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Abstract: Spring frost damage (SFD), defined as the disaster during the period of newly formed
tea buds in spring caused by lower temperature and frost damage, is a particular challenge for
tea plants (Camellia sinensis), whose capacity to adapt to extreme weather and climate impacts is
limited. In this paper, the region of the Middle and Lower Reaches of the Yangtze River (MLRYR)
in China was selected as the major tea plantation study area, and the study period was focused on
the concentrated occurrence of SFD, i.e., from March to April. By employing the standard lapse
rate of air temperature with elevation, a minimum temperature (Tmin) estimation model that had
been previously established was used based on reconstructed MYD11A1 nighttime LST values for
3 × 3 pixel windows and digital elevation model data. Combined with satellite-based Tmin estimates
and ground-based Tmin observations, the spatiotemporal characteristics of SFD for tea plants were
systematically analyzed from 2003 to 2020 in the MLRYR. The SFD risks at three scales (temporal,
spatial, and terrain) were then evaluated for tea plants over the MLRYR. The results show that both
SFD days at the annual scale and SFD areas at the daily scale exhibited a decreasing trend at a rate
of 2.7 days/decade and 2.45 × 104 ha/day, respectively (significant rates at the 0.05 and 0.01 levels,
respectively). The period with the highest SFD risk appeared mainly in the first twenty days of
March. However, more attention should be given to the mid-to-late April time period due to the
occurrence of late SFD from time to time. Spatially, areas with relatively higher SFD days and SFD
risks were predominantly concentrated in the higher altitude areas of northwestern parts of MLRYR
for both multi-year averages and individual years. Fortunately, in regions with a higher risk of
SFD, the distribution of tea plants was relatively scattered and the area was small. These findings
will provide helpful guidance for all kinds of people, including government agencies, agricultural
insurance agencies, and tea farmers, in order that reasonable and effective strategies to reduce losses
caused by spring frost damage to tea plants may be recommended and implemented.

Keywords: tea plants; spring frost damage; threat; satellite-based Tmin estimation

1. Introduction

In early spring, herbaceous and woody plant species begin to sprout. It is well
known that the meteorological conditions during the flowering and fruit setting periods for
economic fruit trees are critical for determining the output and economic income. Similarly,
the meteorological conditions are also important for tea (Camellia sinensis) plant production
during both the newly formed tea bud period and the spring tea picking period, because the
economic benefits of spring tea have accounted for more than 70% of the total tea revenue
in recent years in the middle and lower reaches of the Yangtze River region (MLRYR),
China [1]. As one of the major tea plantation areas in China, the MLRYR tea plantation
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accounted for up to 1.04 × 106 ha in 2019 with a production of 0.97 × 109 kg, achieving
for 34.0% of the tea area and 34.6% of the tea production in all of China (available at
https://www.puercn.com/news/84437/. Last visited on 8 July 2021).

With the climate warming, the global average air temperature is likely to increase by
0.3–4.8 ◦C at the end of this century [2]. The ground-based observations of leaf unfolding
dates over 31 sites in China have demonstrated a significant advancement, with values of
2.62 and 2.45 days for forest and grassland ecosystems, respectively, due to an increased
mean annual temperature of 1 ◦C [3]. Additionally, both in-situ and NDVI observations
indicated that the leaf-out date of temperature forest trees in western Central Europe
has advanced during the period of 1982–2011 at an average rate of 0.45 days yr−1 [4].
Recent studies have revealed that the frequency, intensity, and duration of extremely
low temperature events, especially spring frost damage (SFD) risk, are also likely to
continuously increase under 21st-century warming scenarios [5,6]. Therefore, the threats of
SFD to herbaceous and woody plant species, especially to vulnerable plant organs (newly
formed buds and young leaves for tea plants; flowers and young fruits for orchards), are
increasing under an earlier growing season onset in the temperate zone [6–11].

Spring tea, harvested from March to early May, is an important segment of the tea
market owing to its high economic benefits. As a result of climate variability, spring frost is
becoming a common occurrence during the period of newly formed tea buds over hilly
regions in China. According to historical records (Yearbook of Meteorological Disasters in
China), tea gardens in MLRYZ have suffered early spring frost damage almost annually
since 2005, and this frost damage has seriously affected tea production and economic
benefits. For example, an occurrence of strong cold air in northern China in early April
2013 caused the minimum air temperature on April 7 in Zhejiang Province to drop by 5
to 7 ◦C. In most areas, air temperature was below 4 ◦C, and in some hilly tea gardens it
dropped to−2 to 0 ◦C. This cooling process caused serious damage to spring tea production
as tea was in the full-picking period. The loss in famous tea production was more than
1140 t, and the direct economic loss reached about 720 million yuan in Zhejiang Province in
early April 2013 [12].

The term “frost” technically refers to the development of ice on surfaces, either by the
solidifying of dew or a phase change from vapor to ice resulting from either land surface
temperatures (ground frost) or air temperatures (air frost) below 0 ◦C [13]. Among tea
farmers in Kenya [14] and agrometeorological researchers in China [12], the term frost
is colloquially used to describe a phenomenon involving damage to crops by low tem-
peratures. During clear and windless nights, radiative cooling will reduce ambient air
temperatures in near ground positions and plant tissues, which may become 4 to 8 ◦C
lower than those measured with thermometers under the sheltered conditions of a standard
Stevenson Screen at a height of 2 m above the ground surface [15]. Ground-based meteoro-
logical observations showed that when daily minimum air temperature is less than 4 ◦C
in spring, newly formed tea buds were affected by spring frost [16], and the commodity
value of the tea declined correspondingly. The Chinese Meteorological Industry Standard
also regards 4 ◦C air temperature as the trigger temperature of spring frost damage for
tea plants [17]. Numerous studies regarding spring frost effects on tea plants have been
conducted to identify the spatiotemporal distribution characteristics [18], to assess the
damage impacts [19], and to evaluate risk [20] at provincial or county scale based on the
minimum air temperature observations at ground-based meteorological stations. Limited
by weather station network location and distribution, meteorological observations at site
scales cannot effectively capture spatial variation, especially in rural, undeveloped, and
less populated areas where the distribution of meteorological stations is very sparse [21,22],
and in complex terrain areas where elevation changes drastically [23]. Great efforts have
been taken to resolve this lack of high spatial resolution air temperature (Ta) data by
interpolation of Ta readings between known meteorological sites. Thin Plate Smoothing
Splines (TPSS) and Kriging (ordinary and cokriging) are considered better interpolation
methods with relatively high accuracy and low bias compared with other interpolation
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methods [24,25]. These methods have been proven to be successful in estimating tempera-
tures near meteorological stations. However, the spatial variability of temperature may
be sensitive to latitude, longitude, elevation, and season. A useful interpolation method
should be able to capture characteristics in different research regions and periods by adding
appropriate variables [26]. Unfortunately, such a universal interpolation method has not
been effectively developed yet.

Satellite remote sensing provides unprecedented globally continuous coverage of criti-
cal land surface parameters at high spatial resolution. These parameters include vegetation
indices, leaf area index, surface temperature, etc. Land surface temperature (LST) is the
radiative skin temperature of the land surface [27] as retrieved from top-of-atmosphere
brightness temperatures in the infrared spectral channels of a remote sensor. Spatial es-
timates of temperature at high temporal (daily) and spatial resolution (1 km) appeared
in 1981 with the launch of the Advanced Very High-Resolution Radiometer (AVHRR) on
board a National Oceanic and Atmospheric Administration (NOAA) satellite, and later
with the Moderate Resolution Imaging Spectroradiometer (MODIS) on board NOAA’s
Aqua and Terra satellites in 2000 [28]. Therefore, methods regarding air temperature (Ta) es-
timation with spatial patterns have been widely researched based on MODIS LST products
and some auxiliary data over wide areas, such as the mixed bootstrap and jackknife resam-
pling method in Portugal [29], the stepwise linear regression method in east Africa [30], the
temperature-vegetation index (TVX) method in the north Tibetan Plateau [21], the random
forest machine learning approach in urban landscapes [31].

Methods for estimating maximum (Tmax), minimum (Tmin), and average (Tavg) air
temperature have been successfully developed in recent years. However, applications
of spatially continuous Ta patterns from remote sensing data have rarely been reported
in publications. Wang et al. took three cooling periods in 2006 as examples to identify
the spatial distribution of SFD for tea plants with estimated Tmin based on MODIS LST
products and the standard lapse rate of air temperature with elevation [32]. Results showed
that three cooling periods were exactly identified, especially for several highlighted cities
and counties recorded in the “Yearbook of Meteorological Disasters in China”.

The major objective of this study was to further analyze the spatiotemporal distribu-
tion characteristics of SFD on tea plants with spatially continuous satellite-based Tmin
estimates at high temporal scale over the MLRYR in China from 2003 to 2020 based on a
previous publication [32], and then to clarify the temporal, spatial, and terrain risks of SFD.
To reach this goal, the study area and data are first described in Section 2. The Tmin estima-
tion method based on satellite-based reconstructed LST values and elevation products is
then briefly introduced in Section 3. Next, the spatiotemporal distribution characteristics
and risks of SFD for tea plants are systematically analyzed at 1 km resolution over the
MLRYR in China in Section 4. Finally, some limitations are discussed and conclusions are
summarized at the end of this paper.

2. Study Area and Data
2.1. Study Area

The MLRYR (Figure 1) is across six provinces (Jiangsu Province, Zhejiang Province,
Anhui Province, Jiangxi Province, Hubei Province, Hunan Province) and one municipality
(Shanghai Municipality). The MLRYR is the most important tea-production area in China,
and its annual tea output accounts for about two thirds of the country’s total output [12].
The tea gardens in the MLRYR are mainly distributed in hills and low mountain areas,
and a few are scattered in high mountain areas with the elevation being more than 1000 m
above sea level (Figure 1). The climatic characteristics are seasonally distinguishable in the
MLRYR, and are characterized as warm in spring, hot in summer, cool in autumn, and cold
in winter.
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Figure 1. Study area (a) and its meteorological stations shown as blue circles (b) in the middle and
lower reaches of the Yangtze River region, China. In panel (b), the elevation in four levels was
mapped with different shades of yellow, and the land cover type of shrub was denoted with red dots.

2.2. Data
2.2.1. Ground-Based Meteorological Data

Ground-based daily Tmin observations at 163 meteorological stations from March to
April (the period when SFD occurs for tea in the MLRYR) in 2003–2020 were downloaded
from the China Meteorological Administration Meteorological Data Network (http://data.
cma.cn/site/index.html. Last visited on 25 April 2021). All data were quality checked, and
there were no missing temperature records during the study period in the MLRYR.

2.2.2. Remotely Sensed Products

(1) MODIS LST products
MODIS products are available for public download via the Earth Observing System

Data and Information System (EOSDIS) of the National Aeronautics and Space Adminis-
tration (NASA (https://earthdata.nasa.gov/. Last visited on 26 April 2021). In this study,
daily MODIS LST products (MYD11A1) at a spatial resolution of 1 km on board the Aqua
satellite platform were used. To cover the entire study area, the LST products of four tiles
in a 1200 by 1200 grid (h27v05, h27v06, h28v05, and h28v06) were downloaded from March
to April in 2003–2020. A previous study demonstrated that nighttime MYD11A1 LST aver-
aged at 3 × 3 pixel-window resolution was the best proxy for daily Tmin estimation [32].
Therefore, four tiles each day were re-projected to Albers Conical Equal Area (ACEA)
projection, and then merged, resized, and mosaicked to get a nighttime LST dataset that
was exactly consistent with the study area. Then daily good retrieval LST values recognized
by quality control (QC) flags within a moving window of 3 × 3 pixels were averaged for
estimating daily Tmin.

(2) MODIS Land Cover Type products
The MODIS Land Cover Type Product (MCD12Q1) was created using a hierarchi-

cal classification model that ingested a full year of 8-day MODIS Nadir BRDF-Adjusted
Reflectance (NBAR) data [33]. The MCD12Q1 product provides six different legacy classifi-
cation schemes, including IGBP (International Geosphere-Biosphere Programme), UMD
(University of Maryland), LAI (Leaf Area Index), BGC (BIOME Biogeochemical Cycles),
PFT (Plant Functional Types), and LCCS (Land Cover Classification System), at annual
time steps and 500 m spatial resolution for 2001–present [33]. In this study, the PFT scheme
was used to extract the shrub classification that corresponded to the tea planting area in
the MLRYR (red color dots in Figure 1b).

http://data.cma.cn/site/index.html
http://data.cma.cn/site/index.html
https://earthdata.nasa.gov/
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(3) Aster global digital elevation model
The Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer Global

Digital Elevation Model (ASTER GDEM) Version 3 was developed jointly by the Ministry
of Economy, Trade, and Industry (METI) of Japan and NASA of the United States. ASTER
GDEM provides a global digital elevation model (DEM) of land areas on Earth at a spatial
resolution of approximately 30 m horizontal posting at the equator (https://doi.org/10.506
7/ASTER/ASTGTM_NC.003 release Date: 5 August 2019, Last visited on 9 July 2021). Data
can be freely downloaded at a 1◦ × 1◦ tile for convenience of distribution and handling
by users. The total 168 tiles covering from 24◦ to 35◦N latitude and from 109◦ to 122◦E
longitude were merged, resized, and mosaicked, and the elevation values within a moving
window at 3 × 3 km grid cells were aggregated up to get a DEM image with the same
spatial resolution of 1 km for all remotely sensed data.

All remotely sensed products were converted to *.tif format files by MODIS Repro-
jection Tools (MRT). Spatial calculation in pixel-by-pixel was done in Interactive Data
Language (IDL), and spatial exhibition and mapping were drawn in ArcGIS. Additionally,
the excel software was also used in statistical analysis.

3. Methodology

The threats of SFD to tea plants were mapped using satellite-based Tmin estimation
in the MLRYR in China, and its pipeline was shown in Figure 2.

Figure 2. The pipeline of spring frost damage (SFD) to tea plants using satellite-based Tmin estimation.
The data used in this study includes ground-based meteorological observations (describes in Section
2.2.1) and remotely sensed products (in Section 2.2.2). The methodology mainly concerns three parts
in this pipeline: (i) satellite-based Tmin estimation (in Section 3.1); (ii) spatiotemporal characteristics
of SFD expressed as SFD days and SFD stations with ground-based Tmin observations, and SFD days
and SFD pixels with satellite-based Tmin estimations (in Section 3.2); and (iii) three-dimensional risks
of SFD with pixel-based SFD percentages and SFD frequencies (in Section 3.3). The spatiotemporal
characteristics of SFD (in Sections 4.1 and 4.2) and its risk (in Section 4.3) to tea plants were exhibited
in the bottom of the pipeline. Here, three gray boxes represent satellite-based data or method to
distinguish them from the ground, and the blue number signs (such as Sections 2.2.1, 3.2 and 4.1, etc.)
were the section labels in the manuscript.

3.1. Satellite-Based Tmin Estimation

A Tmin estimation model had been established based on MYD11A1 nighttime LST
averages for 3 × 3 pixel windows and DEM data, employing the standard lapse rate of air
temperature with elevation [32]. Due to limitations encountered from cloud contamination
or other reasons, daily inconsistent LST pixels labeled by QC values of 2 or 3 were gap-
filled. In this study, a clear sky MODIS LST reconstruction method (RSDAST) [34] was
used. RSDAST requires only one parameter (the MODIS LST product itself) to reconstruct

https://doi.org/10.5067/ASTER/ASTGTM_NC.003
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missing LST values based on the assumption that differences in LST between nearby pixels
are relatively stable during a short time period [34]. Validation on remotely sensed Tmin
estimation with 145,210 ground-based Tmin observations showed that the accuracy of this
method was acceptable with a relatively high coefficient of determination (R2 = 0.841),
low root mean square error (RMSE = 2.15 ◦C) and mean absolute error (MAE = 1.66 ◦C),
and reasonable normalized RMSE (NRMSE = 25.4%) and Nash–Sutcliffe model efficiency
(EF = 0.12) [32].

Spatially continuous Tmin patterns at a daily scale were produced based on remotely
sensed MODIS LST and ASTER GDEM products by employing the previously established
Tmin estimation model and RSDAST method. Shrub classification in PFT scheme was
extracted as tea planting area with MODIS land cover type products.

3.2. Spatiotemporal Characteristics of SFD

According to the Chinese Meteorological Industry Standard, daily Tmin of 4 ◦C was
selected as the trigger temperature of SFD for tea plants in the MLRYR [17]. In this paper,
the temporal dynamics and spatial characteristics of spring frost damage to tea plants were
analyzed in the MLRYR based on the estimated Tmin below 4 ◦C.

For the temporal dynamics of SFD, the analysis focused on two temporal scales:
(i) Annual dynamics. The SFD days for each pixel in the tea planting areas over the
MLRYR were counted from March to April in 2003–2020, and then the average days of
SFD in the total tea planting pixels were calculated for each year. (ii) Daily dynamics. The
SFD pixels for each day in the tea planting areas over the MLRYR were counted from
March to April in 2003–2020, and daily pixels of SFD were averaged from 2003 to 2020.
Meanwhile, the SFD days for each station and the SFD stations for each day at 163 ground-
based meteorological stations over the MLRYR were also counted from March to April in
2003–2020, in order to further illustrate the consistency of Tmin between ground-based
meteorological observations and remotely sensed estimations at the two temporal scales.

For the spatial characteristics of SFD, the SFD days for each pixel in the tea planting
areas over the MLRYR were counted from March to April in 2003–2020, and then the
average days of SFD were calculated in 2003–2020. Additionally, annual SFD days at
163 ground-based meteorological stations were also used to analyze the spatial characteris-
tics of SFD during the past two decades at the multi-year average scale and the individual
year scale.

3.3. Multidimensional Risk of SFD

Three scales of risks of SFD, including temporal, spatial (latitude and longitude), and
terrain scales, were analyzed. For temporal risk, daily pixel-based SFD percentage from
March to April was calculated as the ratio of daily SFD pixels in every year to the total
tea planting pixels. For spatial and terrain risks, the pixel-based SFD frequencies were
averaged by grouping different latitude, longitude, and elevation over the total tea planting
pixels in the MLRYR from March to April in 2003–2020.

3.4. Mann-Kendall Test

The Mann-Kendall (M-K) statistical test [35,36] is a rank-based nonparametric test,
and it has been widely used to detect monotonic trends in series of environmental, climate,
or hydrological data [37–39].

The sequential version of the M-K test [40] was used to test the start time of a trend
within the sample X1, X2, . . . . . . , Xn from a set of random variable X based on rank series
of progressive and retrograde rows of the sample. The sequential values of the test statistic
U(t) were calculated with the mean (E(t)) and variance (Var

(
tj
)
) of the test statistic (tj) as

done by Gerstengarbe and Werner [41] and Zhao et al. [42]:

U(t) =
tj − E(t)√

Var
(
tj
) (1)
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where tj is the cumulative number in which xi is greater than xj (1 ≤ j ≤ i), U(t) is the
forward sequence, and is denoted as UF(t). The backward sequence U′(t) was calculated
using the same equation but in the reverse data series, and is denoted as UB(t) in this paper.

When the test statistic UF is greater than 0, the monotonic trend is increasing, while a
negative UF value indicates a decreasing trend [39]. Additionally, the M-K test can be used
to detect whether the trend is statistically significant or not by checking the critical value
of UF from the standard normal table. For instance, the critical limit is ±1.96 when the
significance level is 0.05 [38], and the limit is ±2.56 when the significance level is 0.01. The
M-K test can also be used to detect cross points (also called mutation points) in temporal
trends when two statistics, UF and UB, intersect within the range of ±1.96 [43,44].

4. Results
4.1. Temporal Dynamics of SFD for Tea Plants in 2003–2020
4.1.1. Annual Dynamics

The inter-annual SFD days for tea plants from 2003 to 2020 were analyzed using
regional average SFD days over total tea planting pixels in the MLRYR (Figure 3). During
the past two decades, SFD days exhibited a fluctuating but significantly (p < 0.05) decreasing
trend (2.7 days per ten years). The maximum SFD days appeared in 2010 with a value of
16.5 d, and the minimum SFD days occurred in 2013 with a value of 7.5 d. Furthermore,
annual standard errors (SE) and 95% confidence intervals (CI) of SFD days were also
calculated over total tea planting pixels. The results showed that annual SEs were between
0.03 and 0.04 d, and 95% CIs were between 7.40 and 16.56 d (not show on Figure 3).

Figure 3. Annual dynamics of SFD days derived from the satellite data for tea plants and the
sequential Mann-Kendall (M-K) test results during 2003–2020. The gray histogram and black dotted
line are annual SFD days and its linear regression (left y-axis), respectively. The solid and dashed
dark red lines are the M-K test statistics (right y-axis) for forward (UF) and backward (UB). The
dash-dotted blue line is statistic value 0, and the solid horizontal dark blue lines represent the upper
and lower limits of the 95% confidence interval.

The M-K test was used to check whether a mutation year for SFD existed during
2003–2020. The M-K test results (UF denoted with the solid red line (Figure 3)), showed
that there was a fluctuating decreasing trend in SFD days with no UF values greater than
0 from 2003–2020. Additionally, a series of continuous gentle negative mutation points
was observed during 2006–2009, followed by an approximately neutral mutation in 2011.
In subsequent years, the decreasing trend of annual SFD days for tea plants accelerated
drastically, until it became statistically significant in 2019.

The inter-annual SFD days for tea plants from 2003 to 2020 obtained from regional
pixels were plotted against ground-based average SFD days from 163 meteorological
stations in the MLRYR (Figure 4). From the scatter plot, we can see that annual SFD
days averaged from all regional tea-planting pixels were systematically consistent with
the annual averages obtained from ground-based meteorological observations during the
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18-year study period. The linear regression coefficient and the coefficient of determination
(R2) were 0.95 and 0.58, respectively, and were significant at p < 0.01. However, the
linear regression intercept was greater than 0 (5.4), indicating that systematic deviation
still existed.

Figure 4. Scatter plot of SFD days retrieved from regional pixels and meteorological stations in
2003–2020.

4.1.2. Daily Dynamics

Daily dynamics of regional pixels and meteorological stations affected by SFD from
March to April are shown in Figure 5. The regional pixels and meteorological stations
affected by SFD, to some extent, can represent SFD coverage. Generally, SFD coverage
decreased with increasing date at a rate of 244.56 pixels/day, which was equivalent to
2.45 × 104 ha/day. The highest coverage occurred in the first half of March, followed by a
sharp decrease in coverage during the next 30 days, and then the coverage dropped to the
lowest values at the end of April. The largest SFD coverage denoted with regional pixels
appeared on March 6 with 17,862 pixels, accounting for 43.4% of the entire tea planting area
in the MLRYR. Correspondingly, the maximum number of SFD stations occurred on March
4, and this date was very close to the date of the largest number of regional pixels. The
number of SFD stations on March 4 was 69, accounting for 42.3% of the total 163 ground-
based meteorological stations. The two percentages (regional pixels and meteorological
stations) were similar, indicating that the area influenced by SFD was basically identical
by the two assessments. The consistency between the two datasets of regional pixels and
meteorological stations was further checked by linear regression. The regression results
revealed that the two datasets were highly correlated, with R2 of 0.81 for the regression
(significant at p < 0.01) (in the small inset panel in Figure 5).

The maximum, minimum, and average SFD pixels during 2003–2020 were also shown
in Figure 5. Generally, all three SFD pixels fluctuated over time, but declined with increasing
date. Almost all of the daily maximum SFD pixels were greater than 20,000 before March
25, indicating that there was at least one year in which more than half of the tea planting
areas (the number of pixels in the tea planting areas is 41,175) in the MLRYR suffered from
SFD threats. After that date, although the maximum SFD pixels was gradually decreasing,
the SFD coverage was still increasing from time to time. For example, the maximum SFD
pixels dropped to 5000 around April 20. However, the SFD pixels increased again to more
than 12,000 during the last several days of April, and even reached near 28,000 on April 27.
The minimum SFD pixels was relatively low with values of less than 3300 from March 1 to
April 30, indicating that the SFD in some years was almost none and the tea benefits may
have been great.
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Figure 5. Daily dynamics in 2003–2020 for regional pixels and meteorological stations affected by
SFD from March to April in the middle and lower reaches of the Yangtze River region, China. The
black dotted line, dash-dotted line, and solid line are the regional maximum, minimum, and average
pixels (left y-axis), respectively. The blue line is the average meteorological stations (right y-axis) in
the large panel. Additionally, the 18-year average daily scatter plot of pixels vs. stations for SFD from
March to April is also shown in the small inset panel.

The M-K test results demonstrated that the SFD pixels had an increasing trend during
the first eight days of March, with UF values greater than 0 (Figure 6). After March 9, the
decreasing trend of daily SFD pixels was obvious, and the M-K test values reached the 0.05
significance level on March 15 and the 0.01 significance level on March 17.

Figure 6. The sequential Mann-Kendall (M-K) test results of SFD pixels for tea planting area from
March to April in the middle and lower reaches of the Yangtze River region, China. The gray
histogram and black dotted line are daily SFD pixels and its linear regression, respectively (left
y-axis). The solid and dashed dark red lines are the M-K test statistics (right y-axis) for forward (UF)
and backward (UB). The dash-dotted blue line is statistic value 0, the solid horizontal dark blue lines
are the upper and lower limits of the 95% confidence interval, and the dark blue horizontal dotted
line is the lower limit of the 99% confidence interval.

4.2. Spatial Characteristics of SFD Days for Tea Plants in 2003–2020
4.2.1. Average SFD Days

Figure 7 shows the spatial characteristics of average SFD days for tea plants from
March to April in 2003–2020 in the MLRYR, China. Overall, the impact of spring frost was
scattered across almost all shrub regions in the MLRYR. The regions with the greatest SFD
days, denoted with the dark blue color, were distributed mainly in the northwestern part
of MLRYR. The average SFD days during the past 20 years in northwestern MLRYR were
not less than 16 d, accounting for more than 26% of the total days from March to April.
There were many days in this area where there was severe SFD. Areas with few SFD days,
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expressed with red color for 5 d or less, were primarily located in the southern region of
the MLRYR. The areas with SFD days between 6 and 10 d were widely distributed, and
included parts of north-central Hunan and Jiangxi Provinces, parts of southern Hubei and
Anhui Provinces, and the border areas of Jiangsu and Zhejiang Provinces. Those regions
are also the major tea planting areas in the MLRYR.

Figure 7. Spatial characteristics of average SFD days for tea plants in 2003–2020 in the middle and
lower reaches of the Yangtze River region, China. Pixels with different colors and different size circles
were the average SFD days calculated from satellite-based estimates of land surface temperature
(LST) and with ground-based minimum temperature (Tmin) observations, respectively.

For ground-based Tmin observations, the areas with more than 16 SFD days, repre-
sented by the largest open circles, were mainly located in the northeastern parts of the
MLRYR. Because there were very few tea plantations in northeastern MLRYR, SFD days
in this area was not the focus of this study. A few other larger open circles were scattered
across northwestern MLRYR in the southern region of Anhui Province, the northern region
of Jiangxi Province, and the central region of Hunan Province. Generally, except for the
station in central Hunan Province, the larger open circles basically overlapped the blue and
dark blue regions, showing a great consistency between satellite-based and ground-based
SFD days. The smallest circles were widely distributed in the south-central part of MLRYR,
where there were red and purple pixels. Additionally, the smaller circles were also located
in the northwestern part of MLRYR, where the SFD days were 5 d less than the satellite-
based results. The possible reason for this slight difference between satellite-based and
ground-based SFD days in northwestern MLRYR was that the altitude at the meteorological
station was relatively low compared with the tea gardens, and the SFD days determined
from satellite-based Tmin estimations at the tea garden site altitude and the SFD days
determined from ground-based Tmin observations at the meteorological observation site
altitude were naturally different.

4.2.2. Annual SFD Days

Spatial characteristics of annual SFD days, denoted by both continuous pixel-based
Tmin in different colors and by discrete ground-based Tmin in different size open circles,
in 2003–2020 were individually displayed for each year in Figure 8. As stated earlier, the
northeastern region with larger open circles at meteorological stations had almost no tea
planting, so these areas can be ignored. For other regions with many tea gardens, there
were generally more SFD days in the northern region, and fewer days in the southern
MLRYR. The areas with larger circles basically coincided with the scattered pixels in blue
colors. On the other hand, the regions with smaller circles coincided with the red and
purple pixels.
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Figure 8. Spatial characteristics of annual SFD days for tea plants in 2003–2020 in the middle and
lower reaches of the Yangtze River region, China. Pixels with different colors and different size circles
were the SFD days calculated from satellite-based estimates of land surface temperature (LST) and
with ground-based minimum temperature (Tmin) observations, respectively. Blue frames around
panels indicate years with large areas covered by more SFD days, red frames around panels indicate
years with large areas covered by fewer SFD days, and no frames indicate years with nearly even
areas covered by more SFD days and fewer SFD days.

The number of years with large, medium, and small areas covered by more SFD days
were relatively equal in 2003–2020 (five, six, and seven years, respectively). On one hand,
the years covered mostly by the blue and dark blue pixels and the large open-circle areas
included 2003, 2010, 2011, 2016, and 2017 (panels framed with blue squares in Figure 8).
The areas with blue and dark blue pixels signifying more SFD days and with large circles
were mainly located in the northern and central MLRYR, where annual SFD days were
11 days or greater. The regions with five or fewer SFD days (red pixels and small circles)
were located in the southern parts of Hunan and Jiangxi Provinces. On the other hand, the
number of years having larger red-colored areas was seven, including 2006, 2008, 2013,
2014, and 2018–2020 (panels framed with red squares in Figure 8). The red and purple
colored areas almost covered the entire Jiangxi and Anhui Provinces, most of Hunan,
Jiangsu, and Zhejiang Provinces, and the central and eastern parts of Hubei Province. The
blue and dark blue colored areas were only poorly concentrated in the northwestern parts
of the MLRYR, and occasionally scattered in the other regions not mentioned above. Finally,
the number of years in which the areas covered by more and fewer SFD days were nearly
equivalent was six, including 2004, 2005, 2007, 2009, 2012, and 2015 (without frames in
Figure 8). The areas with dark blue pixels and large circles mainly concentrated in the north
of the MLRYR, the regions with blue pixels and medium circles generally distributed in
the central parts of the MLRYR, and the areas with warm tones and small circles primarily
clustered in the south of the MLRYR. Generally speaking, the number of years with smaller
SFD areas and fewer SFD days accounted for the majority during the past twenty years,
especially from 2011 to 2020.

4.3. Risk of SFD for Tea Plants
4.3.1. Temporal Risk

Daily risk of SFD, denoted by the pixel percentage affected by SFD, over all tea plant-
ing areas in the MLRYR from March to April in 2003–2020 is presented in Figure 9. Among
the 18 years studied, there were no years in which the average pixel-based percentage of
SFD exceeded 40% (see rightmost column of Figure 9), and the number of years in which
this proportion was no more than 20% or between 20–40% was nine years. Furthermore,
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the years with the average pixel-based percentage of no more than 20% were mainly con-
centrated in the past 10 years. By focusing on the daily average pixel-based percentages of
SFD, we can see that the days with percentages greater than 40% were mainly concentrated
in the first ten days of March, and the smaller percentages of less than 20% generally
occurred in April (see topmost row of Figure 9). Daily pixel percentages of SFD from March
to April also decreased with increasing date at a rate of −0.59%/d.

Figure 9. Time series risk of pixel-based spring frost damage (SFD) for tea plants from March 1
to April 30 in 2003–2020 in the middle and lower reaches of the Yangtze River region, China. The
average pixel-based percentages of spring frost damage at annual and daily scales are also shown in
the rightmost column and topmost row, respectively.

The total of 1098 (61 days by 18 years) daily pixel-based percentages also revealed that
the higher percentages were concentrated in the first twenty days of March in the earliest
years, and the smaller percentages normally appeared in the last twenty days of April in
the past ten years. Even so, in mid-to-late April, there were still some years when the pixel
percentage of SFD exceeded 40%, and this percentage was unexpectedly up to 68% in 2007.
It should be pointed out that the percentage in the first ten days of April was not too high
in most years. However, the number of days with percentages exceeding 60% was one day
in 2009, one day in 2010, and two days in 2020. The maximum percentage occurred on
April 4, 2020 with a value of 86%, indicating that more than four fifths of the tea planting
area in MLRYR was affected by SFD. Therefore, the temporal risk of SFD for tea planting
areas has nearly always existed, and it cannot be ignored.

4.3.2. Spatial Risk

Spatial risk of pixel-based SFD, quantified by the frequencies of occurrence of pixel-
based SFD at different latitudes and longitudes (0.1◦ intervals) averaged over all of the tea
planting areas in the MLRYR from March to April in 2003–2020 is shown in Figure 10. When
latitude was less than 33.2◦N, the average frequency for SFD was raised with increasing
latitude (Figure 10a). In areas with relatively higher latitudes, such as at latitudes greater
than 33.2◦N, the average SFD frequencies fluctuated drastically due to the smaller pixel
numbers of tea gardens.

From the perspective of longitude, the average SFD frequencies in the westernmost
part of the study area (the area with lower longitude), were relatively higher compared
with other longitudes. SFD frequencies gradually decreased with increasing longitude, and
then SFD values were basically stable for longitude greater than about 112◦E (Figure 10b).
The areas at relatively smaller longitudes had higher SFD frequencies, and this observation
may be related to the long distance from the ocean or the higher altitude.
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Figure 10. The frequency (black line, left y-axis) and pixel numbers (gray bars, right y-axis) of pixel-based spring frost
damage (SFD) for tea plants as influenced by latitude (a) and longitude (b) at 0.1◦ intervals from March to April in 2003–2020
in the middle and lower reaches of the Yangtze River region, China.

4.3.3. Terrain Risk

Terrain risk of pixel-based SFD, quantified by the frequencies of occurrence of pixel-
based SFD at different altitudes (100 m intervals), averaged over all of the tea planting
areas in the MLRYR from March to April in 2003–2020 is shown in Figure 11. The minimum
values of all five statistical variances, including the maximum, the minimum, the median,
the first quartile, and the third quartile, occurred for the regions where altitude was less than
100 m. The medians of all SFD frequencies for all altitudes were greater than 14.3%, and
the maximum median value of 68.4% occurred at 1600 m. The increase in SFD frequency
with increasing altitude was statistically significant. Only at the two highest altitudes did
the SFD frequencies decrease irregularly. Furthermore, both the difference between the
maximum and the minimum frequencies and the difference between the third quartile
and the first quartile frequencies were relatively stable with altitude, and the differences
were around 18% and 6.6%, respectively, except for the highest three altitudes. The narrow
ranges within the same altitude interval indicated that the inter-annual fluctuations among
different altitudes were very small. Notably, the change in SFD frequency (box plots, left
y-axis) and SFD pixel number (black line with open circles, right y-axis) with altitude
presented opposite patterns. Areas with higher altitudes had a higher SFD frequency, but
fewer tea plantations were located in these areas. In contrast, in areas where there were
more tea plantations, SFD frequency was relatively low.

Figure 11. Annual spring frost damage (SFD) frequency (box plots, left y-axis) and number of SFD
pixels (black line with open circles, right y-axis) for tea plants as influenced by altitude at 100 m
intervals in 2003–2020 in the middle and lower reaches of the Yangtze River region, China. The upper
and lower boundaries of the box plots represent the 25th and 75th percentiles, the black crosses are
the medians, and solid triangles and diamonds at the ends of the whiskers represent the minimum
and maximum frequencies, respectively.
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5. Discussion and Limitations
5.1. Advantage for Satellite-Based Tmin Estimation

Daily minimum temperature is the critical trigger threshold of SFD for crops (winter
wheat [45], winter sugar beet [46], potato [47]); orchards (apple and cherry [11], tea [14]);
and forests (beech [10,48,49], spruce [11]). The spatiotemporal distribution of Tmin, there-
fore, needs to be accurately identified in order to know whether SFD has occurred and what
the extent of the impacts are. However, ground-based Tmin observations are discontinuous
and heterogeneous because of limitations in the weather station network layout. The
discrete distribution of weather stations will result in underestimation or overestimation
for spatial SFD risk, especially in areas where the meteorological stations are themselves
very sparse [21], and in areas where elevation changes drastically. Due to the availability
of LST data in recent years for regions with inadequate or inaccessible weather station
networks, the retrieval of minimum air temperature from remotely sensed LST has been a
popular method for estimating Tmin, and good relationships have been reported between
nighttime LST and Tmin [21–23]. By employing the standard lapse rate of air temperature
with elevation, Wang et al. established a Tmin estimation model based on MODIS night-
time reconstructed LST values and DEM data [32]. This simple estimation model effectively
solved the problem of spatially discontinuous and heterogeneous weather station locations,
and was further confirmed to be a useful method for monitoring and evaluating SFD risk
for tea plants in the MLRYR of China.

5.2. Rationality of Risk Distribution

SFD is a well-known worldwide risk for overwintering crops, tree species, and some
early spring orchards in temperate climate regions [8,50,51] and Mediterranean areas [49,52]
at northern latitudes, and also for tea plantations in humid areas around the equator [14].
The distribution characteristics of SFD risk were systematically analyzed at three scales,
including temporal scale, spatial scale, and terrain scale, over the MLRYR in China. The
results of our study demonstrated that the period with higher SFD risk for tea plants
occurred primarily in early spring over the past two decades. Even so, the SFD risk during
late spring (e.g., April) deserves to be given more attention due to occasionally drastic
cooling events. Recent research in the Southern Apennine Mountains found that lower
temperatures in May in 2019 lengthened the duration of beech leaf development (from
dormant bud to leaves completely unfolded) by nine days, and the date of unfolded leaves
was even delayed 11 days later compared with the number of days in 2018 [52].

Spatially, the regions with higher SFD risk in the MLRYR were concentrated in the
northwestern parts of the study area where altitude was also relatively higher. The results
found in this study have also been observed in other studies. For example, Laughlin
found that minimum temperatures were lower at higher elevations in the absence of
cloud cover and disturbances by wind speed [53]. Kotikot et al. also found that higher
elevations increased the odds of a frost occurrence, even though there was only a 400 m
elevation range [54]. Additionally, Laughlin and Kalma examined watershed area as a
factor affecting frost occurrence, and found that it could explain 65% of the unexplained
variation in minimum temperatures [55]. This result may explain the higher SFD risk
appearing in the westernmost part of the study area. Kotikot et al. proved that slope aspect
was an important factor for frost occurrence [54]. However, different researchers have come
to inconsistent conclusions over different regions. Kotikot et al. thought that the odds of
frost occurrence on a western slope in equatorial regions were reduced by a factor of 0.12
compared with an eastern slope [54]. Longstroth reported that northern facing slopes were
more susceptible to frosts than southern facing slopes in North America [56]. Gurskaya
et al. found that northeastern facing slopes were the most frost-prone in the southern Ural
Mountains [57]. Therefore, more work should be done in the future to further evaluate
SFD risk by considering more potential factors, such as land cover types, distance to water
exposure, slope, aspect, etc.
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5.3. Impacts of Spring Frost Types

Spring frost is a catastrophic weather event caused by the intrusion of cold air. Frosts
can be classified as advection frost, radiation frost, or mixed frost [58]. Advection frost
occurs when cold air accumulated at high latitudes moves southward, and consequently
drops temperature drastically and is followed by strong winds. Radiation frost is caused
by strong radiational cooling on the ground surface under the control of cold high pressure
that produces clear and windless conditions. Radiation frosts are often very localized and
site-specific [59]. They typically occur during springtime when there is a combination of
cloudless nights with little or no wind, low humidity, and low temperature. Mixed frost
is a combination frost arising from cold air advection from strong winds and radiational
cooling. Different frost types may have different impacts on vegetation, depending on
where the vegetation grows. Advection frost is mainly found on vertical exposed surfaces,
and radiation frost usually occurs in valleys since cold air is heavier than warm air [60].
No matter the type of spring frost, once it occurs, it will damage newly formed buds and
flowers, destroy young fruit and crops, and even devastate full trees, thereby bringing huge
economic losses to local farmers. It is essential to have prior knowledge of species-specific
responses to frost events [60]. The good news is that there are ways to control spring
frosts and to mitigate the subsequent damage to plants. Common methods used to protect
plantations from frost include smokers, wind machines, and propane burners. Naturally,
there are pros and cons to each method. The proper choice depends on many factors such
as topography, cost of equipment, and labor requirements (Save money on frost protection
with sprinkler irrigation I Netafim (netafimuk.com. Last visited on 20 May 2021)). Effective
adaptations may benefit from genetic developments and/or phenotypic plasticity, and the
latter is likely to be more important [61].

5.4. Potential Migration of Risk under Climate Warming

Climate warming has been widely accepted. According to climate model projections,
the global average air temperature is likely to increase by 0.3–4.8 ◦C by the end of this
century [2]. Temperature is commonly regarded as one of the primary drivers of spring
vegetation phenology [62], especially for perennial trees at middle and high latitudes of the
Northern Hemisphere [63], and various vegetation types (deciduous needle-leaved forest,
alpine and sub-alpine meadow, plain grassland, desert grassland) in Xinjiang in the center
of the Eurasian continent [62]. A notable longitudinal change pattern for natural ecosystems
has been found, with considerable increases in temperature sensitivity from inland areas
to most coastal areas over the North Hemisphere [64]. On one hand, warmer conditions
in winter might reduce the effective chilling accumulation, and therefore delay spring
phenology [65]. On the other hand, temperature increases in early spring could advance the
fulfillment of heat requirements and bring earlier spring phenology [66]. However, climate
change might further expose young buds to unstable weather environments, leading to an
increased risk of spring frost damage. Ideally, if spring phenology advances more slowly
than late spring frost threats, SFD risk may be reduced. Recent research demonstrated that
delayed blossom of apple trees was observed from 2001 to 2016 in Shaanxi, China, and late
spring frosts mostly occurred before tree flowering, causing only minor frost damage to
apple trees [65].

5.5. Uncertainties and Limitations

The MLRYR region, including six provinces and one municipality, was analyzed as
a single area. The total land area in the MLRYR exceeds 1,010,000 km2, extending from
24◦ to 35◦N latitude and from 109◦ to 122◦E longitude. The trigger threshold of spring
frost for tea plants was set as 4 ◦C based on an experimental conclusion using variety
Longjing 43 as an example [67]. In fact, there are many varieties of tea plants varying
over a large spatial extent, and their tolerances for frost damage, consequently, may be
different. Therefore, a detailed study of trigger thresholds for frost damage should be
done to precisely evaluate the SFD risk for different varieties of tea plants. Moreover, the

netafimuk.com
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dates of tea budding and leaf unfolding may come earlier under climate warming, and
a phenology-based approach for estimating the tea picking period should be studied in
order to accurately assess crop-specific frost risk.

6. Conclusions

Results in this study revealed that both SFD days at the annual scale and SFD areas
at the daily scale exhibited a decreasing trend of 2.7 days/decade and 2.45 × 104 ha/day,
respectively. Spatially, the regions with the greatest SFD days were mainly distributed in
the northwestern part of MLRYR, and the areas with few SFD days were primarily located
in the south of MLRYR. Additionally, SFD risks at three scales, including temporal, spatial,
and terrain scales, were also evaluated. Generally, higher SFD risks were found in the first
twenty days of March at the temporal scale, in the northwestern region at the spatial scale,
and in the relatively higher elevation areas at the terrain scale.

This study further confirmed that estimated Tmin based on MYD11A1 nighttime
products and DEM is a useful way to map and evaluate threats and potential risks of
spring frost damage to tea plantations in the MLRYR China. Our findings have important
implications for government agencies to reasonably determine layouts for new tea gardens
at higher elevations, for agricultural insurance agencies to draft effective tea insurance
strategies at different regions, and for tea farmers to give greater attention to potential frost
damage and to take appropriate frost prevention measures to reduce losses.
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