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Abstract: Lake ice phenology is a climate-sensitive indicator. However, ground-based monitoring
suffers from the limitations of human vision and the difficulty of its implementation in harsh
environments. Remote sensing provides great potential to detect lake ice phenology. In this study,
a new automated method was developed to extract lake ice phenology parameters by capturing
the temporal pattern of the transitional water/ice phase using a parameterized time function. The
method is based on Moderate-Resolution Imaging Spectroradiometer (MODIS) daily temperature
products, which have unique potential for monitoring lake ice cover as a result of providing four
observations per day at 1 km spatial resolution from 2002 to 2016. Three seasonally ice-covered lakes
with different characteristics in different climate regions were selected to test the method during
the period of 2002–2016. The temporal pattern of water/ice transition phase was determined on the
basis of unfrozen water cover fraction extracted from the MODIS daily temperature data, and was
compared with the MODIS snow and reflectance products and Landsat images. A good agreement
with an R2 of above 0.8 was found when compared with the MODIS snow product. The annual
variation of extracted ice phenology dates showed good consistency with the MODIS reflectance and
AMSR-E/2 products. The approach was then applied to nine seasonally ice-covered lakes in northern
China from 2002 to 2016. The strongest tendency towards a later freeze-up start date was revealed in
Lake Qinghai (6.31 days/10 yr) among the lakes in Tibetan plateau, and the break-up start and end
dates rapidly shifted towards earlier dates in Lake Hulun (−3.73 days/10 yr; −5.02 days/10 yr). The
method is suitable for estimating and monitoring ice phenology on different types of lakes over large
scales and has a strong potential to provide valuable information on the responses of ice processes to
climate change.

Keywords: lake ice; lake ice phenology; MODIS daily temperature data; climate change

1. Introduction

Lake ice phenology, which encompasses freeze-up and break-up periods/dates and
ice cover duration, is important for the biological, chemical and physical processes of lakes,
especially in cold regions [1,2]. Long-term records of ice phenology serve as sensitive
indicators of climate variability [3]. Increases in the interannual variability in lake ice
phenology have been found in recent studies [4–6]. Ice freeze-up occurs later and ice break-
up earlier, with the result of ice cover being lost at an accelerating rate in the Northern
Hemisphere [2,5,6]. These trends in ice phenology are closely related to increasing air
temperatures [7–9] and to the integrated effects of changing wind speeds, snow cover, and
solar radiation [10].

Despite their robustness, ground-based lake ice observations have experienced a
global decrease since the 1980s [11]. In turn, satellite remote sensing, as an alternative
tool, has played a growing role in lake ice monitoring [12]. The brightness temperatures
obtained from microwave satellite sensors, such as the Advanced Microwave Scanning
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Radiometer for the Earth Observing System (AMSR-E) [13,14], Special Sensor Microwave
Imager (SSM/I), and Scanning Multichannel Microwave Radiometer (SMMR) [15–17], have
demonstrated good performance in detecting ice phenology. While being insensitive to
atmosphere constraints, microwave observations are relatively suitable for large lakes due
to their coarse spatial resolution.

Visible spectrum sensors have also been widely used for monitoring lake ice dynamics,
e.g., the Advanced Very-High-Resolution Radiometer (AVHRR, 1.1 km spatial resolution),
the Moderate-Resolution Imaging Spectroradiometer (MODIS), with different spatial res-
olutions (250 m, 500 m, 1 km), the Visible Infrared Imaging Radiometer Suite (VIIRS),
and Sentinel-1 and Sentinel-2 with a higher resolution. Several MODIS products have
been used to retrieve lake ice phenology, such as MODIS daily reflectance data [18–21]
and MODIS daily snow products [10,22–24]. However, the data from optical sensors are
strongly limited by cloud obstruction, especially in regions with strong convection in the
lower atmosphere, like the Tibetan plateau [25].

Currently, various methods have been developed to fill data gaps due to cloud cov-
erage, such as multi-sensor data or temporal–spatial combinations [26–30]. Approaches
using temporal–spatial combinations have been found to effectively improve data avail-
ability by approximately 10%–20% [31–33]. Among those methods, the daily temporal
combination method is especially beneficial for MODIS daily temperature products, which
have a unique advantage over other products by providing four observations from Terra
and Aqua with a time step of 4 to 7 hours, thereby increasing the amount of available data.
Thus, the daily temporal combination of temperature products from MODIS Terra and
Aqua data can reduce cloud contamination at a minimal loss of temporal resolution, which
is an appropriate technique to monitor lake ice phenology.

Most previous studies on lake ice phenology have used thresholds for binary classifi-
cation to extract phenology dates from remote sensing data, such as the threshold obtained
from near-infrared reflectance [34], or combined near-infrared and surface temperature
values [35,36]. An alternative approach is to use a spatially resolved threshold distribution,
e.g., 5% and 95% of a lake area [22,23], to de-noise the time series and to define freeze-
up/break-up dates with greater certainty. While fixed threshold methods may be limited
to different climatic regimes, dynamic threshold approaches, as listed above, are better
suited across different climatic regimes and remote sensing data sources.

Alternatively, characterizing the temporal pattern of water/ice transition process is a
potential method to extract lake ice phenology. In this study, we proposed a new automated
extraction approach using MODIS daily temperature products based on the time-dependent
parameterization of the freezing/thawing process. The approach builds upon the studies
on vegetation phenology extraction by a time-dependent curve-fitting model using remote
sensing data [37–39]. The temporal pattern of water/ice phase transition is similar to the
pattern of vegetation growth, but quite clearly recognized and stable for the application
of time-dependent curve-fitting model compared with the application for the temporal
pattern of vegetation phenology [40,41]. The extraction approach was developed using data
from three seasonally ice-covered lakes (Lake Qinghai, Lake Ngoring, and Lake Hulun)
that differ in morphometry, salinity, elevation, and climate, and applied afterwards to six
Chinese lakes in different climate zones. The spatiotemporal changes observed in the ice
phenology were analyzed, and their relationships to climatic and lake-specific factors were
discussed.

2. Study Area and Data
2.1. Study Area

Nine large seasonally ice-covered lakes with different characteristics, latitudes, alti-
tudes, areas, salinities, and climatic conditions distributed across northern China were
chosen to develop, evaluate, and test the proposed approach (Figure 1 and Table 1). Three
of the lakes, Lake Qinghai, Lake Ngoring, and Lake Hulun, were selected as target lakes to
develop and test the ice phenology extraction algorithm. Lake Qinghai is a large brackish
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dimictic lake located on the northeastern Tibetan Plateau. It is the largest inland lake in
China and is subject to a semiarid continental climate characterized by warm summers,
cold winters, and more precipitation in summer than in other seasons [19]. Lake Ngoring
is the highest (~4200 m asl) freshwater lake in China and is located in the source region of
the Yellow River, surrounded by hills covered with alpine meadows. The south and east
shorelines freeze and melt first [42]. Lake Hulun is a shallow monomictic lake located in
the eastern part of the Mongolian Plateau in the northern part of China and is affected by
semiarid continental and monsoon climates. The lake freezes from the complex shoreline
area of the lake, and melting starts from the northwest coast and gradually toward the east
coast [43].
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Figure 1. The locations of the selected lakes. (A) Lake Qinghai; (B) Lake Ngoring; (C) Lake Silingco;
(D) Lake Namco; (E) Lake Zharinamco; (F) Lake Mapang; (G) Lake Bosten; (H) Lake Xinkai; and (I)
Lake Hulun.

Table 1. The areas, depths, locations, altitude, and salinity for the considered lakes [44].

Lake Name Lake Area
(km2)

Mean
Depth

(m)

Max Depth
(m)

Longitude
(◦)

Latitude
(◦)

Altitude
(m)

Salinity
(g/L)

Lake Qinghai 4340 18 27 100.20 36.88 3260 9.16
Lake Ngoring 611 17 31 97.70 34.90 4272 0.31
Lake Silingco 2390 17 40 88.99 31.79 4539 6.93
Lake Namco 2000 43 70 90.60 30.74 4718 1.78

Lake Zharinamco 1023 4 71 85.63 30.92 4613 13.90
Lake Mapang 412 46 73 81.47 30.68 4585 0.46
Lake Bosten 1646 9 17 87.04 41.97 1045 1.87
Lake Xinkai 4010 5 11 132.42 45.00 68 0.28
Lake Hulun 2044 5 8 117.44 48.97 540 2.40

2.2. MODIS Data
2.2.1. MODIS Daily Temperature Data

The MODIS sensor mounted on the Terra and Aqua satellites has a total of 36 bands
that cover the spectral range from 0.405–14.385 µm. The Terra satellite was launched on
24 February 2000, and the Aqua satellite was launched on 4 June 2002. Daily land surface
temperature products from MODIS (MOD11A1, MYD11A1, version 6) were used in the
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study, with a spatial resolution of 1 km and daily temporal coverage from 2002 to 2016,
available on NASA’s Earth Observation System Data and Information System website
(https://modis.gsfc.nasa.gov/data/dataprod/mod11.php, accessed on 15 October 2020).
The products use the split-window algorithm to retrieve surface temperatures from band 31
and band 32 [45]. The “land” surface temperature products include both land and inland
water [46]. The daily temperature data are available four times per day: at approximately
10:30 and 22:30 from Terra and at approximately 1:30 and 13:30 from Aqua (local time).

2.2.2. Other MODIS Data and Landsat Data

The MODIS daily snow product (MOD10A1, version 6) with a spatial resolution of
500 m and daily temporal resolution from 2002 to 2016 was used to compare the temporal
pattern of the lake ice cover derived from the MODIS daily temperature product. The
MODIS daily snow cover product is available from the U.S. National Snow and Ice Data
Center (https://nsidc.org/data/dataprod/mod10.php, accessed on 15 January 2021), and
is derived from the SNOWMAP algorithm, which uses the normalized difference snow
index (NDSI) and decision strategies to identify snow cover [30,47]. The pixel is labeled as
snow when NDSI ≥ 0.4, as recommended by Riggs, G. A. et al. [48]. The land is classified
into 6 types: snow, inland water, land, cloud, missing data, and other (unclassified). The
assessment showed that MODIS snow cover products have an overall accuracy of ~93%
under clear-sky conditions [47]. In this study, we used the snow cover data from Terra only,
since the cloud/snow discrimination has errors in Aqua cloud-mask algorithm [30,48].
Additionally, the snow cover data from Aqua in version 6 used band 6 to replace band 7 in
the NDSI calculation which is different from the previous version. More details about the
MODIS snow products can be found in [30,47,48].

The cloud-free images from the MODIS Daily Reflectance product and Landsat images
from 2002 to 2016 were also selected to evaluate the lake water/ice cover information from
MODIS temperature products. The MODIS Daily Reflectance product (MOD09GQ, version
6), has a spatial resolution of 500 m and daily temporal resolution, and is available at
(https://modis.gsfc.nasa.gov/data/dataprod/mod09.php, accessed on 15 January 2021).
The Landsat 5, 7, and 8 images have a high spatial resolution of 30 m and a temporal
resolution of 16 days, and are available from the standard United States Geological Survey
Landsat Surface Reflectance products. Due to the 16-day temporal resolution and the
influence of cloud cover, the availability of Landsat images is limited, and cloud-free
images were preferentially selected. In our study, 4 images from Landsat under clear sky
condition were chosen in each lake during freeze-up and break-up periods, respectively.

The air temperature from 2002 to 2016 was adopted from the China Meteorological
Administration (CMA) dataset which has been checked by thorough quality control [49].

3. Lake Ice Phenology Detection Method

The automated detection of lake ice phenology from MODIS daily temperature data
was performed in three main steps (Figure 2): (i) the MODIS data from Terra and Aqua were
combined to increase data availability, (ii) the unfrozen water cover fraction was extracted
to characterize the spatial-temporal change pattern of water/ice transition, and (iii) a
curve-fitting model was applied to capture the ice phenology characteristics in transitional
periods. The individual steps of the method are presented in the following sections.

https://modis.gsfc.nasa.gov/data/dataprod/mod11.php
https://nsidc.org/data/dataprod/mod10.php
https://modis.gsfc.nasa.gov/data/dataprod/mod09.php
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Figure 2. Flowchart of the automated detection of lake ice phenology from MODIS daily temperature
products.

3.1. Terra and Aqua Combination

The lake-extent mask and quality control were applied prior to the Terra and Aqua
data combination. The lake mask excluded lake boundaries using a buffer zone (3 × 3-pixel
matrix [50,51]) to eliminate the lake-land mixed-pixel effect. Quality control was applied to
identify “valid pixels” based on the quality flags from the MOD11A1 and MYDA1 quality
control layers. When the pixel quality flags were “good quality”, “average land surface
temperature error ≤ 0.01”, “average emissivity error ≤ 0.01”, or “average emissivity error
≤ 0.02”, the corresponding pixels were identified as “valid pixels”. When the pixel quality
flags were “cloud effects” or others, the corresponding pixels were identified as “invalid
pixels”.
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The Terra and Aqua data combination (also referred to as the MODIS Daily combi-
nation) referred to merge MOD11A1 and MYD11A1 data acquired on the same day on a
pixel-by-pixel basis. Based on the quality flags, the valid pixels were always given priority
over invalid pixels. The output temperature images named as MOD11_Merge and the
combination was executed by the following step for a single day:

(a) If the same pixel marked as a “valid pixel” was found in more than two images in
a given day, the value of the corresponding pixel in MOD11_Merge was calculated by the
average temperature from the “valid pixels” and also flagged as “valid”;

(b) If the same pixel marked as a “valid pixel” was found in only one image in a given
day, the corresponding pixel in MOD11_Merge was taken from the “valid pixel” and also
flagged as “valid”;

(c) If the same pixel marked as a “valid pixel” was not found in any images in a given
day, the corresponding pixel was marked as “invalid”.

3.2. Extraction of the Unfrozen Water Cover Fraction

The temporal pattern of water/ice transition phase was determined by unfrozen
water cover fraction extracted from MOD11_Merge images during the period 2002–2016.
The water/ice status in MOD11_Merge image was classified by a temperature threshold
initially on a pixel-by-pixel basis. The temperature thresholds were ±0.5 ◦C, here, and their
sensitivity analysis was performed as discussed in Section 5.1. The unfrozen water cover
fraction was calculated by the number of pixels classified as “water”, accounting for the
lake area by the following steps:

(a) If the temperature of the pixel was above 0.5 ◦C, we regarded the pixel as water
and classified it as “Pixelwater”;

(b) If the temperature of the pixel was below −0.5 ◦C, we regarded the pixel as ice and
classified it as “Pixelice”;

(c) If the temperature of the pixel was between −0.5 ◦C and 0.5 ◦C, we regarded the
pixel as starting to freeze (melt) and classified it as “Pixelice-water-mixed”;

(d) The unfrozen water cover fraction was calculated by Equation (1).

Unfrozen water cover fraction =
total number of Pixelwater

total number of Pixelvalid
(1)

Afterwards, the adjacent temporal filter was used on the same pixel in the previous
and subsequent days without reducing spatial and temporal resolution to deduce the
continuous stable ice-covered or ice-free pixel from cloud-covered pixels. As the adjacent
temporal filter was mainly used for stable-status pixel deduction in our study, two temporal
windows of ±5 days and ±7 days were chosen, respectively.

Outliers in the unfrozen water cover fraction were mainly caused by the high percent-
age of cloud cover, as shown in Figure 3. The outliers were eliminated by the following
steps. First, the unfrozen water cover fraction was set to 1 for dates before the mean air
temperatures in autumn dropped below 0 ◦C. The mean air temperature values were
preliminarily smoothed by a 31-day running average to remove synoptic variability [52].
Second, the unfrozen water cover fraction was removed if the percentage of “invalid”
pixels in an image was larger than 80%. After outlier removal, the temporal pattern of the
unfrozen water cover fraction (increase or decrease) was applied to describe the water/ice
transition process and then extract lake ice phenology.
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Figure 3. Extraction of the unfrozen water cover fraction values in Lake Hulun (a), Lake Ngoring (b),
and Lake Qinghai (c). The gray columns represent the cloud cover. The blue dot line represents the
unfrozen water cover fraction without outlier removal, and the red dot line represents the unfrozen
water cover fraction after outliner removal.

3.3. Curve Fitting for Lake Ice Phenology Detection

We proposed a time-dependent logistic function to describe the temporal pattern of
the unfrozen water cover fraction spanning one hydrological year. The transition between
open water and ice-covered states was parameterized by the sigmoidal growth curve,
characterized by an initial slow growth, but accelerating thereafter and decreasing in the
final phase before approaching the upper asymptote [53]. The growth or decay of the
partial ice cover was reflected by variation of the unfrozen water fraction between the
limiting values of 1 and 0, where 1 corresponds to open water. The logistic function model
has been found to represent the sigmoid growth profile well [37,54] and have frequently
been used to fit phenology time series [38,40,41,55]. The logistic function model used here
was modified from [37] and is illustrated in Figure 4. The model equation is as follows:

y =
a

1 + e−k(x−xt)
(2)

where y is the unfrozen water cover fraction at time x; a is the maximum value of the
unfrozen water cover fraction, which is equal to 1 in our study; k is the rate of curvature at
the inflection point, referred as k f in the freeze-up process and kb in the break-up process;
x is the days of the hydrological year, xt is the time at a given inflection point, referred
to as x f in the freeze-up process and xb in the break-up process; and k and xt are the
fitting parameters and represent the curvature and position of function, respectively. The
logistic function was similar to the cumulative normal distribution and has two key fitting
parameters (k and xt) representing the curvature and position of the function on the time
axis, respectively.
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The logistic function was applied by fitting xt and k separately to the freeze-up and
break-up periods in each hydrologic year. With k and xt known, the specific ice phenology
characteristics, freeze-up start and end dates (FUS and FUE), break-up start and end dates
(BUS and BUE), frozen ice cover duration (days between freeze-up start date and break-up
end date, FIC), and complete ice cover duration (days between freeze-up end date and
break-up start date, CID)) were calculated as follows:

X = xt −
1
k

ln
1 − y0

y0
(3)

where X is the start or end date of the corresponding transitional period (freeze-up or
break-up) and y0 is the open-water fraction threshold, which is set to 0.995 and (1–0.995)
for completely ice-free and completely ice-covered lake surfaces, respectively.

4. Results
4.1. Cloud Contamination Removal by Terra and Aqua Combination

The valid pixel fraction calculated by the number of valid pixels in the lake mask,
and the valid day fraction calculated by the number of the day that image was covered by
80% valid pixels, were jointly analyzed to evaluate the reduction in cloud contamination
(Table 2). The valid pixel fraction was improved in the MOD11_Merge images to 77.2%,
70.7%, and 79.1% for Lakes Hulun, Ngoring, and Qinghai, respectively. The valid day
fraction was improved in the MOD11_Merge images to 66.2% in Lake Hulun, to 54.5% in
Lake Ngoring, and 69.1% in Lake Qinghai. These numbers were more than two times larger
than those in the corresponding images from MOD11A1 and MYD11A1. Obvious increases
were observed in the valid pixel fraction and the valid day fraction in MOD11_Merge
images after the combination. Hence, we concluded that the proposed approach effectively
increases data availability and increases the amount of good-quality data while retaining
the essential information for lake ice extraction.
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Table 2. Comparison of the average percentage of “valid” pixels between MOD11_Merge images and four times observations
from MOD11A1 and MYD11A1 during the period 2002–2016.

MODISProducts

Lake Hulun Lake Ngoring Lake Qinghai

Valid Pixel
Fraction

(%)

Valid Day
Fraction

(%)

Valid Pixel
Fraction

(%)

Valid Day
Fraction

(%)

Valid Pixel
Fraction

(%)

Valid Day
Fraction

(%)

MOD11_Merge 77.2 66.2 70.7 54.5 79.1 69.1
MOD11A1

10:30 67.5 34.2 61.7 15.3 69.4 31.5

MOD11A1
22:30 66.7 32.6 68.7 17.2 66.8 19.4

MYD11A1
13:30 68.2 32.0 57.3 11.0 64.6 24.8

MYD11A1
1:30 67.1 32.8 68.8 17.8 68.4 20.8

4.2. Comparison of the Unfrozen Water Cover Fraction with Other Datasets

The performance of the unfrozen water cover fraction obtained from MOD11_Merge
daily images was compared with that from MODIS daily snow products, MODIS daily
reflectance products, and Landsat images. These products have previously proven their
ability to extract lake ice characteristics [18,21,23,56].

The unfrozen water cover fraction calculation and the outlier removal method (Section 3.2)
were applied to the MODIS daily snow cover products. As shown in Figures 5 and 6, the
unfrozen water cover fraction obtained from MOD11_Merge was overall consistent with that
of the MODIS snow cover product, with values of R2 larger than 0.70 during the freeze-up
pattern and 0.89 during the break-up pattern (Table 3). Compared with the freeze-up patterns,
the break-up patterns in MOD11_Merge and MODIS snow cover product showed higher
agreement, with R2 values of 0.912, 0.889, and 0.948, respectively. The freeze-up pattern in
MOD11_Merge and MODIS snow cover in Lake Qinghai had a lower R2, bias, and RMSE
than the other two lakes, with values of 0.72, 0.22, and −0.55, respectively. This may be due
to the thin ice or initial ice information, which was not easily detectable, especially in large
lakes [14,15].
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Figure 5. Time series of unfrozen water cover fractions in Lake Hulun (a), Lake Ngoring (b), and
Lake Qinghai (c) from 2002 to 2016 calculated from MOD11_Merge temperature images and MODIS
snow product data (referred MODIS NDSI as the label).
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Figure 6. Comparison of unfrozen water cover fractions in Lake Hulun, Lake Ngoring, and Lake
Qinghai from MOD11_Merge temperature images and MODIS snow product data, taking the year
2011 as an example.

Table 3. The bias, SD, RMSE, and R2 for the comparison of unfrozen water cover fraction between
the MOD11_Merge and MODIS snow product data.

Freeze-up Season
(October–December) Break-up Season (March–May)

Lake
Qinghai

Lake
Ngoring

Lake
Hulun

Lake
Qinghai

Lake
Ngoring

Lake
Hulun

Bias −0.05 0.15 0.00 0.04 0.18 0.05
SD 0.21 0.12 0.28 0.18 0.20 0.13

RMSE 0.22 0.19 0.28 0.18 0.29 0.14
R2 0.72 0.87 0.80 0.91 0.89 0.95

The visual inspections of lake ice under clear-day conditions from the MODIS daily
reflectance products and Landsat images were further used to evaluate the water/ice cover
information. The unfrozen water cover fraction in the phases of break-up process was
consistent with MODIS reflectance products, MODIS snow products, and MOD11_Merge
temperature images, as shown in the Supplementary Materials, Figures S2–S4. This consis-
tency was notably seen in the developed and final phases of ice cover than in the initial
phase, especially in smaller Lake Ngoring (Supplementary Materials, Figure S4). When
compared with Landsat images with a high resolution of 30 m, thin ice or fast ice at the
lakeshores was difficult to detect from the MODIS products, either from snow products
and temperature products, as shown in the Supplementary Materials, Figures S5–S7. The
misclassification of thin ice was possibly caused by the lower temperature resulting from
undetected cloud cover in the MODIS temperature products [23].

4.3. Comparison of Derived Lake Ice Phenology with other Lake Ice Datasets

The lake ice phenology was extracted from the temporal pattern of unfrozen water
cover fraction by characterizing the water/ice transition process (as shown in Supplemen-
tary, Figure S1). The extracted ice phenology dates of Lake Qinghai, Lake Ngoring, and
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Lake Hulun were then compared with published lake ice datasets including microwave
and optical satellite sensors, as listed in Table 4. As shown in Figure 7a–d, the annual
variation of ice phenology in Lake Qinghai from the proposed method was consistent with
other datasets, with an R2 of 0.90 when compared with MODIS snow products [56], an R2

of 0.87 when compared with MODIS reflectance data [19], and with an R2 of 0.80 when
compared with passive microwave data [15].

Table 4. The data sources and the durations of other publishing lake ice phenology datasets.

Lake Name Data Source and Reference Duration

Lake Hulun MODIS reflectance product [43] 2002–2016

Lake Ngoring MODIS snow product [23] 2002–2015
AMSR-E/2 [57] 2000–2016

Lake Qinghai

SSM/I [15] 2002–2015
MODIS snow product [23] 1979–2016

AMSR-E/2 [57] 2000–2016
MODIS reflectance product [19] 2000–2016

Remote Sens. 2021, 13, x  12 of 23 
 

 

 
Figure 7. Comparison of lake ice phenology dates between our study (the right y-axis) and other studies (the left y-axis) 
in Lake Qinghai (a–d), Lake Ngoring (e–f), and Lake Hulun (g–h). The lake ice phenology dates extracted in our study are 
shown as dotted lines. The y-axis is the day of the hydrological year (1 September is referred to as Day 1 in our study). 

Table 4. The data sources and the durations of other publishing lake ice phenology datasets. 

Lake Name Data Source and Reference Duration 
Lake Hulun MODIS reflectance product [43] 2002–2016 

Lake Ngoring 
MODIS snow product [23] 2002–2015 

AMSR-E/2 [57] 2000–2016 

Lake Qinghai 

SSM/I [15] 2002–2015 
MODIS snow product [23] 1979–2016 

AMSR-E/2 [57] 2000–2016 
MODIS reflectance product [19] 2000–2016 

Table 5. Trends of the freeze-up and break-up dates in our study and in other studies. 

Trend 
(Days/10yr) 

In our Study In other Studies Data 
Source FUS  FUE  BUS  BUE  FUS  FUE  BUS  BUE  

Lake 
Qinghai 

6.31 4.65 −4.82 −4.69 

−4.09 −0.92 −8.63 −2.85 [19] 
−1.52 1.65 −3.96 −2.15 [57] 
−3.12 1.93 −5.94 −1.32 [15] 
4.00 4.90 −5.00 −0.70 [23] 

Lake  
Ngoring 5.10 −1.69 −2.46 9.59 

2.60 −4.76 −9.10 −4.14 [57] 
2.50 - - −0.20 [23] 

Lake 
Hulun 0.10 15.80 −3.73 5.02 4.21 −1.76 2.16 −9.09 [43] 

2002 2006 2010 2014

85

110

135

2002 2006 2010 2014

105

130

155

2002 2006 2010 2014

180

200

220

240

2002 2006 2010 2014
180

210

240

270

2002 2006 2010 2014

60

90

120

2002 2006 2010 2014
185

230

275

320

2002 2006 2010 2014

35

65

95

2002 2006 2010 2014
190

230

270

310

a) Lake Qinghai FUS

 

 FUS(in our study) 
 FUS(Qi et al.,2019)
 FUS(Qiu et al.,2019)
 FUS(Cai et al.,2017)

 

c) Lake Qinghai BUS  FUE(in our study)
 FUE(Qi et al.,2019)
 FUE(Qiu et al.,2019)
 FUE(Cai et al.,2017)

 

 BUS(in our study)
 BUS(Qi et al.,2019)
 BUS(Qiu et al.,2019)
 BUS(Cai et al.,2017)

b) Lake Qinghai FUE

d) Lake Qinghai BUE  BUE(in our study)
 BUE(Qi et al.,2019)
 BUE(Qiu et al.,2019)
 BUE(Cai et al.,2017)

 

e) Lake Ngoring FUS and FUE

 

 FUS(in our study)
 FUS(Qiu et al.,2019)
 FUE(in our study)
 FUE(Qiu et al.,2019)

 

f) Lake Ngoring BUS and BUE  BUS(in our study)
 BUS(Qiu et al.,2019)
 BUE(in our study)
 BUE(Qiu et al.,2019)

D
ay

 o
f H

yd
ro

lo
gi

ca
l Y

ea
r

g) Lake Hulun FUS and FUE

 Hydrological Year

D
ay

 o
f H

yd
ro

lo
gi

ca
l Y

ea
r

 FUS(in our study)
 FUS(Wu et al.,2019)
 FUE(in our study)
 FUE(Wu et al.,2019)

 

 Hydrological Year

h) Lake Hulun BUS and BUE  BUS(in our study)
 BUS(Wu et al.,2019)
 BUE(in our study)
 BUE(Wu et al.,2019)

Figure 7. Comparison of lake ice phenology dates between our study (the right y-axis) and other
studies (the left y-axis) in Lake Qinghai (a–d), Lake Ngoring (e–f), and Lake Hulun (g–h). The lake
ice phenology dates extracted in our study are shown as dotted lines. The y-axis is the day of the
hydrological year (1 September is referred to as Day 1 in our study).

The trends of break-up dates obtained from MOD11_Merge data had a high consis-
tency with those of other MODIS products, less with passive microwave data, especially
in Lake Qinghai, as shown in Table 5. However, the trends of freeze-up dates showed
inconsistencies. For example, the trend of FUS in Lake Qinghai was −4.09 days/10 yr,
while it was 4.00 days/10 yr from Cai, Y. et al. [15] and 6.31 days/10 yr in our study. This
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inconsistency could potentially be attributed to several factors, such as misclassification of
the thin ice at the initial phase of freeze-up period, inhomogeneous definitions of lake ice
phenology in different studies, and the coarser spatial resolution of the passive microwave
data [13,14].

Table 5. Trends of the freeze-up and break-up dates in our study and in other studies.

Trend
(Days/10yr)

In Our Study In Other Studies Data
SourceFUS FUE BUS BUE FUS FUE BUS BUE

Lake
Qinghai 6.31 4.65 −4.82 −4.69

−4.09 −0.92 −8.63 −2.85 [19]
−1.52 1.65 −3.96 −2.15 [57]
−3.12 1.93 −5.94 −1.32 [15]
4.00 4.90 −5.00 −0.70 [23]

Lake
Ngoring 5.10 −1.69 −2.46 9.59

2.60 −4.76 −9.10 −4.14 [57]
2.50 - - −0.20 [23]

Lake
Hulun 0.10 15.80 −3.73 5.02 4.21 −1.76 2.16 −9.09 [43]

4.4. Interannual Variability in Lake Ice Phenology

The extraction approach was applied to other lakes in different climatic regions of
northern China. The temporal patterns and trends of ice phenology from 2002 to 2016 are
shown in Figure 8 and Table 6. In general, shallower lakes had earlier freeze-up dates than
deeper lakes (Figure 8): FUS and FUE in Lake Hulun (mean depth 5 m) were 69 and 91
days earlier than in Lake Namco (mean depth 43 m). The trends in ice phenology variables
among the Tibetan lakes during the period 2002–2016 revealed a tendency towards delayed
FUS dates, with the highest value being 6.31 days/10 yr (p < 0.05) in Lake Qinghai and
the lowest value being 0.09 days/10 yr in Lake Zharinamco. Trends of BUE dates were
also positive in all lakes on the Tibetan Plateau except Lake Silingco and Lake Qinghai,
with insignificant BUE trends of −1.00 days/10 yr and −4.69 days/10 yr, respectively.
Compared to the lakes on the Tibetan Plateau, the break-up starts and end dates rapidly
shifted to be earlier in Lake Hulun (−3.73 days/10 yr; −5.02 days/10 yr). The short length
of the data record (15 years) may be one of reasons that trends have no significance.

Table 6. The mean values and trends of lake ice phenology variables in all lakes.

Lake
Name

FUS FUE BUS BUE FID CID

Mean Value
(Day)

Trend
(Days/10yr)

Mean Value
(Day)

Trend
(Days/10yr)

Mean Value
(Day)

Trend
(Days/10yr)

Mean Value
(Day)

Trend
(Days/10yr)

Mean Value
(Day)

Trend
(Days/10yr)

Mean Value
(Day)

Trend
(Days/10yr)

Lake
Qinghai 97.67 6.31 ** 119.65 4.65 201.13 −4.82 232.29 −4.69 135.45 −9.47 85.95 −2.77

Lake
Ngoring 77.36 5.10 100.51 −1.69 221.31 −2.46 257.28 9.59 179.55 4.48 120.67 −22.94 *

Lake
Silingco 108.55 5.30 123.87 −1.19 211.09 1.55 231.24 −1.00 125.11 −6.30 89.78 2.75

Lake Namco 120.65 3.34 159.59 −8.21 220.45 −1.48 254.03 6.93 132.69 4.08 77.73 32.70 *
Lake

Zharinamco 107.86 0.09 124.19 −0.24 215.54 3.29 228.08 1.78 118.10 1.69 87.61 3.54

Lake
Mapang 124.35 −2.65 148.89 −7.98 223.05 −5.16 241.06 15.86 116.12 18.51 73.72 2.82

Lake Bosten 96.30 −0.59 114.62 4.56 201.84 −0.88 208.24 3.54 110.34 6.69 89.70 8.10
Lake Xinkai 72.79 0.60 85.47 0.98 231.82 −0.53 238.79 −1.36 165.67 −4.53 144.10 −6.55
Lake Hulun 54.46 0.10 68.71 15.80 * 234.78 −3.73 250.99 −5.02 194.41 −5.12 163.42 −19.53 **

** represents the Statistical significance at the 0.05 level, and * represents the Statistical significance at the 0.1 level.
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5. Discussion
5.1. Factors Influencing Lake Ice Phenology

The growth and decay of lake ice cover are governed by thermodynamic interactions
between atmosphere–water–ice interfaces and are affected by climatic and lake-specific
factors. The major climatic factors controlling the heat exchange with the atmosphere are air
temperature, solar radiation, precipitation, and wind speed [5,8,10]. Lake-specific factors,
such as lake morphometry (depth, area, and volume) and location (longitude, latitude, and
altitude), determine heat storage in lakes and additionally affect lake ice formation [58].
To assess how lake-specific and climatic factors contribute to the freeze-up and break-up
patterns and the changes in the ice cover duration, the correlations between ice phenology
time series extracted in our study and possible influencing factors including lake specific
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factors and major climatic factors were analyzed. The climatic variables, including air
temperature, wind speed, solar radiation, and snow depth, were obtained from 2002 to
2016 from the China Meteorological Administration dataset based on the nearest weather
station. The mean values of the lake surface water temperature (LSWT) data during the
ice-off period used in our study were calculated based on the MOD11_merge dataset. Our
LSWT results showed high consistency with publicly available satellite-derived LSWT
products, such as the Arclake [59] and LSWT datasets from AVHRR [60], with R2 values of
0.91 and 0.93, respectively. The other climatic factors were obtained from weather stations
near the lakes.

As shown in Figure 9, the results suggest that climate factors strongly affected the
break-up pattern, while lake-specific factors had a greater effect on the freeze-up pattern
that agrees with previously published findings [61–63]. Deep high-altitude lakes showed
later freeze-up dates and shorter ice cover durations, while shallower lakes located at high
latitudes showed earlier freeze-ups and longer ice cover durations. The air temperature
had a significant effect on the break-up date and the duration of the ice-covered period.
The dates at which the air temperature reached 0 ◦C in the spring even had a high R2 value
(0.81) for the break-up periods. The LSWT had a more obvious impact on the freeze-up
date (freeze-up day and rate) and CID than on the break-up pattern.
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Figure 9. Correlation maps between lake ice phenology variables and climatic (a) and lake-specific
factors (b). Red indicates a positive correlation, and blue indicates a negative correlation. The size of
the circle represents the absolute value of the correlation coefficient. The * represents significance at a
confidence level of 0.1. Ts (ice_off) is the lake water surface temperature during the ice-off period,
and Ta (yearly) is the annual mean air temperature. The 0 ◦C dates (autumn/spring) represent the
dates at when air temperature reached 0 ◦C in the autumn/spring. WD (yearly) and SWR (yearly)
represent the annual mean wind speed and shortwave solar radiation, respectively.
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5.2. Sensitivity Analysis of Classification for Water/ice Status Pixels

The sensitivity of the water/ice classification status to the threshold value was evalu-
ated by a lake ice phenology extraction under different freezing and melting temperatures,
which was varied in 0.25 ◦C intervals within the range from −1.25 ◦C to 1 ◦C. Figure 10
shows the temporal pattern of the ice fitting variables (x f and k f , and xb and kb) among
the three lakes, under different freezing and melting temperature settings. Consistent
fluctuations were found in the interannual variabilities in x f and xb. The variabilities in
k f and kb were relatively stable except when the temperature threshold was too high or
too low (Figure 11). As shown in Figure 10a–c, the freeze-up process occurred earlier
when the freezing temperature was set higher. The temporal pattern of the unfrozen water
cover fraction was stable and consistent when the freezing temperature was set between
−0.75 ◦C and 0.5 ◦C. The break-up process showed relatively high variability in the initial
phase, especially when the melting temperature was set lower than 0 ◦C (Figure 10d–f).
This variability was possibly due to the melt-refreeze events captured when the tempera-
ture setting was too low, which were not representative of the starting point of the actual
break-up process.

The trends of x f and k f were consistent when the temperature threshold varied
between −0.75 ◦C and 0.5 ◦C (Figure 12a,c). The trends of xb performed consistently
well under different temperature settings, while the trends of kb showed good consistency
when the melting temperature was above 0 ◦C, possibly caused by the high fluctuations
in the initial phase of the break-up process. These findings suggest that the trends of ice
phenology are robust when the freezing temperature is set between −0.75 ◦C and 0.5 ◦C
and the melting temperature is set above 0 ◦C.
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The temperature classification applied for the water/ice status should consider the lake
surface situation in the freeze-up pattern and break-up pattern, respectively. The freezing
temperature can be influenced by several factors. Water salinity can decrease the freezing
temperature and delay ice formation [64]. Moreover, the ice pixel temperature can be
influenced by the bubble contents, impurities, and fracture patterns of ice surfaces [65]. Ice
break-up starts after the ice/snow surface is warmed up to the melting point [63]. Melting
snow, snow-ice and black ice have different reflectance values [66,67]. Furthermore, the
day and night melt-freeze events produce meltwater on the ice surface before the ice cover
break-up completely. To consider these uncertainties, and the physical basis of ice cover,
we determined the classified pixel as “ice” when its temperature was lower than −0.5 ◦C
and classified the pixel as “water” when its temperature was higher than 0.5 ◦C.
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5.3. The Advantages and Limitations of the Method

The proposed algorithm of the ice phenology extraction possesses several distinct
advantages for wide-scale application on seasonal ice-covered lakes. An important qualita-
tive advance is to scale the transition period between the open water and the ice-covered
stage by a parameterized function of time (Equation (3)). The scaling-based method has
been proven to be robust to outliers and can be applied to lakes with varying morphometry.
Additionally, the characterization of the seasonal ice phenology can be extended beyond
the binary ice-on/ice-off events by the direct assessment of the “partial ice cover” duration.
The latter characteristic is crucial for understanding the lake response to ice cover forma-
tion, especially in medium to large lakes. During ice formation in autumn, the length of the
transitional period determines the rate of cooling across the entire water column: a faster
formation of the complete ice cover allows more heat to be stored in the near-bottom part
of the lake, affecting the water–ice heat fluxes throughout the entire ice-covered period
and the ice thickness [63,68,69]. In turn, the length of the transition period to the ice-free
state in spring causes long-lasting effects on the vertical thermal stratification in the fol-
lowing summer and thereby affects crucial lake water quality characteristics, such as the
dissolved oxygen content [63,69]. Both autumn and spring transitional periods are the
results of interaction between the air–lake heat transport, the available solar radiation, and
the heat storage in the lake water column. Therefore, they serve as sensitive indicators
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of the regional response to global climate change. When applied to long-term remote
sensing observations, the proposed approach would allow tracing the climatically driven
effects on non-linear interactions between various components of the surface heat balance
during autumn and spring. The proposed approach also builds on the strengths of the
MODIS daily temperature products. The Terra and Aqua daily combination from four
observations with a time step of 4 to 7 hours demonstrates the effectiveness in reducing
the cloud contamination while retaining the essential spatial information. The automatic
temperature-based algorithm was also shown the ability to correctly extract ice phenology
on different lake types concerning potential influences caused by salinity, morphometry,
and geographic location.

The limitations of the proposed algorithm are intrinsic to remote sensing products.
Firstly, thin ice cover is formed when lake surface temperature approaches the freezing
temperature, but it may be repeatedly destroyed during windy periods with prolonged
fluctuation of the surface temperature around 0 ◦C [63,69]. Therefore, thin ice is difficult
to detect using temperature-based methods. Secondly, the severe cloud contaminations
caused inevitable data gaps, although the data availability was improved by Terra and
Aqua daily combination in our study. Additionally, MODIS-derived LSWT was revealed to
have a negative bias compared with in situ observations, especially during the daytime. The
negative bias could potentially have been caused by several things, including undetected
cloud cover [46,51], cool skin, and warm layer effects [70–72]. Furthermore, Terra and
Aqua daily combination could cause additional uncertainties due to ignoring the diurnal
variation of lake surface temperature. Finally, although the spatial resolution of 1 km from
MODIS temperature products is relatively high compared to other remote sensing products,
like AMSR-E, it is still relatively coarse for phenology studies on lakes with horizontal
dimensions smaller than several kilometers, especially located at high elevations or in
areas covered by persistent snow cover. Progress in phenology observations on small lakes
could be made by obtaining sub-kilometer spatial resolutions while retaining the sub-daily
temporal resolution of data.

6. Conclusions

In this study, we developed a new automatic method to characterize lake ice phenology
using MODIS daily temperature products from 2002 to 2016 by parameterizing the temporal
pattern of the water/ice transition process. Based on this method, the ice phenology of
nine seasonal ice-covered lakes in different climate regions was evaluated. The results
showed that Lake Qinghai had the most obvious trend towards delayed freeze-up start
date (FUS) (6.31 days/10 yr) among the lakes of the Tibetan plateau, and Lake Hulun
the most obvious tendency towards earlier break-up start and end dates (BUS and BUE),
with change rates of -3.73 days/10 yr and −5.02 days/10 yr, respectively. The proposed
method has two major advantages, making it robust and applicable: (i) it avoids any
lake-specific or empirical thresholds, allowing the effective treatment of data gaps caused
by atmospheric conditions, and (ii) it uses a time-dependent parameterized function to
characterize the water/ice transition process, making it possible to trace the ice phenology
on a more detailed level than traditional binary classification. The algorithm could provide
data support for the correct interpretation of the global-scale climate change effects on lake
ice phenology: apart from the general shortening of the ice-cover period, the interplay
between atmospheric warming and seasonally available shortwave solar radiation may
produce significant changes in the duration of transitional—partially ice-covered—periods
with important consequences for air-lake interactions and internal lake mixing.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/rs13142711/s1. Figure S1. The process of curve fitting of unfroze water fraction in three
lakes Hulun from 2002 to 2016. The performances of logistic function fitness of unfrozen water cover
fraction are good with the R2 large than 0.95 in three lakes. Figure S2. Comparison of unfrozen water
fraction extraction in 2011 in Lake Hulun from MODIS reflectance image, MODIS snow product,
and MOD11_Merge data. The images in the first column are from MOD09 daily reflectance product

https://www.mdpi.com/article/10.3390/rs13142711/s1
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(RGB:341). Figure S3. The comparison of unfroze water fraction extraction in 2011 in Lake Qinghai
from MODIS reflectance image, MODIS snow product, and MOD11_Merge data. The images in first
column were from MOD09 daily reflectance production (RGB:341). Figure S4. The comparison of
unfroze water fraction extraction in 2011 in Lake Ngoring from MODIS reflectance image, MODIS
snow product, and MOD11_Merge data. The images in first column were from MOD09 daily
reflectance production (RGB:341). Figure S5. The comparison of unfroze water fraction extraction in
Lake Hulun from MOD11_Merge temperature data and Landsat images. The images in first column
were the classification of water and ice based on the proposed method in this day. The images in
second column represent the lake surface situation from Landsat images (RGB true color combination:
band 532) at the same dates. The third column represent the green cycle area zoomed in Landsat
images. The green cycles represent the difference between MOD11_Merge and Landsat images.
Figure S6. The comparison of unfroze water fraction extraction in Lake Hulun from MOD11_Merge
temperature data and Landsat images. The images in first column were the classification of water
and ice based on the proposed method in this day. The images in second column represent the lake
surface situation from Landsat images (RGB true color combination: band 532) at the same dates. The
third column represent the green cycle area zoomed in Landsat images. The green cycles represent
the difference between MOD11_Merge and Landsat images. Figure S7. The comparison of unfroze
water fraction extraction in Lake Hulun from MOD11_Merge temperature data and Landsat images.
The images in first column were the classification of water and ice based on the proposed method
in this day. The images in second column represent the lake surface situation from Landsat images
(RGB true color combination: band 532) at the same dates. The third column represent the green cycle
area zoomed in Landsat images. The green cycles represent the difference between MOD11_Merge
and Landsat images.
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