A2 (Tscd = 1
and 3 stations, Tscm = 1 and 2 stations, and Tscq = 3 stations for both) than the daily
MOD/MYD11A1 (Tscd = 6 stations for both, Tscm = 4 and 5 stations, and Tscq = 9 stations
for both).

3.1.2. PBIAS

Assessing the average PBIAS values in Table 3, the pre-MBC Ts products tended to
overestimate the Ta. The average PBIAS of MOD11A1 and MOD11A2 depicted lower
values (1.36% and 4.40%) than the MYD11A1 and MYD11A2 (8.88% and 10.74%). The
same trend was observed for the maximum PBIAS values as MYD11A1 and MYD11A2
manifested high maximum PBIAS of 22.02% and 25.56%, respectively, while MOD11A1 and
MOD11A2 showed low maximum PBIAS of 9.90% and 14.22%, respectively. In contrast, for
the minimum PBIAS values, MOD11A1 and MOD11A2 recorded −14.27% and −11.70%,
suggesting higher magnitudes of underestimation in comparison to the MYD11A1 and
MYD11A2 that had −11.77% and −6.74%. It can be noted that MOD11A1 demonstrated
the highest minimum and lowest maximum and average PBIAS, while MYD11A2 depicted
the lowest minimum and highest maximum and average PBIAS.
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Figure 6. Distribution of RMSE for comparison between simulated data, (a) Ts, (b) Tscd, (c) Tscm, and (d) Tscq, and observed
data, Ta.

Meanwhile, the average PBIAS values for the post-MBC (Tscd, Tscm, and Tscq) exhib-
ited reduced over-/underestimations with average PBIAS values between −1.85% and
2.46%, −1.47% and 2.55%, and −3.26% and −0.37%, respectively. In particular, the daily
MOD11A1 depicted negative average PBIAS values (Tscd = −1.85%, Tscm = −1.47%, and
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Tscq = −3.20%). Moreover, all post-MBC Tscq products demonstrated negative average
PBIAS values with daily MOD/MYD11A1 having higher magnitude of negative bias values
(−3.20% and−3.26%) than the 8-days MOD/MYD11A2 (−0.37% and−0.42%), respectively.
Meanwhile, the maximum PBIAS values for Tscd and Tscm exhibited lower magnitudes
of positive PBIAS values for the daily MOD/MYD11A1 (Tscd = 2.43% and 3.35% and
Tscm = 2.10% and 3.15%) than the 8-days MOD/MYD11A2 (Tscd = 3.76% and 4.78% and
Tscm = 3.82% and 4.73%). The maximum PBIAS values for Tscq were low negative for daily
MOD/MYD11A1 (−0.62% and −1.07%) and low positive for 8-days MOD/MYD11A2
(1.20% and 1.02%). Moreover, it is noted that the minimum PBIAS values for post-MBC
(Tscd, Tscm, and Tscq) for the daily MOD/MYD11A1 depicted higher magnitude of negative
PBIAS values (Tscd = −6.33% and −6.34%, Tscm = −5.63% and −5.51%, and Tscq = −6.11%
and−5.51%) than the 8-days MOD/MYD11A2 (Tscd =−3.55% and−3.37%, Tscm =−2.85%
and −2.71%, and Tscq = −2.11% and −1.65%)

As illustrated in Figure 7, the pre-MBC Ts demonstrated that overestimation of Ta
was more frequent than the underestimation, with 69.44% stations demonstrating overes-
timations for MOD11A1/11A2 and 86.11% stations for MYD11A1/11A2. Regardless of
the LST products, there were 5 stations that showed consistent negative PBIAS: CA0002
in Kemaman, Terengganu (−14.27 to −5.80%), CA0006 in Bukit Rambai, Melaka (−5.32
to −0.87%), CA0020 in Taiping, Perak (−12.17 to −6.74%), CA0032 in Pulau Langkawi,
Kedah (−8.13 to −5.51%), and CA0057 in Kota Tinggi, Johor (−8.98 to −1.41%).

Assessing from Figure 7, for post-MBC (Tscd, Tscm, and Tscq), the daily MOD/MYD11A1
tended to result in more frequent negative PBIAS (Tscd = 31 (86.11%) and 13 (36.11%) sta-
tions, Tscm = 28 (77.78%) and 13 (36.11%) stations, and Tscq = 36 (100%) for both products),
while the 8-days MOD/MYD11A2 exhibited less frequent negative PBIAS (Tscd = 8 (22.22%)
and 5 (13.89%) stations, Tscm = 7 (19.44%) and 5 (13.88%) stations, and Tscq = 25 (69.44%)
and 28 (77.78%) stations). Nevertheless, for post-MBC, the majority of the stations exhibited
a low range of PBIAS close to zero, between −5% and +5% for the daily MOD/MYD11A1
(Tscd = 31 (86.11%) and 33 (91.67%) stations, Tscm = 35 (97.22%) and 34 (94.44%) stations,
and Tscq = 34 (94.44%) and 33 (91.67%) stations) and the 8-days MOD/MYD11A2 with all
stations demonstrated 100% PBIAS ranging between −5% and 5%.

3.1.3. MAE

The average MAE for pre-MBC Ts revealed a similar pattern to the RMSE but with
lower error values range between approximately 0 and 1 ◦C (Table 3). The average
MAE values for MYD11A1/11A2 products (4.56 and 4.57 ◦C) were 1.5 times more than
MOD11A1/11A2 (2.88 and 3.01 ◦C). Moreover, the same trend was observed for the maxi-
mum and minimum MAE values. Meanwhile, the post-MBC (Tscd, Tscm, and Tscq) resulted
in overall low MAE values. The 8 days MOD/MYD11A2 products (Tscd = 1.73 ◦C/1.90 ◦C,
Tscm = 1.68 ◦C/1.87 ◦C, and Tscq = 1.74 ◦C/1.69 ◦C) exhibited lower average, maxi-
mum, and minimum error values than the daily MOD/MYD11A1 ((Tscd = 1.94 ◦C/1.92 ◦C,
Tscm = 1.90 ◦C/1.90 ◦C, and Tscq = 2.23 ◦C/2.16 ◦C). In addition, the maximum and mini-
mum MAE values revealed the same pattern as the average MAE values.

Figure 8 illustrates the spatial MAE distributions, similar to those of the RMSE
(Figure 6) values for both pre- and post-MBC. The MAE depicted slightly lower error
ranges than the RMSE by 0–1 ◦C. In particular, for the pre-MBC Ts, MOD11A1/11A2
portrayed low MAE values ranging from 1.46 to 5.20 ◦C with only 11.11% of the stations
showing MAE > 4 ◦C, while MYD11A1/11A2 revealed slightly higher MAE values ranging
from 1.86 to 7.97 ◦C with 58.33% showing MAE > 4 ◦C. For MOD11A1, 2 stations exhibited
high MAE values > 4 ◦C, compared to 6 stations for MOD11A2. Meanwhile, MYD11A1
and MYD11A2 data depicted high MAE values > 4 ◦C with 22 and 20 stations, respectively.
Besides, MYD11A1/11A2 showed higher MAE values (>6 ◦C) for stations located in the
west coast (northwest, northcentral, central, and southwest) region, especially the ones that
are located in the central region, than those in the east coast.
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Figure 7. Distribution of PBIAS for comparison between simulated data, (a) Ts, (b) Tscd, (c) Tscm, and (d) Tscq, and observed
data, Ta.
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Figure 8. Distribution of MAE for comparison between simulated data, (a) Ts, (b) Tscd, (c) Tscm, and (d) Tscq, and observed
data, Ta.

In contrast, the MAE distribution for post-MBC (Tscd, Tscm, and Tscq), as illustrated in
Figure 8, revealed consistent low MAE values for all products, i.e., Tscd = 1.19 to 3.15 ◦C,
Tscm = 1.12 to 3.17 ◦C, and Tscq = 0.97 to 3.71 ◦C. The majority of the stations for all post-
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MBC products showed MAE < 3 ◦C with only a number of stations recording > 3 ◦C
(Tscd = 3 stations, Tscm = 2 stations, and Tscq = 10 stations).

3.1.4. Correlation Coefficient (r)

Table 3 tabulates very low average r values for all pre-MBC Ts products, of which
the daily MOD/MYD11A1 depicted a slightly higher average r value than the 8-days
MOD/MYD11A2 with 0.24–0.28 and 0.20, respectively. A similar pattern was observed for
the maximum r values whereby the daily MOD/MYD11A1 and 8-days MOD/MYD11A2
showed a maximum r of 0.47 and 0.48 for MOD11A1 and MYD11A1, while a maximum
r value for MOD11A2 and MYD11A2 was 0.43 and 0.42, respectively. Moreover, the
minimum r values were observed to be very close to zero for both 8-days MOD and MYD
(0.01 and −0.04) and daily MOD and MYD (0.04 and 0.08). Moreover, the r values for the
post-MBC products (Tscd, Tscm, and Tscq) revealed the same scenarios, as the average r
values for daily MOD/MYD11A1 (Tscd = 0.23/0.27, Tscm = 0.30/0.31, and Tscq = 0.24/0.29)
were slightly higher than the 8-days MOD/MYD11A2(Tscd =0.18/0.20, Tscm = 0.29/0.27,
and Tscq = 0.20/0.21). The maximum r values demonstrated a moderate r range from
0.42 to 0.49, 0.52 to 0.62, and 0.43 to 0.48 for Tscd, Tscm, and Tscq, respectively, while the
minimum r values demonstrated very near to zero r values ranging from −0.08 to 0.06,
−0.06 to 0.08, and −0.05 to 0.08 for Tscd, Tscm, and Tscq, respectively.

For pre-MBC Ts products, moderate r values (>0.3) were more frequent in the daily
MOD and MYD than the 8-days MOD and MYD products (Figure 9). The moderate r
values (>0.3) were recorded at 10 and 14 stations for each daily MOD and MYD and at 6 and
10 stations for 8-days MOD and MYD, respectively. Meanwhile, for post-MBC products,
Tscm resulted in highest total numbers of stations (MOD/MYD11A1 and MOD/MYD11A2)
with moderate r values >0.3, followed by Tscq and Tscd with 66, 39, and 32 stations, re-
spectively. Furthermore, the stations with moderate r values (>0.5) were only observed in
the Tscm products (MOD11A1/11A2 = 7 stations and MYD11A1/11A2 = 5 stations) with r
value ranging between 0.51 and 0.62.

3.2. Evaluation Metrics for Pre- and Post-MBC against Ta by Region
3.2.1. RMSE

Table 4 tabulates the maximum, minimum, and average value of RMSE, MAE, PBIAS,
and r from pre-MBC (Ts_r), post-MBC linear scaling using constant daily CF (Tscd_r),
post-MBC linear scaling using monthly CF (Tscm_r), and post-MBC quantile mapping
(Tscq_r) against Ta_r according to the leave-two-years-out evaluation for 5 regions. The
tabulated data indicated that the average RMSE values for the pre-MBC Ts_r of the by region
comparison reflect same pattern as the by station comparison. The MYD products (5.23 and
5.42 ◦C) indicate 1.5 times higher error than the MOD (3.33 and 3.55 ◦C). The same pattern
is shown by maximum and minimum RMSE values. Meanwhile, the post-MBC products
showed an overall low average RMSE < 3 ◦C. Specifically, the RMSE range values were
recorded between 1.96 and 3.71 ◦C, 1.95 and 3.51 ◦C, and 1.88 and 3.61 ◦C for Tscd_r, Tscm_r,
and Tscq_r, respectively. Figure 10 illustrates the RMSE for pre- and post-MBC products. It
can be observed that the error values were well reduced for all regions and products.



Remote Sens. 2021, 13, 2589 19 of 28

Figure 9. Distribution of r for comparison between simulated data, (a) Ts, (b) Tscd, (c) Tscm, and (d) Tscq, and observed
data, Ta.
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Table 4. RMSE, MAE, PBIAS, and r from by region comparison for pre-MBC (Ts_r), post-MBC linear scaling using constant
daily CF (Tscd_r), post-MBC linear scaling using monthly CF (Tscm_r), and post-MBC quantile mapping (Tscq_r) against Ta_r

according to the leave-two-years-out evaluation.

Pre-MBC
Ts_r

Post-MBC LS
(Daily CF) Tscd_r

Post-MBC LS
(Monthly CF) Tscm_r

Post-MBC
QM Tscq_r

Metrics Av. Max Min Av. Max Min Av. Max Min Av. Max Min

RMSE
(◦C)

MOD11A13.33 3.87 2.90 2.70 3.71 1.96 2.71 3.51 1.95 2.55 3.05 2.19

MOD11A23.55 3.74 2.85 2.54 3.14 2.01 2.52 3.03 2.00 2.26 2.76 1.88

MYD11A1 5.23 5.63 4.94 2.60 3.37 2.07 2.64 3.44 2.10 2.66 3.61 2.05

MYD11A2 5.42 6.14 5.20 2.70 3.18 2.31 2.69 3.21 2.32 2.26 2.79 1.92

PBIAS
(%)

MOD11A12.42 5.22 0.29 −0.75 0.39 −1.91 −0.62 0.30 −1.93 −2.31 −1.81 −2.73

MOD11A25.75 9.06 3.40 2.06 3.48 −0.22 2.09 3.31 −0.16 −0.04 0.37 −0.91

MYD11A110.19 14.21 7.63 1.61 2.33 0.78 1.78 2.75 1.20 −1.89 −0.61 −3.18

MYD11A212.07 16.53 9.20 4.30 5.27 3.18 4.26 5.15 3.22 0.37 1.16 −0.74

MAE
(◦C)

MOD11A12.79 3.27 2.36 2.21 3.10 1.60 2.21 2.90 1.61 1.99 2.46 1.74

MOD11A23.09 3.36 2.37 2.12 2.64 1.66 2.10 2.58 1.67 1.79 2.13 1.50

MYD11A1 4.68 5.22 4.36 2.15 2.79 1.71 2.18 2.84 1.73 2.08 2.76 1.63

MYD11A2 4.89 5.75 4.60 2.27 2.73 1.92 2.27 2.76 1.93 1.78 2.16 1.51

r

MOD11A10.23 0.25 0.19 0.23 0.26 0.19 0.25 0.27 0.21 0.29 0.45 0.17

MOD11A20.16 0.24 0.11 0.19 0.31 0.11 0.24 0.33 0.17 0.26 0.40 0.13

MYD11A1 0.29 0.32 0.27 0.26 0.31 0.19 0.29 0.33 0.25 0.29 0.52 0.06

MYD11A2 0.17 0.26 0.12 0.19 0.25 0.14 0.25 0.39 0.15 0.25 0.46 0.12

Figure 10. Comparison of evaluation metrics score between Ts_r, Tscd_r, Tscm_r, and Tscq_r against Ta_r.
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3.2.2. PBIAS

The average PBIAS values for pre-MBC Ts_r was lower for MOD products than those
for the MYD products by 2.42%/5.75% and 10.19%/12.07%, respectively (Table 4). The
same was observed for maximum and minimum values. The maximum values were
recorded at 5.22%/9.06% and 14.21%/16.53% for MOD11A1/11A2 and MYD11A1/11A2
products, respectively, while the minimum values were at 0.29%/3.40% and 7.63%/9.20%
for MOD11A1/11A2 and MYD11A1/11A2 products, respectively. The post-MBC products
(Tscd_r, Tscm_r, and Tscq_r) tabulated an overall average PBIAS values < 5% with average
PBIAS range between −0.75% and 4.30%, −0.62% and 4.26%, and −2.31% and 0.37% for
Tscd_r, Tscm_r, and Tscm_r, respectively. Spatially, post-MBC product of MOD11A1 illustrated
negative PBIAS values for almost all region (Tscd_r =−1.91% to 0.39%, Tscm_r = −1.93% to 0.30%,
and Tscq_r = −2.73% to −1.81%) (Figure 10). Besides, for MYD11A1, the Tscq_r tended to
result in negative PBIAS values for all regions with range between −3.18% and −0.61%.
Overall, the post-MBC products showed a well reduced bias for MOD11A2, MYD11A1,
and MYD11A2.

3.2.3. MAE

A similar pattern was observed between pre-MBC Ts_r MAE and RMSE values as
the MYD products result in 1.5 times higher error values than the MOD (Table 4). The
average values were recorded at 2.79/3.09 ◦C and 4.68/4.89 ◦C for MOD11A1/11A2
and MYD11A1/11A2 products, respectively. The maximum and minimum MAE values
revealed two different range of error values between the MOD and MYD products, i.e., 2.36
to 5.75 ◦C and 4.36 to 5.75 ◦C, respectively. The post-MBC products depicted an overall
low average MAE value < 2.5 ◦C (Tscd_r = 2.12 to 2.27 ◦C, Tscm_r = 2.10 to 2.27 ◦C, and
Tscq_r = 1.78 to 2.08 ◦C). Figure 10 showed an apparent reduction in MAE values between
the pre- and post-MBC products except for MOD11A1.

3.2.4. Correlation Coefficient (r)

The r values observed from Table 4 illustrated low r values for all pre-MBC products
with average r between 0.16 and 0.29. In detail, the daily products tabulated slightly higher
r range between 0.23 and 0.29 than the 8-days products with r range between 0.16 and 0.17.
The post-MBC products showed a slight improvement in the r values with Tscq_r revealing
the highest r range for average and maximum values (average = 0.25 to 0.29 and maximum
= 0.40 to 0.52), followed by Tscm_r (average = 0.24 to 0.29 and maximum = 0.27 to 0.39) and
Tscd_r (average = 0.19 to 0.26 and maximum = 0.25 to 0.31).

Figure 10 shows that the performance of post-MBC varies according to the region.
Notably, the Tscq_r performed best for central and northcentral region. Other than that, an
overall slightly improved r values can be observed throughout the MBC products.

4. Discussion
4.1. By Station Performance

The assessment of MODIS Ts against Ta (pre-MBC) indicated high variabilities in the
relationship between both data. For instance, MOD11A1 was found to have the closest
relationship to Ta data with the lowest average RMSE of 3.42 ◦C and PBIAS of 1.36%,
followed by MOD11A2 with RMSE of 3.48 ◦C and PBIAS of 4.40%, MYD11A1 with RMSE
of 5.13 ◦C and PBIAS of 8.88% and finally, MYD11A2 with average RMSE of 5.09 ◦C and
highest PBIAS of 10.74%. These metrics suggested that MOD11A1/11A2 was better at
estimating the Ta than MYD11A1/11A2. This could be attributed to the time of data
acquisition. The former is acquired at 10:30 a.m. local time, while the latter is acquired at
1:30 p.m. local time whereby later in the noon, solar activity for the tropical region such
as Peninsular Malaysia is the highest. Consequently, the MOD data are a better proxy for
maximum daily Ta given that the MYD Ts tended to overestimate the Ta.

Additionally, the daily Ts, i.e., MOD/MYD11A1 and 8-days Ts, i.e., MOD/MYD11A2
depicted different characteristics of performance as the former illustrated lower errors and
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lower under-/overestimations than the latter. Daily data are known to be better at esti-
mating Ta than 8-days data due to the inconsistency of the numbers of days used to count
the 8-days Ts [38]. Although the 8-days Ta are averaged from the daily Ta for a complete
duration of 8-days, 8-days Ts are subject to missing data resulted from cloud coverage and
hence, could be averaged from daily data as low as from 2 to 8 days. This inconsistency is
believed to contribute to low accuracies in estimation between both datasets.

Furthermore, although researchers such as El Kenawy et al. [15] recommended that
corrections of Ts against Ta were needed if only the score of PBIAS > ± 5%, the usage
of MOD11A1 (average PBIAS = 1.36%) for lowland area in Peninsular Malaysia region
without any correction to represent the Ta can still be considered inappropriate given its
average error (3.42 ◦C) is too large to be considered for many applications [43].

Post-MBC (Tscd, Tscm, and Tscq) data assessment against Ta depicted better estimations
with three of the evaluation metric’s parameters showing significant improvements in the
error and bias values, while the correlation coefficient (r) showing a moderate improvement
in the r values. All post-MBC products demonstrated average low RMSEs range (Tscd = 2.11
to 2.39 ◦C, Tscm = 2.06 to 2.35 ◦C, and Tscq = 2.07 to 2.74 ◦C), average low PBIAS range
(Tscd = −1.85 to 2.46%, Tscm = −1.47 to 2.55%, and Tscq = −3.26 to −0.37%), and low
average MAE range (Tscd = 1.73 to 1.94 ◦C, Tscm = 1.68 to 1.90 ◦C, and Tscq = 1.69 to 2.23 ◦C).
Meanwhile, the r scores demonstrated a slight improvement in the r values from the
average range for pre-MBC (0.20–0.28) to average range for post-MBC (Tscm = 0.27–0.31 and
Tscq = 0.20–0.29), except for Tscd with r average range between 0.18 and 0.27. According to
Yan et al. [43], estimated products at RMSE approximately < 3 ◦C are considered acceptable,
and most of the recent studies for Ta estimation reported RMSE values < 3 ◦C.

Although the modified MBC demonstrated a good performance at reducing PBIAS
over-/underestimation range, the underestimation in the MOD11A1 data was significantly
high in post-MBC, i.e., Tscd = 86.11%, Tscm = 77.78%, and Tscq = 100% versus pre-MBC,
i.e., 61.11%. A possible explanation for this is because for pre-MBC, the MOD11A1 Ts
and Ta temperature range were already close to each other and hence, the application
of the MBC tended to overcorrect the MOD11A1 Ts and result in higher magnitude of
underestimation. Contrarily, the MBC only contributed a slight change for the post-MBC r
values. This is because the application of the MBC technique could only adjust the range
of the Ts values by shifting the Ts values towards the Ta according to the CF values that
satisfy the condition given (for LS-MBC) or according to the respective quantile calculation
(for QM-MBC) without changing the original temporal pattern of the Ts data. While these
techniques have resulted in a significant improvement of error and bias terms for the Tscd,
Tscm, and Tscq against Ta, the relationship between both datasets showed a moderate to
no improvement.

Additionally, the assessment on post-MBC (Tscd, Tscm, and Tscq) showed that ranges
for error and bias values were not as high as in the pre-MBC data. All post-MBC Tscd,
Tscm, and Tscq products depicted low and similar ranges of average bias and errors (av-
erage RMSE and MAE < 3 ◦C and average PBIAS between −5% and 5%), while the
pre-MBC demonstrated that the MYD11A1/11A2 Ts had higher error (average RMSE and
MAE = 4.56 to 5.13 ◦C) and bias (PBIAS = 8.88 to 10.74%) range than the MOD11A1/11A2
(average RMSE and MAE = 2.88 to 3.48 ◦C, PBIAS = 1.36 to 4.40%). This suggested that
both MBC approaches (LS-MBC and QM-MBC) were suitable for all types of MODIS Ts
tested in this study.

For comparison, Figure 11 displays the boxplot presentation for the average tempera-
ture values between pre (Ts) and post-MBC (Tscd, Tscm, and Tscq) against Ta from 36 AWS.
Significant improvements could be observed in the post-MBC values as the range of Ts
has decreased tremendously approaching the range of Ta with Tscq depicting the most
approximate temperature range to the Ta. This indicates that the QM-MBC method can
capture well the distribution of Ta by removing the biases by quantile [44] rather than the
LS-MBC technique that removes the biases using CF values from overall constant daily
and monthly values.
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Figure 11. Comparison of average temperature value between Ta, Ts, Tscd, Tscm, and Tscq for
MOD11A1, MOD11A2, MYD11A1, and MYD11A2 across 36 AWS.

Figure 12 illustrates the boxplot presentation of evaluations metrics score between
Ts, Tscd, Tscm, and Tscq against Ta for 36 AWSs. The bias correction method consistently
reduced the RMSE and MAE to 2–5 ◦C and 1–4 ◦C, respectively. The PBIAS also showed a
reasonable reduction in the over-/underestimation to range of bias between −6.34% and
4.78%. In comparison, Tscd, Tscm, and Tscq demonstrated a small- range of error and bias,
but not for r. Tscm showed highest improvement in r values than the Tscd and Tscq. This
indicates that although these post-MBC products produced an acceptable result for Ta
approximation, the application of LS-MBC technique using the monthly CF was better
than the constant daily CF (Tscd) and quantile mapping technique (Tscq). This is because
application of monthly CF is calculated from a more detail calculation (by month) than the
daily CF that is calculated using single CF for the whole 13 years. Application of monthly
CF enable changes in temperature according to the changes in the monsoon season, if
present, to be applied.

4.2. By Region Performance

Figure 13 displays the comparison between evaluation metrics between Ts_r, Tscd_r,
Tscm_r, and Tscq_r against Ta_r for 5 regions. The LS and QM-MBC has tremendously
reduced the bias and error values as the boxplot for post-MBC (Tscd_r, Tscm_r, and Tscq_r)
were located nearer to zero value than the pre-MBC (Ts_r). Meanwhile, the r values
depicted modest improvement with the r maximum values pre-MBC (Ts_r = 0.24–0.32)
slightly increased (Tscd_r = 0.25–0.31, Tscm_r = 0.27–0.39, and Tscq_r = 0.40–0.52).

Moreover, the Tscq_r depicted the most improved values of RMSE, MAE, and PBIAS.
This indicates that QM-MBC can perform better when more data are stack together (regional
data). With more collocated pixels, the temperature distribution can be better defined,
resulting in better quantile calculation [32,33]. The same pattern was observed for r as
Tscq_r showed the highest improvement of r for MOD11A1, MOD11A2, and MYD11A2.

The low correlation coefficient (r) for both pre- and post-MBC data compared to Ta,
despite the low RMSE obtained for post-MBC are possible and acceptable. In this study,
the reason for low r values could be because of the low temperature range for between
10 and 15 ◦C and less variation in the temperature pattern [16]. In the tropic region, there
are only two distinct seasons, the hot and dry and cold and wet season driven by the
two monsoonal wind seasons, i.e., the Southwest and Northeast monsoons. Besides, El



Remote Sens. 2021, 13, 2589 24 of 28

Kenawy [15] expresses low correlation values for summer compared to other seasons. This
indicates that solar radiation duration may affect the correlation between Ta and Ts.

Figure 12. Comparison of evaluation metrics score between Ts, Tscd, Tscm, and Tscq against Ta.

The information obtained from each station (total of 36 stations) and region (total of
5 regions) including (1) the validated range of Ts/Ts_r and Ta/Ta_r, (2) constant daily and
monthly CF values (LS-MBC), (3) constant daily and monthly mean Ts/Ts_r and Ta/Ta_r
(LS-MBC), and (4) quantile values for Ts/Ts_r and Ta/Ta_r (QM-MBC) can be used for
future Ta estimation from MODIS Ts (MOD11A1, MOD11A2, MYD11A1, and MYD11A2)
by following the MBC equation. The similar pattern of result between the regional (Ts_r
and Ta_r) and the by station (Ts and Ta) analysis, proved that the information obtained
from this study are applicable for the lowland areas according to their identified regions.
Overall, the developed technique by modifying the CF application for LS-MBC is rather a
simple one but managed to gain a good accuracy of Ta retrievals, whereas the QM-MBC
worked best for regional study.

4.3. Limitations and Future Works

First, we acknowledge that the findings of this study are only limited to lowland areas
in Peninsular Malaysia at altitude less than 60 m above sea level. In the future, a study
should be conducted for highland area given that the Ts is known to be affected by the
increase in elevation [22]. Second, the missing data resulted from cloud cover (Ts), partial
cloud cover (Ts), and outlier’s analysis (Ts and Ta) in this study were treated as not available
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(NA). To overcome the gaps in Ts data, interpolation [45], similar pixel method [46], data
fusion [47], or machine learning [48] have been applied in other works but not in our study
that only used original datasets. Finally, we acknowledge the limitation in delivering the
correction factor values given unknown gaps in the constant daily and monthly Ts, as
opposed to Yoo et al. [49] who performed linear interpolation. Addressing further, the
second and third gaps can possibly avoid distorted CF values and thus give better results.

Figure 13. Comparison of evaluation metrics score between Ts_r, Tscd_r, Tscm_r, and Tscq_r against Ta_r.

5. Conclusions

This study found that (1) the error values for pre-MBC Ts in comparison to the Ta were
high especially for the MYD11A1/11A2 than the MOD11A1/11A2; chiefly due to different
acquisition times that is influenced by solar activity. (2) The high bias and error values
for the pre-MBC Ts suggested that the application of correction is necessary. (3) The MBC
for station analysis (Tscd, Tscm, and Tscq) has successfully reduced the errors and biases in
pre-MBC (Ts), i.e., average RMSE values from 3.42–5.13 to 2.06–2.74 ◦C, average PBIAS
values from 1.36–10.74% to −3.26–2.55%, and average MAE values from 2.88–4.57 ◦C to
1.68–2.23 ◦C. While, the average r values depicted slight improvement from 0.20–0.28 to
0.18–0.31. (4) The pattern is the same for by region analysis (Tscd_r, Tscm_r, and Tscq_r),
i.e., average RMSE values from 3.33–5.42 to 2.26–2.71 ◦C, average PBIAS values from
2.42–12.07% to −2.31–4.30%, average MAE values from 2.79–4.89 to 1.78–2.27 ◦C, and
average r value from 0.16–0.29 to 0.19–0.29. (5). Both MBC methods (LS-MBC and QM
MBC) resulted in an acceptable range of correction but by a comparison, the MBC using
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monthly CF depicted a slightly better correction than the MBC using daily constant CF,
while QM-MBC worked best for regional study. This study also illustrated that although
the proposed LS-MBC technique in this study is rather a simple mathematical equation than
the more sophisticated QM-MBC technique, it was adequate for improving the estimation
Ta from MODIS Ts for a tropical region.
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