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Abstract: The identification of hazardous chemicals based on hyperspectral imaging is an important
emergent means for the prevention of explosion accidents and the early warning of secondary
hazards. In this study, we used a combination of spectral curve matching based on full-waveform
characteristics and spectral matching based on spectral characteristics to identify the hazardous
chemicals, and proposed a method to quantitatively characterize the matching degree of the spectral
curves of hazardous chemicals. The results showed that the four hazardous chemicals, sulfur, red
phosphorus, potassium permanganate, and corn starch had bright colors, distinct spectral curve
characteristics, and obvious changes in reflectivity, which were easy to identify. Moreover, the
matching degree of their spectral curves was positively correlated with their reflectivity. However,
the spectral characteristics of carbon powder, strontium nitrate, wheat starch, and magnesium–
aluminum alloy powder were not obvious, with no obvious characteristic peaks or trends of change
in reflectivity. Except for the reflectivity and the matching degree of the carbon powder being
maintained at a low level, the reflectivity of the remaining three samples was relatively close, so that
it was difficult to identify with the spectral curves alone, and color information should be considered
for further identification.

Keywords: hazardous chemicals; hyperspectral imaging; image identification

1. Introduction

In recent years, severe explosion accidents have occurred frequently, including the
“8.2” explosion accident in Jiangsu Zhongrong in 2014, the “8.12” fire and explosion
accident at Tianjin Port in 2015, and the “8.4” explosion accident at Beirut Port in 2020. The
environment of an explosion accident site is complex, often with numerous explosives and
pollutants distributed over the site. At the scene of an accident, it is important to quickly
locate the core area of the explosion as well as the type and distribution of explosives
and pollutants, to provide disaster scene awareness, early warning of secondary hazards
and support for decision-making in post-accident rescue. Therefore, there is an urgent
need to expand the study of in situ identification and detection of typical inflammable and
explosive hazardous chemicals at explosion accident scenes.

Various detection techniques, equipment and methods are used for different types of
explosive hazardous chemicals. Conventional methods include gas chromatography, liquid
chromatography, ion chromatography, mass spectrometry, isotope ratio mass spectrom-
etry, capillary electrophoresis, thermal analysis (thermogravimetry (TG) and differential
scanning calorimetry (DSC)), molecular imprinting, general spectroscopic methods (fluo-
rescence, luminescence, spectrophotometry, ultraviolet, and chemiluminescence), Fourier
transform infrared spectroscopy, and Raman spectroscopy [1–16]. For instance, Cather-
ine E. Hay, et al. [2] proposed a simple and robust, low-cost electrochemical device for
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the combined sampling and detection of the trace solid explosive 2,4,6-trinitrotoluene
(TNT) from a non-porous surface, and the prototype device was able to detect TNT with
a 30 min development time in different ambient environmental conditions. K. Hossny,
et al. [4] developed a framework to identify explosive materials using gamma spectra,
and results emphasized the pipeline ability to identify the explosives with an accuracy
of 92%. Alan D. Hewitt et, al. [12] performed on-site determination of nitroaromatic and
nitramine residues in soils using a field-portable gas chromatograph (GC) equipped with a
thermionic ionization detector selective for compounds with nitro functional groups.

Fortunately, significant progress has been made in hyperspectral imaging in the past
thirty years. As a non-contact detection method, it has attracted intensive interest in food
quality evaluation, item safety evaluation, vegetation detection, precision agriculture, and
medical diagnosis [17–27]. For example, Xin Zhao, et al. [17] utilized near-infrared hy-
perspectral imaging to detect low-level peanut powder contamination of whole wheat
flour, with the peanut powder concentrations as low as 0.3% in spring wheat flour and
as low as 0.5% in winter wheat flour. Jaafar Abdulridha, et al. [18] developed a lab- and
UAV-based powdery mildew disease detection system and applied this system to detect
powdery mildew disease in squash at different stages. Paul Arellano, et al. [19] detected
the effects of hydrocarbon pollution in the Amazon forest using hyperspectral satellite
images, and the results revealed that tropical forests exposed to hydrocarbon pollution
show reduced levels of chlorophyll content, higher levels of foliar water content and leaf
structural changes. Hongzhe Jiang, et al. [21] used hyperspectral imaging for detecting
and visualizing leaf lard adulteration in minced pork and generated adulteration maps
for different adulteration levels. Na Wu, et al. [24] proposed an effective method for RFS
detection based on microscopic molecular detection technology with macroscopic spec-
tral imaging technology, detected rice kernels with different varieties, different infection
conditions and different infection status, and achieved high infection degrees as 99.33%
on calibration set and 99.20% on prediction set. Jiyue Gao, et al. [27] detected pixel-level
aflatoxin in maize based on feature selection and hyperspectral imaging, and used the
feature selection method to classify the aflatoxin-contaminated corns and reached high
accuracy of 99.38%.

In summary, the inconvenience of the traditional identification method of hazardous
chemicals is the need for contact detection or returning to the laboratory for detection
after sampling, and those methods do not have capabilities for non-contact or remote
detection and identification. Hyperspectral imaging has a wide range of applications, can
perform fine classification and identification of material properties, and has the advantages
of long-distance, non-contact, and non-destructive detection. However, in the current
literature, there are few research results on the identification and detection of hazardous
chemicals using a hyperspectral imaging technique [28–31]. In this study, we attempted to
take advantage of these two disciplines to apply refined classification with a high spectral
resolution to the identification of hazardous chemicals, so as to establish a certain theoretical
framework and provide a new method for long-distance and non-contact detection of
hazardous chemicals. The research results are of great significance for the detection and
early warning of hazardous chemicals and expansion of the applications of hyperspectral
imaging.

2. Materials and Methods
2.1. Experimental Samples and Targets Preparation

We investigated 8 hazardous chemicals, red phosphorus, corn starch, carbon pow-
der, strontium nitrate, wheat starch, sulfur, potassium permanganate, and magnesium–
aluminum alloy powder in our study to cover the basic different common types of solid
hazardous chemicals, including flammables, strong oxidizers, metal powders, and non-
metal powders. See Table 1 for the physical properties of the 8 target hazardous chemicals,
including density, color and purity, in which color was the most important indicator.
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Table 1. Physical properties of the hazardous chemicals.

No. Sample Density (g·cm−3) Color Purity

1 Red phosphorus 2.34 Reddish-brown AR
2 Corn starch 0.55 Pale yellow LR
3 Carbon powder 0.45 Black AR
4 Strontium nitrate 2.99 White AR
5 Wheat starch 0.48 White LR
6 Sulfur 2.07 Yellow CP
7 Potassium permanganate 2.70 Black purple AR
8 Magnesium–aluminum alloy powder 2.66 Silver gray CP

Samples were individually adhered to a stainless-steel plate for the experiment. The
target plate (Figure 1) was 300 × 300 × 10 mm, with one open side and a thickness of 1 mm.
Photosensitive adhesive was evenly applied on the plate, the hazardous chemical powder
was evenly distributed onto the photosensitive adhesive, and the plate was irradiated
for 12 h with a UV lamp to solidify the sample and obtain the prepared target for the
experimental work (Figure 2). Here we assumed that the variability for different samples of
the same material is insignificant, and especially for long-distance remote sensing detection,
this difference can be ignored.
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2.2. Test Equipment and Spectrum Collection Method

The Ocean Optics fiber optic spectrometer (American Ocean Optics; USB4000+; spec-
tral range 380–1100 nm; 3648–element linear silicon CCD array) was used to establish a
spectral database of typical hazardous chemicals in the laboratory. The spectrum collection
process is shown in Figure 3. After the equipment and the samples were ready, the sample
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was placed on a glass dish with a diameter of 100 mm and a filter paper on it, and then the
Ocean Optics fiber optic spectrometer was used to measure the reflectivity–wavelength
spectrum curves of the samples and the whiteboard (reference board, reflectivity of each
band is 50%). The distance between the detector and the sample was 150 mm, the above
steps were repeated 3 times, and the average value of the obtained spectrum data was
taken as the standard spectrum curve of the sample.
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In addition, a self-developed visible light imaging spectrometer (self-developed equip-
ment; Aerospace Information Research Institute, Chinese Academy of Sciences; Dyson
optical structure; Fery prism as a light splitting element; spectral range 400–1000 nm;
average spectral resolution 5 nm; 240 bands; instantaneous angular resolution 0.5 mrad;
field of view 30◦; frame rate 50 fps) was used to collect the spectral data of hazardous
chemicals in the actual environment, as shown in Figure 4. The hazardous chemicals targets
were placed horizontally adjacent to the ground in front of the laboratory in the Xishan
test area of Beijing Institute of Technology, and the visible light imaging spectrometer
was placed on the floor of the fourth floor of the laboratory (the distance between the
equipment and the hazardous chemicals target is about 30 m). The standard reflector and
the hazardous chemical targets were placed in the same area to ensure that both appear
in the push-broom field of view at the same time. Push-broom imaging was achieved
by controlling the rotation of the turntable. The above steps were repeated 3 times to
obtain 3 hyperspectral data cubes of hazardous chemicals. Based on the hyperspectral data
cubes, the reflectivity–wavelength spectrum curves of hazardous chemicals in the actual
environment can be obtained. It should be noted that this spectrum collection test was
carried out at 2 pm on May 24, 2019. The weather condition was cloudy, but the sunlight
was not blocked by clouds. It can be considered that the spectrum collection test for all
hazardous chemicals was carried out under the same weather conditions.
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2.3. Fast Extraction Technology of Spectral Information and Identification Method

Through the method in Section 2.2 above, a spectral database of hazardous chemicals
was established, and then hyperspectral images of the target samples were collected in
the actual environment. The target hazardous chemicals were identified by analyzing
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the spectral characteristics of the spectral curve of hazardous chemicals in the actual
environment and comparing them with that in the spectral database. The flowchart of the
principle of the identification method is shown in Figure 5.
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The extraction and identification of the spectral information of the hazardous chemi-
cals began with spectral curve preprocessing. In the preprocessing of the spectral curve,
smoothing or weighted smoothing was used to remove noise, and spectral characteristics
were highlighted by the method of continuum removal. In addition, reflection characteris-
tics were highlighted and the accuracy of identification was improved through radiometric
calibration and image enhancement. Next, background and sample spectra were analyzed
and compared to extract characteristic bands to determine the optimal combination of
bands for later calculation. Finally, the known spectral data in the spectrum library and
the target matching algorithm were used to identify hazardous chemicals, using either the
spectral curve based on the whole waveform feature for matching, or using the spectral
characteristics based on the band of interest for matching.

In this paper, firstly, the hazardous chemicals were identified and classified qualita-
tively based on the spectral curve of the whole waveform feature and the matching degree
of the spectral characteristics of the band of interest. The specific method was to compare
the spectral curve of any hazardous chemical in the actual environment with that of all
samples in the spectral database one by one, and then find out the most similar spectral
curve. As the samples in the spectral database were known, therefore, the hazardous
chemicals could be identified according to the principle that the most similar spectral curve
corresponded to the same sample. In order to further study the similarity of spectral curves
from a quantitative point of view, a method to characterize the matching degree of spectral
curves was proposed. In the same coordinate system, the more similar the shape of the
spectral curve of the sample in the actual environment was to that in the spectral database,
and the closer their reflectivity was, the smaller the area of the graph enclosed by the two
curves was, indicating that the higher the matching degree of the two curves was. Based
on this principle, the method to characterize the matching degree of spectral curves of
hazardous chemicals by “area ratio” was proposed, as shown in Formula (1):

p =

(
1 − Se − Sd

Sd

)
× 100% (1)

where p represents the matching degree of the spectral curves and the unit is “%”, Se
represents the graph area formed by the spectral curve of the hazardous chemicals in the
actual environment and the coordinate axis within the wavelength range in the coordinate
system, and Sd represents the graph area formed by the spectral curve of the sample in the
spectral database and the coordinate axis within the wavelength range in the coordinate
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system. Since the matching degree of the spectral curves was characterized by the ratio of
graph area, the wavelength and reflectivity of horizontal and vertical coordinates could be
treated as dimensionless in the calculation, and only the numerical value was considered,
not the unit. Absolute value was used to calculate the area difference, which could eliminate
the positive and negative compensation of some intersection areas. In addition, the cross
coordinates (wavelength) of all curves were the same, so the “area ratio” was equivalent
to the ratio of the difference of reflectivity to the reflectivity of the sample in the spectral
database, which included two aspects of measurement, namely, the difference of reflectivity
and the reflectivity value itself.

The above methods were suitable for the identification of hazardous chemicals with
obvious spectral characteristics. For the hazardous chemicals with similar spectral curves,
that is, the phenomenon of “different object with the same spectrum”, which is also a
common problem faced by all spectrum matching methods, the color can be used as a
reference indicator to assist in the identification and classification of hazardous chemicals.
The color here referred to the appearance color of the sample itself, for example, the color
of red phosphorus is reddish-brown, the color of corn starch is pale yellow, and the color
of carbon powder is black. When establishing the spectral database, we considered that the
appearance color of samples may be one of the characteristics used to identify different
samples. In the actual environment, for unknown samples, the color of the samples could
be obtained by taking photos with a common visible light camera, or by synthesizing
the false-color image from the image collected by the hyperspectral imager. In short,
the hazardous chemicals can be identified accurately and quickly by comprehensively
considering all kinds of information.

3. Results and Discussion
3.1. Establishment of Spectral Database

The establishment of the spectral database of known hazardous chemicals was the
basis for the identification of hazardous chemicals. Figure 6 was the spectral curve of the
samples studied in this paper in the spectral database. Therefore, for this paper, Figure 6
was the spectral database of the target samples.
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Figure 6. Spectral curves of hazardous chemicals in the spectral database.

An analysis of the spectral curves in Figure 6 showed different spectral trends and
spectral characteristics for different samples. For example, the reflectivity of sulfur in
the visible light range increased rapidly with wavelength, and then the curve flattened
at about 500 nm. The reflectivity of red phosphorus was low and basically stable in the
range of 400–600 nm and slowly increased after 600 nm. Obvious spectral characteristics
of sulfur, corn starch, red phosphorus, and potassium permanganate appeared around
500 nm, 550 nm, 600 nm, and 750 nm, respectively. The reflectivity of carbon powder
was very low, less than 10% in the visible light range. The reflectivity values of strontium
nitrate, wheat starch, and magnesium–aluminum alloy powder varied only slightly with
wavelength. Notably, the reflectivity of magnesium–aluminum alloy powder first decreased
and then increased with increasing wavelength. Generally speaking, the key characteristic
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wavelengths of different samples and their corresponding peaks were different, which
can be used as one of the important bases for spectra matching. In summary, different
samples had different spectral characteristics and curve-changing trends. This was due to
the molecular or atomic structures of different hazardous chemicals were different, and the
energy required for electronic transitions was different, resulting in different absorption or
reflection of electromagnetic waves at different wavelengths. Macroscopically, different
wavelengths corresponded to different reflectivity, and the reflectivity–wavelength curves
of each hazardous chemical were different and unique, that was the principle of identifying
hazardous chemicals through spectral curves.

Furthermore, it can be found from Figure 6 that the reflectivity of all samples had an
“abnormal” peak between 750 nm and 770 nm (corresponding to a wavelength of about
761 nm), which was manifested as a sudden increase and then a sudden decrease in reflec-
tivity, with a change of about 10%. Before and after the sudden change in reflectivity, the
reflectivity of the samples was consistent with the trend of the curve, and there is no large
difference due to the sudden change in reflectivity. The wavelength range corresponding to
this phenomenon was about 750–770 nm, and the characteristic absorption peak of oxygen
in the infrared region A-band is located at 760 nm. Therefore, this phenomenon may be
caused by the oxygen absorption peak. In addition, this phenomenon was a common
feature of all samples, so from the perspective of spectral matching, it would not interfere
with the identification of target samples.

3.2. Spectral Data for the Hazardous Chemicals in the Actual Environment

Figure 7 shows the hyperspectral data cube of hazardous chemicals in the actual
environment, including both the spatial information in the two-dimensional plane and the
spectral information in the spectral dimension. The ENVI software was used to extract
the spectral data of hazardous chemicals and whiteboard from the hyperspectral data
cube (relationship curve between DN value and wavelength), and then the reflectivity
of hazardous chemicals was calculated according to Formula (2). Finally, the reflectivity–
wavelength spectral curves of hazardous chemicals were drawn, as shown in Figure 8.

Rh = (Dh/Dw) ∗ Rw (2)

where Rh represents the reflectivity of the hazardous chemicals, Rw represents the reflec-
tivity of the whiteboard, and Dh and Dw represent the digital number (DN) values of the
hazardous chemicals and the whiteboard, respectively.
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Through the comparison, it is found that the spectral curve of hazardous chemicals
in the actual environment was consistent with that in the spectral database, which indi-
cated that the spectral curve collected by the self-developed spectrometer in the actual
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environment was reliable. With the spectral data of hazardous chemicals in the actual
environment, the identification and classification of hazardous chemicals can be further
carried out by matching with the data in the spectral database. As described below, this
article would study the identification and classification methods of hazardous chemicals
from the perspective of qualitative, quantitative and color aided identification.
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3.3. Identification of Hazardous Chemicals Based on Spectral Feature Matching

As mentioned earlier, the hazardous chemicals in the actual environment could be
identified by comparing their spectral data with the spectral database. To better evaluate
the degree of matching and improve the accuracy of identification, the spectral curves
using the data from sulfur, red phosphorus, potassium permanganate and corn starch
collected in the actual environment were overlaid with the spectral curves using data from
the database, as shown in Figure 9. The spectral characteristics of sulfur, red phosphorus,
potassium permanganate, and corn starch were obvious, and the reflectivity changes were
significant. Moreover, the spectral characteristics and the trends of change in reflectivity
shown in the overlay of the two curves are very similar. Therefore, these four hazardous
chemicals can be identified by the way of matching the whole waveform and spectral
characteristics.
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Figure 9. Matching degree of spectral curves of hazardous chemicals: (A) for sulfur, (B) for potas-
sium permanganate, (C) for red phosphorus, and (D) for corn starch. 
Figure 9. Matching degree of spectral curves of hazardous chemicals: (A) for sulfur, (B) for potassium
permanganate, (C) for red phosphorus, and (D) for corn starch.
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Similarly, the spectral curves using data from carbon powder, strontium nitrate, wheat
starch and magnesium–aluminum alloy powder collected in the actual environment were
overlaid with the spectral curves using data from the database, as shown in Figure 10. The
spectral characteristics of carbon powder, strontium nitrate, wheat starch, and magnesium–
aluminum alloy powder were not obvious, and there were no characteristic peaks, and no
distinct changes in reflectivity with wavelength. Additionally, except for the reflectivity
of the carbon powder target being maintained at a low level, the reflectivity values of the
remaining three sample targets were relatively close. As a result, it was relatively difficult
to identify only from spectral matching.
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For these types of hazardous chemicals with relatively similar reflectivity–wavelength
curves, strontium nitrate, wheat starch, and magnesium–aluminum alloy powder, a
combination of reflectivity value and color can be additionally considered for identifi-
cation. Magnesium–aluminum alloy powder is silver-grey, while strontium nitrate and
wheat starch powders are white. Therefore, color can be used to distinguish magnesium–
aluminum alloy powder from the other two. The reflectivity of wheat starch in the actual
environment was about 50–60%, while the reflectivity of strontium nitrate was about 40–
50%. Therefore, starch and strontium nitrate can be further distinguished via the reflectivity
value. In short, various information should be comprehensively considered for the accurate
identification of hazardous chemicals.

The samples fell into two categories, as the first group, sulfur, red phosphorus, potas-
sium permanganate, and corn starch had differences in their spectral curves and their
spectral characteristics, while the second group, carbon powder, strontium nitrate, wheat
starch, and magnesium–aluminum alloy powder did not. Additionally, the two categories
included a difference in color, with bright colors in the first group (light yellow, purple
and red), while the second group was achromatic (black, white, gray). The correspondence
between sample reflectivity and color is an interesting research topic, but is not the focus of
this paper and thus is not discussed in detail.

3.4. Matching Degree of Spectral Curves of Hazardous Chemicals

Based on the whole waveform and spectral characteristics matching method, haz-
ardous chemicals were classified and identified from the perspective of qualitative de-
scription. Next, from the quantitative point of view, Formula (1) was used to characterize
the matching degree of spectral curves of hazardous chemicals. Firstly, the area of the
graph enclosed by the spectral curves of four kinds of hazardous chemicals (the first group,
sulfur, red phosphorus, potassium permanganate, and corn starch) with obvious spectral
characteristics was obtained. Here, the area could be directly calculated by integration with
the help of Origin 2021b software, as shown in Figure 9. In the same way, the graph area
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enclosed by the spectral curves of the other four kinds of hazardous chemicals (the second
group, carbon powder, strontium nitrate, wheat starch, and magnesium–aluminum alloy
powder) with relatively insignificant spectral characteristics could be obtained, as shown
in Figure 10. The matching degree of spectral curves of all hazardous chemicals can be
obtained by Formula (1), as shown in Table 2.

Table 2. Matching degree of spectral curves of hazardous chemicals.

No. Hazardous Chemicals Se-Sd Sd p

1 Sulfur 4396.87 32,948.44 86.66%
2 Potassium permanganate 1103.50 4364.78 74.72%
3 Red phosphorus 1589.13 12,256.57 87.03%
4 Corn starch 2975.11 34,945.74 91.49%
5 Carbon powder 1804.37 1989.56 9.31%
6 Wheat starch 3280.50 22,636.52 85.51%
7 Strontium nitrate 3621.85 17,792.71 79.64%
8 Magnesium–aluminum alloy powder 2487.41 15,633.57 84.09%

From the analysis of the data in Table 2, it can be seen that in the first group of haz-
ardous chemicals with obvious spectral characteristics, three hazardous chemicals had
relatively high matching degrees of spectral curves, which are 86.66% of sulfur, 87.03% of
red phosphorus, and 91.49% of corn starch with the highest matching degree. The matching
degree of the above three kinds of hazardous chemicals (except Potassium permanganate)
was higher than that of the second group (carbon powder, strontium nitrate, wheat starch,
and magnesium–aluminum alloy powder) with relatively insignificant spectral characteris-
tics. In addition, among all hazardous chemicals, carbon powder had the lowest matching
degree of 9.31%, followed by potassium permanganate with 74.72%. It is worth noting
that the reflectivity of these two hazardous chemicals was also the smallest. Furthermore,
in terms of the relationship between matching degree and reflectivity, it can be known
by calculation that for the four hazardous chemicals with obvious spectral characteristics,
sulfur, red phosphorus, potassium permanganate, and corn starch, the matching degree of
their spectral curves was positively correlated with their reflectivity.

4. Conclusions

The long-distance and non-contact detection and identification of hazardous chemicals
based on hyperspectral imaging are important emergent means for the prevention of
explosion accidents and the early warning of secondary hazards. In the study, we explored
the possibility of detecting and identifying hazardous chemicals using hyperspectral
imaging, and draw the following conclusions:

1. The four hazardous chemicals of sulfur, red phosphorus, potassium permanganate
and corn starch had bright colors, obvious spectral curve characteristics, and obvious
changes in reflectivity with wavelength. They were relatively easy to identify through
the whole waveform and spectral characteristics matching method, although the
relationship between the richness of sample color and the spectral characteristics
needs to be further studied.

2. The spectral characteristics of the targets carbon powder, strontium nitrate, wheat
starch, and magnesium–aluminum alloy powder were not obvious, with no character-
istic peaks, and no distinct changes in reflectivity with wavelength. Moreover, except
for the reflectivity of the target carbon powder remaining at a low level, the reflectivity
values of the remaining three sample targets were relatively close and it was difficult
to identify them only from spectral matching. For these types of hazardous chemicals
with similar reflectivity–wavelength curves, a combination of reflectivity value and
color should be additionally considered for further identification.

3. A quantitative method to characterize the matching degree of the spectral curves of
hazardous chemicals was proposed, which can well characterize the matching degree
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of the spectral curves with the consideration of the difference between the reflectivity
of the spectral curves and the reflectivity of the sample in the spectral database. It
can be known by calculation that for the four hazardous chemicals with obvious
spectral characteristics, sulfur, red phosphorus, potassium permanganate, and corn
starch, the matching degree of their spectral curves was positively correlated with
their reflectivity.

4. In summary, this research provided a means and method to identify hazardous
chemicals using hyperspectral imaging and comparison of spectral characteristics,
and demonstrated its feasibility and presented identification results. Moreover, the
spectral matching degree of hazardous chemicals was characterized by a quantitative
method. Based on this, a certain theoretical framework and experimental results are
established, which are of great significance for the detection and early warning of
hazardous chemicals and expansion of the applications of hyperspectral imaging.
Future works can focus on further increasing the types of typical hazardous chemicals
to expand the spectral database.
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