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Abstract: Unmanned aerial systems (UASs) have recently become an affordable means to map forests
at the species level, but research into the performance of different classification methodologies and
sensors is necessary so users can make informed choices that maximize accuracy. This study investi-
gated whether multi-temporal UAS data improved the classified accuracy of 14 species examined the
optimal time-window for data collection, and compared the performance of a consumer-grade RGB
sensor to that of a multispectral sensor. A time series of UAS data was collected from early spring
to mid-summer and a sequence of mono-temporal and multi-temporal classifications were carried
out. Kappa comparisons were conducted to ascertain whether the multi-temporal classifications
significantly improved accuracy and whether there were significant differences between the RGB
and multispectral classifications. The multi-temporal classification approach significantly improved
accuracy; however, there was no significant benefit when more than three dates were used. Mid- to
late spring imagery produced the highest accuracies, potentially due to high spectral heterogeneity
between species and homogeneity within species during this time. The RGB sensor exhibited signifi-
cantly higher accuracies, probably due to the blue band, which was found to be very important for
classification accuracy and lacking in the multispectral sensor employed here.
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1. Introduction

Detailed maps of forest composition are necessary for effective and efficient forest
management [1,2]. Maps depicting species-level composition serve a number of applica-
tions, such as monitoring biodiversity [3,4], forest health assessments [5,6], conducting
precision forestry [7,8] or as inputs for species-specific allometric models [9]. Remotely
sensed imagery has been used to decades as a quick and efficient means to produce continu-
ous, large-area maps of forest types [10,11]. However, traditional remote sensing platforms,
such as satellite or aerial imagery, are incapable of providing the temporal and/or spatial
resolutions necessary for species level mapping at an affordable cost [12,13]. Thanks to
recent technological advancements, unmanned aerial systems (UASs) have become an
affordable alternative, capable of providing the flexibility and resolution necessary to
accurately map forest species composition [2,14].

UASs are easily capable of providing centimeter-level imagery that can be used
to identify individual plants [15,16]. Many studies have now employed UASs to map
individual or small groupings of invasive plants [17–20], shrubs, grasses, and forbs [21–25],
as well as wetlands [26,27]. More studies are now evaluating UAS-derived orthomosaics
for tree species mapping [6,28–31]. All are taking advantage of the imagery’s high spatial
resolution to distinguish and classify individual trees or small groupings of trees of the
same species with positive results.
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Besides the significantly higher spatial resolution, the flexibility of the UAS platform
is another major characteristic. For one, UAS platforms can be equipped with different
sensors capable of acquiring information from different portions of the electromagnetic
spectrum (EMS), like the visible bands (RGB), red edge, and near infrared (NIR) [14,32].
Typically, though, cost and payload weight limits the sensor used [14,16,33]. As a result,
consumer-grade digital cameras are often employed in UAS studies [21,34–37]. The down-
side of employing these cameras, however, is that they ordinarily only capture reflectance
in the visible range of the EMS (i.e., RGB cameras). Typically, most land cover classifica-
tions, especially with vegetation, require multispectral sensors capable of sensing beyond
the visible range of the EMS, frequently in the NIR spectrum, in order to improve the
distinction between classes, especially classes that are spectrally similar in the visible range,
like vegetation [38,39]. Many studies have modified the spectral sensitivity of the bands in
the consumer-grade cameras by adding or removing filters from the camera lens, usually
to capture NIR reflectance [6,18,22,40,41]. The modified cameras, however, are not perfect
substitutes for real multispectral cameras. All three bands on a consumer-grade camera are
sensitive to NIR energy, and thus removal of the filter, blocking NIR energy from reaching
the sensor, can cause redundant band sensitivity or spectral overlap between bands. This
spectral overlap reduces the potential for discrimination between features. Several studies
have found the RGB imagery performed better compared to the CIR imagery from a modi-
fied camera [6,28,42] and have suggested that the redundant sensitivity between the bands,
after modifying the camera, reduced the ability to discriminate between species using CIR
imagery. Franklin et al. (2018) found the imagery collected by an actual multispectral
camera outperformed the RGB imagery for tree species mapping. However, multispectral
cameras can be more expensive [14,42] and thus more cost-effective methods of accurately
generating this information would help make UASs more operationally feasible.

Taking advantage of UASs’ temporal flexibility may help to overcome limitations in
sensor spectral resolution [2]. The much higher temporal resolution of the UAS platform is
considered one of its major advantages over other remote sensing platforms [1,12,33]. In a
multi-temporal classification, multiple dates of imagery are used to create a single land
cover map, taking advantage of the spectral differences within and between species during
this period to improve the accuracy of the map [43]. With an appropriately timed series
of images, multiple species can be differentiated [2]. In highly heterogeneous forests with
many species of trees, like those characteristic of New England, spectral separability is
crucial [43–45].

Several studies have demonstrated the advantages of a multi-temporal classification
for mapping forest composition with moderate resolution satellite imagery. However, it
should be noted that these studies are typically classifying species mixtures rather than sin-
gular species, since the spatial resolution is usually larger than most tree crowns [44,46,47].
The use of high spatial resolution imagery for multi-temporal species classification is un-
common [46–48] and the use of very high spatial resolution (sub-meter), non-UAS imagery
is scarce, mainly due to the high costs for both [28]. While several studies have taken
advantage of the temporal resolution of the UAS for other applications [34,37,49–51], few
have done so for tree species classification [6,28].

As the availability and access to high, and now very high, spatial resolution imagery
has increased, there has been a shift away from traditional per-pixel image processing for
detecting and mapping features of interest to an object-based approach [52,53]. Object-
based image analysis was a move towards integrating more spatial information into the
classification/feature detection process in an effort to try and mimic human photointer-
pretation [54]. As of late, improvements in computer hardware have made deep learning
algorithms, like the popular convolutional neutral networks (CNNs), a viable tool. Deep
learning looks to train computers to think like humans and automatically identify features
in an image [55]. Deep learning CNNs have performed well with very high resolution
imagery but, as pointed out by Bhuiyan et al. [56], can only utilize three spectral bands.
Users must typically choose a limited subset of all the available bands [56–58], which would
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limit the use of multi-temporal datasets which contain numerous bands. Furthermore,
deep learning approaches perform best with a large quantity of reference data and require
substantial computing power [59]. Meanwhile, computationally efficient machine learning
algorithms, such as random forest, are readily available in many coding languages, such as
R and Python, and have been found to perform well with high-dimensional, multi-temporal
datasets [6,28,60,61].

The integration of UASs into the field of remote sensing is very recent and given the
inherent differences between UASs and traditional remote sensing platforms/data, there
is a need to explore how UASs perform in a variety of applications and environments to
better inform end-users on how best to employ them. This study sought to investigate
whether multi-temporal classification of RGB and multispectral UAS imagery improved the
accuracy of species-level forest composition maps in a highly heterogeneous forest in New
Hampshire, USA. Additionally, an optimal phenological window for data collection was
investigated and the accuracy of the maps produced from RGB imagery were compared
to those produced from the multispectral imagery. This study will inform users on data
collection strategies that may help to optimize accuracy in these complex environments.

2. Materials and Methods
2.1. Study Area Description

This study was conducted at Kingman Farm in Madbury, NH, USA (Figure 1). The
property is owned by the University of New Hampshire (UNH) and is comprised of both
agricultural fields and research support buildings for the NH Agricultural Experiment
Station, as well as 101 ha of forest which are managed by the UNH Office of Woodlands
and Natural Areas for the purposes of education, research, and conservation. From this
point forward, any reference to Kingman Farm, or just Kingman, will be used to indicate
the forested lands on the property. The Kingman Farm forests are an example of a hemlock–
beech–oak–pine forest community [62], dominated by white pine (Pinus strobus), eastern
hemlock (Tsuga canadensis), red maple (Acer rubrum), red oak (Quercus rubra), and American
beech (Fagus grandifolia). The land-use history of the property and surrounding region,
combined with the ongoing management practices within the woodlot, has resulted in a
considerable mix of species. A recent inventory of the property conducted in 2017 as part
of the UNH Continuous Forest Inventory (CFI) Program detected 16 different species of
trees on the property.
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m above the trees (approximately 120 m above the ground) with an 80% latitudinal over-
lap and an 85% longitudinal overlap. The Sequoia requires an additional radiometric cal-
ibration prior to each flight using a calibration target with a known albedo. 
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boundary indicates the area covered by the UAS for all data collections.
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It is important to note several characteristics within the study site that may potentially
affect the within-species spectral response. Hemlock woolly adelgid and beech bark disease
are widespread throughout the study site. Infected eastern hemlock and American beech
trees may exhibit differing spectral patterns compared to uninfected individuals. Addi-
tionally, the study site encompasses a range of hydrologic conditions, from dry uplands to
permanently saturated swamps. Facultative species like red maple tend to exhibit wide
variability in phenology due to their ability to tolerate a multitude of conditions [63].

In order to adhere to Part 107 of the U.S. Federal Aviation Administration Regulations
(Small Unmanned Aircraft Systems, 14 C.F.R. Part 107) and to maintain the safety of the
research team and others, only a portion of the Kingman Farm was covered by the UAS, as
indicated in Figure 1. The far eastern half of the property is classified as Class E to Surface
airspace belonging to the Pease International Airport and is off limits to UASs; it was thus
removed from the study area. Additional limits were placed on the UAS mission area
to ensure the pilot and visual observers could maintain visual line-of-sight as well as a
constant radio connection with the UAS while flying.

2.2. UAS Data Collection

All flights were carried out with a Sensefly eBee X fixed-wing UAS and the eMotion 3
mission planning software [64]. Two sensors, the Sensefly Aeria X and the Parrot Sequoia,
were flown to collect the RGB and multispectral imagery, respectively. The specifications
for each camera are provided in Table 1.

Table 1. Camera specifications for the Sensefly Aeria X and Parrot Sequoia.

Aeria X Parrot Sequoia MSS

Shutter Global Global
Sensor APS-C Multispectral sensor

Resolution 24 MP 1.2 MP
Focal length 18.5 mm 3.98 mm

Spectral bands with
ranges

Blue
Green
Red

Green (510 nm–590 nm)
Red (620 nm–700 nm)

Red edge (725 nm–745 nm)
Near infrared (750 nm–830 nm)

The Aeria X is a standard DSLR camera and employs a common APS-C sensor capable
of capturing normal color (RGB) imagery. The Parrot Sequoia is a multispectral sensor
specifically designed for vegetation mapping and monitoring. As such, it captures spectral
information in the green, red, red edge, and NIR portions of the EMS. While the Sequoia
camera does carry an additional RGB sensor, this sensor is not optimized for the generation
of the orthomosaics and was not utilized [65].

Imagery was collected over Kingman farm between April 2019 and June 2020. The
goal was to fly bi-weekly from the very beginning for the growing season through to the
end in order to capture the full phenology of the forest with both sensors. There was a
preference to fly on cloudy days to maintain consistent illumination across all the images
and to avoid shadows. When not possible, the imagery was collected under clear or nearly
clear conditions and as close to solar noon at possible. All missions were undertaken
100 m above the trees (approximately 120 m above the ground) with an 80% latitudinal
overlap and an 85% longitudinal overlap. The Sequoia requires an additional radiometric
calibration prior to each flight using a calibration target with a known albedo.

Table 2 shows the collection dates for both cameras with a seasonal descriptor. Due
to weather, flight constraints, and equipment malfunctions, it was not possible to collect
all the imagery within a single growing season. Within-sensor collections were largely
within the same year (2019 for the Aeria X and 2020 for the Sequoia), with the exception
of the first and last dates of collection for the Aeria X. Every effort was made to keep
the between-sensor collections as close as possible in order to avoid large differences in
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phenology when comparing sensors. Weather conditions between 2019 and 2020 were
similar. May and June 2020 were roughly two degrees warmer and June 2020 received two
more inches of rain compared to June 2019. A visual inspection of the imagery did not
show significant differences in phenology, however.

Table 2. Collection dates for each sensor with seasonal descriptions. The description is based on
regional trends in phenology and not on any particular date ranges.

Season Aeria X (RGB) Parrot Sequoia (MSS)

Early spring 26 April 2020 28 April 2020
Mid-spring 16 May 2019 15 May 2020
Late spring 30 May 2019 29 May 2020

Early summer 12 June 2019 10 June 2020
Mid-summer 27 June 2020 26 June 2020

2.3. Imagery Pre-Processing and Orthomosaic Generation

Due to the high canopy cover in the study area, it was not possible to set ground control
points (GCPs) across the woodlot to improve the positional accuracy of the orthomosaics.
The eBee X, however, is real-time kinematic (RTK)-enabled and thus the raw GPS positions
for each image could be PPK post-processed. All the raw UAS imagery were pre-processed
using the Sensefly Flight Data Manager built into the eMotion 3 software. The Flight Data
Manager extracted the geotags for all the images stored in the mission flight logs and then
used a post-process kinematic (PPK) technique to correct the positions. A CORS station
located approximately 3.85 km from the center of the study area (station ID: NHUN) was
used for all PPK processing. Once corrected, the software then geotagged the images with
the corrected positions.

Each date of collection was processed in Agisoft Metashape Professional (formally
Agisoft Photoscan) [66]. Agisoft utilizes the structure from motion (SfM) and multi-view
stereo (MVS) processes to generate a georeferenced orthomosaic, or ortho. Points repre-
senting different features within each image are detected and then matched across multiple
overlapping images. The matched points, called tie points, are then utilized to estimate the
interior and exterior orientation parameters for the camera for each image. The reprojection
error for all models ranged between 0.448 and 1.28 px. The original point cloud, or sparse
point cloud, from the tie points is densified by matching pixel windows between successive
image pairs using the estimated camera orientations [67,68]. A digital surface model (DSM)
is generated from the dense point cloud, which is then used to orthorectify the images. The
rectified images are then mosaicked together to form the final orthomosaic. Specifically,
within the Agisoft software, the Align Photos tool was run in the high accuracy mode with
generic preselection, guided image matching, and adaptive camera model fitting turned
on. The dense point cloud generation was run in high quality with mild filtering.

While all the missions were flown with the same parameters, the different focal
lengths of the two sensors resulted in very different spatial resolutions for the resulting
orthomosaics. The coarsest spatial resolution of the Aeria X and Sequoia orthos were 2.7
cm and 11.9 cm, respectively. In order to eliminate spatial resolution as a factor when
comparing the performance of the two sensors, all the orthos were exported at a 12 cm
spatial resolution from Agisoft. They were then georeferenced to improve the positional
agreement. The 27 June 2020 Aeria X orthomosaic was chosen as the base ortho. The
remaining orthomosaics were then registered to the base ortho using several well-dispersed
structural features across the study site and rectified using an affine transformation and
nearest neighbor resampling.

2.4. Reference Data Collection

The dense point cloud from the 27 June 2020 Aeria X imagery was exported and
converted into a DSM with a 12 cm spatial resolution to match that of the orthomosaics.
The DSM was then normalized using a digital terrain model (DTM) produced from a 2011
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leaf-off Lidar collection for coastal New Hampshire and downloaded from the GRANIT
LiDAR Distribution site (https://lidar.unh.edu/map/, accessed on 2 July 2021) to produce
the canopy height model (CHM). Due to the inability of photogrammetrically produced
point clouds to accurately capture the ground, externally produced DTMs, typically from
LiDAR, are commonly used to normalize those produced from imagery [34,35,69]. Based
on the land-use history of the site, there was no concern about the about the age of the
DTM. A 3 × 3 cell Gaussian filter was then applied to the CHM to reduce the noise in the
original model [70]. Pixels with a height less than 5 m were considered non-forested and
subsequently masked from the CHM.

A local maximum filter was used to generate points representing treetops for the
entire study area [29,71]. Kingman farm has a high stand density with highly variable
crown widths. To ensure smaller crowns were appropriately captured, a 7 cell, or 84
cm wide, circular window was applied. This window size was chosen based on the
smallest measured crown width from a 2017 CFI inventory of the Kingman Farm woodlot.
While smaller window sizes will over-segment larger crowns [72], this is preferable to
under-segmentation, which could result in the canopies of different species being grouped
together, and has been found to improve classification accuracies [73,74].

An initial set of reference trees were selected from the 2017 CFI inventory. For each
sampled tree, the distance and azimuth from the plot center to the center of the stem at
breast height was recorded in addition to the tree species. This information was used to
map the location of each sampled tree stem. Each mapped tree was first carefully inspected
to determine whether the tree could visually be seen in the fully leaf-on imagery and CFI
trees that were obscured by taller trees were removed. Next, for trees that were leaning, the
location of the center of the stem would not match that of the highest point of the crown,
so a visual inspection of the UAS imagery in Agisoft was used to select the local maximum
for the remaining trees.

Based on the species represented in the chosen CFI trees, 14 were chosen for clas-
sification (Table 3). These species were determined to have a high enough occurrence
within the study area to ensure that a representative number of reference samples could
be gathered. To improve the efficiency of the reference data collection, a random forest
(RF) classification [60] was performed, using the chosen CFI trees as training data. Each
local maximum was assigned a preliminary classification based on the average spectral
information from the 26 June 2020 Sequoia orthomosaic occurring within a 0.5 m buffer
around each point. This preliminary classification was used to perform stratified random
sampling. Each selected point was then carefully inspected using the high-resolution
orthomosaics and adjusted as necessary. Field reconnaissance was carried out for those
reference samples that were too difficult to photo interpret. One hundred samples per
class (species) were collected per the recommendation of Congalton and Green [75]. These
reference samples were then randomly divided into two independent groups, one for
training the classification algorithm and the other for validation, with half the samples
assigned to each.

A marker-controlled watershed (MCW) segmentation was performed to delineate
individual tree crowns. In a traditional watershed segmentation for tree crown delin-
eation, a single banded image, typically representing height, is treated as a topographic
surface [52,72]. The values are inverted so that local maximums (i.e., potential treetops)
become local minimums and the catchment basins (i.e., crown boundaries) around all the
local minima within the image are delineated. MCW segmentation requires an additional
input, markers or points representing the local minima of interest. The basins associated
with non-marker minima are converted to plateaus within the image and not delineated.
The result is a one-to-one relationship between markers and basins, which reduces over-
segmentation. In this study, the local maximums representing the tree crowns in the study
area were used as the markers and the CHM was used to define the crown boundary.

https://lidar.unh.edu/map/


Remote Sens. 2021, 13, 2631 7 of 24

Table 3. Scientific and common names of tree species classified in this study.

Scientific Name Common Name Abbreviation

Fagus grandifolia American beech ab
Betula lenta Black birch bb

Quercus velutina Black oak bo
Tsuga canadensis Eastern hemlock eh
Betula papyrifera Paper birch pb

Populus grandidentata Bigtooth aspen pg
Populus tremuloides Quaking aspen qa

Acer rubrum Red maple rm
Quercus rubra Red oak ro

Carya ovata Shagbark hickory sh
Acer saccharum Sugar maple sm

Fraxinus americana White ash wa
Pinus strobus White pine wp

2.5. Tree Species Classification

A series of mono-temporal (single date) and multi-temporal (multiple dates) classi-
fications were carried out for each sensor using an object-based classification approach,
whereby a grouping of pixels (image objects) are classified instead of the individual pixels.
An object-based approach performs better than a traditional pixel-based approach when
classifying high-spatial resolution imagery since it can better handle the higher intra-class
spectral variability that occurs as the spatial resolution increases [53,76,77]. The previously
created tree crown segments acted as the image objects for this study.

The RF classifier was employed for all classifications. RF is a robust, non-parametric
classification algorithm used often for classification and employed in other multi-temporal
species classification studies [6,23,78,79] The per-band average spectral value of the training
tree segments was used to train the RF classifier. Each RF model was grown using 500 trees
and the square root of the number of spectral bands included in the model as described
below. The resulting model was then applied to the independent validation tree segments
to assess its accuracy.

Each singular date of imagery was classified alone (i.e. mono-temporal classification).
Additionally, a series of multi-temporal image stacks were classified using varying combi-
nations of the single-date orthomosaics for each sensor. Image stacks started with imagery
for every combination of two dates. The number of dates included in the stack was then
increased incrementally until all dates of imagery were included (i.e., three-date stack,
four-date stack, five-date stack). In total, 62 combinations were generated, 31 per sensor
(Table 4).
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Table 4. All single- and multi-date image stacks for classification grouped by the number of dates included and indicated
on the far-left. The index column is a unique identifier assigned to each combination within a sensor.

Index Aeria Sequoia

One Date

1 4-26-20 4-28-20
2 5-16-19 5-15-20
3 5-30-19 5-29-20
4 6-12-19 6-10-20
5 6-27-20 6-26-20

Two Dates

6 4-26-20 + 5-16-19 4-28-20 + 5-15-20
7 4-26-20 + 5-30-19 4-28-20 + 5-29-20
8 4-26-20 + 6-12-19 4-28-20 + 6-10-20
9 4-26-20 + 6-27-20 4-28-20 + 6-26-20
10 5-16-19 + 5-30-19 5-15-20 + 5-29-20
11 5-16-19 + 6-12-19 5-15-20 + 6-10-20
12 5-16-19 + 6-27-20 5-15-20 + 6-26-20
13 5-30-19 + 6-12-19 5-29-20 + 6-10-20
14 5-30-19 + 6-27-20 5-29-20 + 6-26-20
15 6-12-19 + 6-27-20 6-10-20 + 6-26-20

Three Dates

16 4-26-20 + 5-16-19 + 5-30-19 4-28-20 + 5-15-20 + 5-29-20
17 4-26-20 + 5-16-19 + 6-12-19 4-28-20 + 5-15-20 + 6-10-20
18 4-26-20 + 5-16-19 + 6-27-20 4-28-20 + 5-15-20 + 6-26-20
19 4-26-20 + 5-30-19 + 6-12-19 4-28-20 + 5-29-20 + 6-10-20
20 4-26-20 + 5-30-19 + 6-27-20 4-28-20 + 5-29-20 + 6-26-20
21 4-26-20 + 6-12-19 + 6-27-20 4-28-20 + 6-10-20 + 6-26-20
22 5-16-19 + 5-30-19 + 6-12-19 5-15-20 + 5-29-20 + 6-10-20
23 5-16-19 + 5-30-19 + 6-27-20 5-15-20 + 5-29-20 + 6-26-20
24 5-16-19 + 6-12-19 + 6-27-20 5-15-20 + 6-10-20 + 6-26-20
25 5-30-19 + 6-12-19 + 6-27-20 5-29-20 + 6-10-20 + 6-26-20

Four Dates

26 4-26-20 + 5-16-19 + 5-30-19 + 6-12-19 4-28-20 + 5-15-20 + 5-29-20 + 6-10-20
27 4-26-20 + 5-16-19 + 5-30-19 + 6-27-20 4-28-20 + 5-15-20 + 5-29-20 + 6-26-20
28 4-26-20 + 5-16-19 + 6-12-19 + 6-27-20 4-28-20 + 5-15-20 + 6-10-20 + 6-26-20
29 4-26-20 + 5-30-19 + 6-12-19 + 6-27-20 4-28-20 + 5-29-20 + 6-10-20 + 6-26-20
30 5-16-19 + 5-30-19 + 6-12-19 + 6-27-20 5-15-20 + 5-29-20 + 6-10-20 + 6-26-20

All 31 4-26-20 + 5-16-19 + 5-30-19 + 6-12-19 + 6-27-20 4-28-20 + 5-15-20 + 5-29-20 + 6-10-20 + 6-26-20

2.6. Accuracy Assessment

The accuracy of all the classifications was assessed using the validation tree segments
and an error matrix approach [80]. The ground classification of each validation tree was
compared to its respective map classification and the results tallied in a matrix with the
columns and the rows of the matrix representing the sample’s ground and map classifica-
tion, respectively. For each matrix, the overall accuracy (OA) was calculated by dividing the
sum of the major diagonal (total agreement) by the total number of samples. The accuracy
of the individual classes was determined by calculating the user’s (UA) and producer’s
(PA) accuracies [81]. The PA was calculated by dividing the number of correctly classified
samples for each class by the total number of samples for that class. The UA was calculated
by dividing the number of correctly classified samples for each class by the total number of
samples classified as that class. UA and PA were then used to calculate an F-measure (F;
Equation (1)) as a way to summarize the UA and PA in a single metric.

F = 2∗ (UA ∗ PA)

(UA + PA)
(1)

Due to the randomization approach implemented by the RF classifier, the accuracy of
no two RF models will be the same. To account for this, 30 RF models were generated for
each date combination in Table 4. Each model was validated and the OA, UA, PA, and F
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calculated. These results were then averaged together to calculate a mean accuracy result
for each combination.

2.7. Feature Importance

A feature importance investigation was carried out for both sensors. An RF classifier
was trained using the training tree segments and all the bands for all dates of imagery and
validated using the independent validation tree segments to establish a baseline accuracy.
One at a time, each band included in the image stack was removed, the model retrained
and validated, and the difference in overall accuracy taken as the measure of importance
for that band.

2.8. Statistical Comparisons

A kappa analysis was conducted to statistically compare the best single-date and
multi-date classifications for each sensor. The kappa statistic, KHAT, is another measure of
how well the classification agrees with the reference data that does not assume the land
cover classes are independent and utilizes the information in the entire error matrix, not just
the diagonal [80]. The KHAT statistic for two error matrices can be statistically compared
to determine whether there is a significant difference between methodologies [75].

Several KHAT comparisons were conducted. First, within each sensor, the best mono-
and multi-temporal classifications were compared to determine not only whether a multi-
temporal classification was significantly better than a single-date classification, but also
whether there was a significant difference between how many dates were used. Next,
between-sensor KHAT comparisons were conducted for each date of imagery to compare
the classification performance of the RGB imagery to that of the multispectral imagery.

3. Results
3.1. Within-Sensor General Classification Results

Figure 2 presents the results of the three best performing classifications for the single-
and multi-date image stacks based on the OA. The OA for all the classifications performed
can be found in Appendix A (Tables A1 and A2). Overall classification accuracies were
highly varied, ranging from 24.8% to 61.1% for the Aeria and 27.0% to 55.5% for the
Sequoia. Across the individual date groups, the mono-temporal classifications had the
lowest overall accuracies, reaching a maximum OA of 37.3% and 36.2% for the Aeria and
Sequoia respectively. Generally, the inclusion of additional dates resulted in the accuracy
of all classifications improving. However, there was a distinct leveling off in the OA as the
number of dates included in the multi-temporal classification increased, reaching the peak
OA for the five-date classification (Aeria) and for the four-date classification (Sequoia).

For the top performing combinations (Figure 2), the mid-spring and late spring
imagery were consistently chosen. The best mono-temporal classification for both sensors
also occurred at the end of May, for late spring. For the multi-temporal classifications,
the best date combinations varied slightly between the sensors, but mid- and late spring
imagery were frequently utilized, especially for the two and three-date combinations for
which there was 10 combinations for each.

3.2. Mono- Versus Multi-Temporal Classification

The results of the pairwise comparison between the mono- and multi-temporal clas-
sifications for both sensors are given in Table 5. For each pairing, the 30 individual
classifications were compared and the number of significantly different classifications
totaled. Both sensors exhibited the same trend in the number of significantly different
classifications. The best two-date multi-temporal classification was always significantly
better than the best mono-temporal classification. Between two and two-dates, the number
of significantly different classifications decreased considerably. After three dates of imagery,
there was no significant difference in the classifications.
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Figure 2. The three best single- and multi-date image combinations based on the overall accuracy
for (a) the normal color Aeria sensor and (b) the multispectral Parrot Sequoia sensor. The bars are
grouped by the number of images in the image stack.

Table 5. Results of the mono- versus multi-temporal kappa comparisons for the Aeria and Sequoia.
The date combination with the highest overall accuracy within each sensor was used for each com-
parison. The value represented the number of iterations out of 30 that were found to be significantly
different at the 95% confidence level.

Number Significant
Comparison Aeria Sequoia

One date vs. two dates 30 30
Two dates vs. three dates 5 3
Three dates vs. four dates 0 0
Four dates vs. five dates 0 0

3.3. Per-Species Classification Result

The UA, PA, and F for all species and all classifications are presented in Figures 3 and 4
for the Aeria and Sequoia, respectively. The accuracy of eastern hemlock (eh) and white
pine (wp), the only coniferous species in this study, were consistently better than that of
the deciduous species across all combinations. The F of both were often >70%, peaking at
88% for eastern hemlock (Aeria) and 80% for white pine (Sequoia). White ash (wa), red
maple (rm), and American beech (ab) were consistently poorly classified, never achieving



Remote Sens. 2021, 13, 2631 11 of 24

Fs greater than 50%. The performance of the remaining species varied with the number of
dates included and the specific dates in the combination for each sensor.
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3.4. Between-Sensor Classification Results

The best performing Aeria and Sequoia classifications based on OA for each mono- and
multi-temporal classification group were statistically compared. For each pairing, the 30
individual classifications were compared and the number of statistically significant results
summarized. The results of the comparisons are shown in Figure 5. When compared
to the Aeria, the Sequoia consistently under-performed in terms of OA. The smallest
difference was seen in the mono-temporal classifications (OA difference of 1.1%) while
the greatest occurred with the five-date classification (OA difference of 6.9%). None of
the mono-temporal classifications were found to be significantly different. Each of the
multi-temporal pairings had some significantly different results, the number of which
increased with the number of added dates. Almost all of the five-date comparisons were
found to be significantly different.
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Figure 5. Comparison between the best performing Aeria and Sequoia combinations, indicated on
the label, within each combination group. The asterisk (*) indicates at least one statistically significant
comparison at the 95% confidence level over 30 iterations. The value in parenthesis presents the
number of iterations in which the pairing was significantly different.

3.5. Feature Importance

The results of the feature importance analysis are presented in Figure 6. Feature
importance here was measured as the decrease in overall accuracy relative to a baseline
model (the five-date combination) when that feature or band was removed. Positive values
indicate that the model accuracy decreased when the band was removed while negative
values indicate that the model accuracy improved. For the Aeria, the blue bands were
considerably more important than the other spectral bands. Furthermore, the mid- and
late spring imagery, regardless of the spectral band, were also important. The Sequoia had
numerous bands indicated as having negative impacts on performance. The mid- and early
spring green and red bands were predominately the most important. The red-edge and
NIR bands were consistently the least important.
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Figure 6. Feature importance values for the (a) Aeria and (b) Sequoia sensors. Feature importance
was measured as the decrease in overall accuracy of the baseline model when that band was removed
from the model. Positive values indicate a decrease in accuracy while negative values indicate an
increase is accuracy.

4. Discussion

This study sought to (1) investigate whether a multi-temporal approach improved
the accuracy of species-level forest composition mapping with UAS imagery in a highly
heterogeneous forest, and in doing so to determine whether there is an optimal phenological
window within which to collect imagery; and (2) compare the performance of RGB imagery
collected via a consumer-grade DSLR to that of a multispectral camera. A series of mono-
temporal and multi-temporal classifications of 14 different species were carried out for both
sensors and validated with an independent set of reference samples and error matrices.
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Kappa comparisons were then conducted between the best performing mono- and multi-
temporal classifications within each sensor and then between sensors to determine whether
multi-temporal classifications were significantly better than mono-temporal classifications
and whether there was any significant difference between the classifications produced by
the RGB and multispectral sensors.

While the underlying goal of this study is to inform users on data collection strategies,
it is important to note that this study was conducted in a single stand in one point of
the globe. The results of this study should be interpreted within the context from which
they were derived. Geographic variation in phenology aside, results may vary even with
geographically close locations simply due to differences in site, lighting, and composition,
most of which are difficult to control.

4.1. Tree Species Classification Accuracy

This study achieved maximum overall accuracy of 61.1% and 55.5% for the Aeria and
Sequoia, respectively. These OAs are lower compared to comparable studies that performed
similar investigations [6,28,82]. Both Lisein et al. [28] and Michez et al. [6] conducted multi-
species level forest mapping in mixed forest stands using both multi-temporal RGB and
multispectral UAS imagery. These studies achieved maximum accuracies of 91.2% (based
on RF out-of-bag errors) and 84.1%, respectively. It should be noted that these studies,
while similar, varied in two important ways. First, both studies only included five classes.
Some were species while others were groupings representing specific genera (e.g., birches).
This study included 14 individual species of trees. The greater number of species employed
here led to greater spectral confusion, especially for species exhibiting similar phenology
across the time period investigated [6]. This study chose to represent the diversity of the
study site “as is”, rather than choosing a subset of species exhibiting the best separation,
thus expanding the generalization of these results to similar conditions [2,23].

Second, these studies employed additional derivative layers that were not utilized here,
mainly spectral indices and textural metrics. Additional derivative information, especially
texture, has been found to significantly improve the accuracy of forest classification in a
number of settings [78,82,83] and in other vegetation mapping studies as well [84,85]. This
study establishes a baseline for the performance of these two sensors based on spectral
properties alone. Given the resolution these UAS sensors are capable of achieving, a great
deal of information on crown texture can be extracted. The benefits of textural metrics
for mapping stands such as the one investigated here are an interesting topic in need of
additional research.

4.2. Mono- versus Multi-Temporal Classification

Both sensors employed here demonstrated a continuous increase in the overall clas-
sification accuracy as the number of dates included in the multi-temporal classification
increased (Figure 2). This result falls in line with many other studies that have investigated
the performance of multi-temporal classifications both with UAS [6,28,82] and non-UAS
imagery [43,46,86,87]. Of interest in this study was the significance of the additional ben-
efit incurred by adding more dates. The highest accuracy was achieved when using all
five dates of imagery for the Aeria and four dates for the Sequoia. From a cost–benefit
perspective, one would look to achieve the highest accuracy possible with the least number
of collections. While the OA did increase with the number of dates utilized, the rate
at which it increased for both sensors leveled off, indicating a diminishing return. The
results of the mono- versus multi-temporal kappa comparisons support this conclusion
(Table 5). The two-date classification for both sensors was significantly better than the
mono-temporal classification for all iterations. There was only a minor benefit when a third
date was included and, beyond three dates, there was no significant benefit. Weil et al. [23]
similarly saw little improvement in classification accuracy after three-dates of optimal
near-surface imagery using the RF classifier. These results not only reinforce the benefits of
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multi-temporal classifications, but also suggest that there would be no need to collect more
than three dates of optimally timed imagery.

4.3. Timing of Aerial Collection

Based on the date combinations of the best performing mono- and multi-temporal
classifications, the mid- and late spring imagery play an important role in trees species
classifications. The best mono-temporal collection date was found to be towards the end of
May for both sensors. Similar studies investigating optimal phenological timing have also
found the middle and end of spring to be important [23,28]. This runs counter to what one
would expect, which is that the accuracy would be maximized at the point when the trees
express their greatest phenological differences, either early spring or autumn [28]. Indeed,
other studies have found autumn to be the optimal mono-temporal window for species
mapping [23,46,86].

Lisein [28] suggested that this period presents a balance between inter- and intra-
species spectral variation, not only improving the separability between species but also
the homogeneity within species. After this period, individual phenology starts to express
the effects of differing microclimate, age, and even health [88–90]. It is at this point
too that the spectral response of trees below the upper canopy are suppressed (full to
almost full leaf-cover above), further improving the variability. This suggests that more
focus should be placed on the intra-species variation when collecting phenology data for
species classification.

The results of the multi-temporal classifications still demonstrate that including peri-
ods with high inter-species variation is important for achieving high classification accura-
cies. The best performing two and three-date classifications included those combinations
with the mid-spring imagery and the late spring imagery. Many species experienced an
increase in their individual accuracies for the date combinations containing both those
dates (Figures 3 and 4). Visually, the mid-spring imagery collected here exhibited the
greatest difference between species. Unfortunately, due to equipment difficulties, the
full phenological profile of the study site was not captured. Based on the results of the
previously mentioned studies, the inclusion of autumn imagery along with the mid- and
late spring imagery could have significantly increased the accuracy of the three-date classi-
fications, perhaps leading to greater significance when statistically compared to the optimal
two-date classification.

While this study focused primarily on a global classification result, it is still important
to investigate the accuracy of the individual species. There was a substantial difference in
the performance for different species and combinations (Figures 3 and 4). Most notably, the
two coniferous species were consistently well-classified compared to the deciduous species.
Eastern hemlock exhibited accuracies >70% within only a single date of imagery. White
pine performed better once there were two dates and then stabilized. White ash, American
beech, and red maple did consistently poorly, showing only a minor improvement with
additional dates. Within-species variation, as noted, could have a significant impact on an
individual species’ performance. Red maple naturally exhibited great variability during
the important mid-spring time period. Some trees were just starting to show the early red
flourescence while others had almost fully leafed out; expressing the influence of the wide
variety of conditions red maple can tolerate [63,90]. American beech in the study area was
much further ahead phenologically than most other species, almost completely leafed out
by mid-spring, but, at this time, many of the beech trees in the stand are suffering from the
effects of beech bark disease. The range of infestation is wide, with some beech trees only
recently being infected to others nearing mortality. This range would have caused large
variability in the spectral response, not just because of the change in vegetation health,
but also because of the change in the structure of the canopy as well [6]. Additionally, the
time series collected here may not have been dense enough to capture the specific periods
within which a species becomes distinct. For example, white ash had few if any leaves by
mid-spring but was fully leafed out by late spring. An important window may have been
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missed. Far more spectrally unique species, for example the aspen trees, black oak, and
black birch, performed well, even with just a few dates of imagery.

4.4. RGB versus Multispectral Sensors for Tree Species Classification

The multispectral sensor employed here was found to underperform compared to
the consumer-grade RGB sensor. The statistical comparison between the two sensors
(Figure 5) suggests that for a mono-temporal classification the RGB sensor and the mul-
tispectral were not different. However, the RGB sensor became significantly better with
each additional date added to the classification. Both Lisein et al. [28] and Michez et al. [6]
carried out comparisons between multi-temporal RGB imagery and color infrared (CIR)
imagery (green, red, and near infrared sensitivity only) for the purpose of forest species
classification and found that the RGB outperformed the CIR. Both studies suggested that
the poor performance from the CIR was due to the redundant sensitivity to NIR across the
three bands after modifying their cameras. Nijland et al. [42] concluded the same when
comparing modified (i.e., NIR blocking filter removed) and unmodified RGB cameras for
monitoring plant health and phenology. This study sought to overcome the redundant
sensitivity problem by utilizing a multispectral sensor designed specifically for vegetation
mapping and monitoring. Not only was each band specifically designed to avoid spectral
overlap, but they also included an additional band in the red-edge region of the EMS,
which has been found to benefit the discrimination between species [91–93]. The results
of the feature importance testing (Figure 6) suggest that the blue band, which is lacking
in the Parrot Sequoia, is of high importance for mapping tree species. Key et al., [86] also
found the blue band to be highly significant for species classification due to its sensitivity
to chlorophyll and insensitivity to shadowing in canopies, a significant problem in many
types of classification studies [2,86,94]. The most important bands for the Sequoia also
happened to be in the visible range (red and green) while the red-edge and the NIR bands
were found to be the least important bands. The visible bands should thus be considered
highly important when conducting future classification studies [31].

This result has important implications in that users of the technology may not neces-
sarily have to buy a more expensive multispectral sensor when in fact they could achieve
better results with the RGB sensor alone. However, studies comparing the consumer-
grade RGB sensor to multispectral sensors containing blue bands, such as the Micasense
RedEdge-MX (https://micasense.com) or the DJI P4 Multispectral (https://www.dji.com),
should be carried out. Hyperspectral sensors with hundreds of bands covering visible to
invisible wavelengths exist and could very well improve the accuracy of species classifica-
tions [29,31,95], but they will most likely remain cost prohibitive for some time.

5. Conclusions

With greater focus being placed on precision forestry, there is a growing need to
improve our ability to generate species-level maps of forest communities. UASs, capable of
achieving very high spatial and temporal resolutions, have recently become an affordable
means of generating these species-level maps. Hardware limitations, mainly weight, have
restricted the type of sensors that can be flown. Lower spectral resolution, consumer-grade
RGB cameras are frequently being flown due to their lower weight and affordability, but
they are not typically optimal for classifying vegetation down to the species level. While
lightweight multispectral cameras exist, the costs of these sensors are potentially prohibitive.
This study investigated whether taking advantage of UASs’ higher temporal resolution to
track tree phenology could help to improve the species-level classification accuracy with
both RGB and multispectral imagery. Additionally, the optimal phenological timing for
UAS data collection was investigated and a comparison between the performances of an
RGB sensor and that of a multispectral sensor carried out.

The results show that there was a considerable and statistically significant increase
in accuracy when utilizing a multi-temporal classification compared to a mono-temporal
classification. While accuracy increased with additional dates of imagery, there was no

https://micasense.com
https://www.dji.com
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significant increase in accuracy beyond three dates of optimally timed imagery. Based on
the accuracy of the best performing date combinations, mid- and late spring imagery were
found to be crucial points in the growing to capture, most likely due to the high inter-species
spectral heterogeneity and intra-species homogeneity captured at these moments.

The multispectral sensor employed in this study consistently underperformed com-
pared to the RGB sensor. The RGB sensor was found to perform the same as the multispec-
tral sensor when employing a mono-temporal classification, but became statistically better
as the number of dates of imagery increased. An analysis of feature importance suggests
that the visual bands are important for species classification at this resolution, especially
the blue band, and less significance can be placed on the non-visual bands.

This study was conducted in a highly heterogeneous forest; 14 separate species were
classified. High-inter species spectral variability was to be expected, especially if they
exhibited similar phenology or were naturally highly variable to due growing conditions
or health. Future research is needed to investigate the benefits of derivative layers, such
as spectral indices and texture, on overall accuracy. Additionally, expansion of the UAS
collection into the late summer/autumn months may present interesting results. Finally,
further research is necessary on comparing consumer-grade RGB sensors to multispectral
sensors that employ all the visual bands, if not more.
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Appendix A

Table A1. Accuracy for all Aeria classifications. Overall accuracy (OA) is reported here as the average
OA of the 30 classification iterations performed for each combination. The standard deviations
(STDs) are given. The results are sorted by the number of dates included in the combination and the
average OA.

Index Date Combination Average OA STD

One Date

1 4-26-20 0.248 0.004
5 6-27-20 0.313 0.005
4 6-12-19 0.332 0.005
2 5-16-19 0.346 0.004
3 5-30-19 0.373 0.005

Two Dates

8 4-26-20 + 6-12-19 0.370 0.005
15 6-12-19 + 6-27-20 0.391 0.006
9 4-26-20 + 6-27-20 0.404 0.006
7 4-26-20 + 5-30-19 0.429 0.005
6 4-26-20 + 5-16-19 0.437 0.004

13 5-30-19 + 6-12-19 0.440 0.006
14 5-30-19 + 6-27-20 0.466 0.005
11 5-16-19 + 6-12-19 0.479 0.006
12 5-16-19 + 6-27-20 0.511 0.005
10 5-16-19 + 5-30-19 0.540 0.005

Three Dates

21 4-26-20 + 6-12-19 + 6-27-20 0.430 0.005
19 4-26-20 + 5-30-19 + 6-12-19 0.479 0.006
25 5-30-19 + 6-12-19 + 6-27-20 0.501 0.006
20 4-26-20 + 5-30-19 + 6-27-20 0.507 0.006
17 4-26-20 + 5-16-19 + 6-12-19 0.524 0.005
18 4-26-20 + 5-16-19 + 6-27-20 0.534 0.005
24 5-16-19 + 6-12-19 + 6-27-20 0.550 0.004
16 4-26-20 + 5-16-19 + 5-30-19 0.555 0.006
22 5-16-19 + 5-30-19 + 6-12-19 0.567 0.005
23 5-16-19 + 5-30-19 + 6-27-20 0.588 0.005

Four Dates

29 4-26-20 + 5-30-19 + 6-12-19 + 6-27-20 0.513 0.005
28 4-26-20 + 5-16-19 + 6-12-19 + 6-27-20 0.554 0.004
26 4-26-20 + 5-16-19 + 5-30-19 + 6-12-19 0.598 0.006
30 5-16-19 + 5-30-19 + 6-12-19 + 6-27-20 0.604 0.006
27 4-26-20 + 5-16-19 + 5-30-19 + 6-27-20 0.609 0.006

All 31 4-26-20 + 5-16-19 + 5-30-19 + 6-12-19 + 6-27-20 0.611 0.005
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Table A2. Accuracy for all Sequoia classifications. Overall accuracy (OA) is reported here as
the average OA of the 30 classification iterations performed for each combination. The standard
deviations (STDs) are given. The results are sorted by the number of dates included in the combination
and the average OA.

Index Date Combination Average OA STD

One Date

2 5-15-20 0.270 0.005
1 4-28-20 0.272 0.005
4 6-10-20 0.315 0.006
5 6-26-20 0.333 0.006
3 5-29-20 0.362 0.006

Two Dates

6 4-28-20 + 5-15-20 0.362 0.004
8 4-28-20 + 6-10-20 0.375 0.004
9 4-28-20 + 6-26-20 0.393 0.005

15 6-10-20 + 6-26-20 0.405 0.005
11 5-15-20 + 6-10-20 0.431 0.006
7 4-28-20 + 5-29-20 0.450 0.005

13 5-29-20 + 6-10-20 0.455 0.004
12 5-15-20 + 6-26-20 0.457 0.006
10 5-15-20 + 5-29-20 0.489 0.005
14 5-29-20 + 6-26-20 0.495 0.007

Three Dates

21 4-28-20 + 6-10-20 + 6-26-20 0.437 0.005
17 4-28-20 + 5-15-20 + 6-10-20 0.452 0.007
18 4-28-20 + 5-15-20 + 6-26-20 0.462 0.006
19 4-28-20 + 5-29-20 + 6-10-20 0.470 0.007
24 5-15-20 + 6-10-20 + 6-26-20 0.479 0.005
25 5-29-20 + 6-10-20 + 6-26-20 0.494 0.006
22 5-15-20 + 5-29-20 + 6-10-20 0.502 0.005
20 4-28-20 + 5-29-20 + 6-26-20 0.513 0.006
16 4-28-20 + 5-15-20 + 5-29-20 0.515 0.006
23 5-15-20 + 5-29-20 + 6-26-20 0.539 0.005

Four Dates

28 4-28-20 + 5-15-20 + 6-10-20 + 6-26-20 0.478 0.005
29 4-28-20 + 5-29-20 + 6-10-20 + 6-26-20 0.523 0.008
30 5-15-20 + 5-29-20 + 6-10-20 + 6-26-20 0.528 0.005
26 4-28-20 + 5-15-20 + 5-29-20 + 6-10-20 0.528 0.006
27 4-28-20 + 5-15-20 + 5-29-20 + 6-26-20 0.555 0.006

All 31 4-28-20 + 5-15-20 + 5-29-20 + 6-10-20 + 6-26-20 0.542 0.007
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