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Abstract: Most natural rubber trees (Hevea brasiliensis) are grown on plantations, making rubber an
important industrial crop. Rubber plantations are also an important source of household income
for over 20 million people. The accurate mapping of rubber plantations is important for both
local governments and the global market. Remote sensing has been a widely used approach for
mapping rubber plantations, typically using optical remote sensing data obtained at the regional
scale. Improving the efficiency and accuracy of rubber plantation maps has become a research hotspot
in rubber-related literature. To improve the classification efficiency, researchers have combined the
phenology, geography, and texture of rubber trees with spectral information. Among these, there
are three main classifiers: maximum likelihood, QUEST decision tree, and random forest methods.
However, until now, no comparative studies have been conducted for the above three classifiers.
Therefore, in this study, we evaluated the mapping accuracy based on these three classifiers, using
four kinds of data input: Landsat spectral information, phenology–Landsat spectral information,
topography–Landsat spectral information, and phenology–topography–Landsat spectral information.
We found that the random forest method had the highest mapping accuracy when compared with
the maximum likelihood and QUEST decision tree methods. We also found that adding either
phenology or topography could improve the mapping accuracy for rubber plantations. When either
phenology or topography were added as parameters within the random forest method, the kappa
coefficient increased by 5.5% and 6.2%, respectively, compared to the kappa coefficient for the baseline
Landsat spectral band data input. The highest accuracy was obtained from the addition of both
phenology–topography–Landsat spectral bands to the random forest method, achieving a kappa
coefficient of 97%. We therefore mapped rubber plantations in Xishuangbanna using the random
forest method, with the addition of phenology and topography information from 1990–2020. Our
results demonstrated the usefulness of integrating phenology and topography for mapping rubber
plantations. The machine learning approach showed great potential for accurate regional mapping,
particularly by incorporating plant habitat and ecological information. We found that during 1990–
2020, the total area of rubber plantations had expanded to over three times their former area, while
natural forests had lost 17.2% of their former area.

Keywords: phenology; topography; rubber plantation; Landsat; Xishuangbanna

1. Introduction

The para rubber tree (Hevea brasiliensis) is the major source of natural rubber for global
industrial markets, producing more than 98% of the world’s natural rubber [1,2]. With
growing demand for natural rubber, led mainly by the tire industry, rubber plantations
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are now widely planted outside their historically planted zone (between 10◦N and 10◦S
latitude), to areas as far as 22◦N, including Hainan and Yunnan of China and other regions
of southeast Asia [1,3–5]. Plantations are projected to expand by 4.3~8.5 million ha within
a decade [3]. The expansion of rubber plantations has negative consequences for local
biodiversity, carbon stocks, the water cycle, and other ecosystem services, especially for
those at higher elevations and with steeper slopes [6,7]. Knowing the spatial distribution of
rubber plantation areas at a relatively high resolution (30 m or finer), with a high degree of
accuracy, is thus of great importance to regional planning, sustainable rubber development
in the global industry market, and global biogeochemical processes in the carbon and water
cycles [4,8]. Mapping with a high accuracy at a high resolution is the basis for land use
planning, mapping productivity, carbon finance schemes, conservation policies, and the
assessment of economic losses caused by diseases (e.g., powdery mildew disease) or natural
disasters (e.g., typhoons). Therefore, using remote sensing to map rubber plantations can
play an important role for rubber markets at both local and global scales, land use planning,
and economic loss assessment.

Satellite remote sensing has become the main approach for large-scale rubber planta-
tion mapping, especially since the United States Geological Survey’s (USGS) Landsat time
series data became freely available in 2008 [9,10]. Landsat time series data were then widely
used in local and global land use/land cover mapping [11,12]. Compared to previous
classification schemes that were based on spectral pixel or texture features, biophysical
and physical features of rubber trees have been widely used to improve the efficiency and
accuracy of rubber plantation mapping during recent years [12–14]. Studies have mapped
rubber plantations using the Moderate Resolution Imaging Spectroradiometer (MODIS) by
adding deciduous feature-based phenological information in order to improve classifica-
tion [15–17]. However, the 250 m resolution MODIS is relatively coarse, making it difficult
to map rubber plantations accurately in fragmented landscapes, and there is uncertainty
regarding its accuracy for areas with mixed land cover [18]. Researchers have also used
Landsat time series data to achieve accurate and finer mappings of rubber plantations by
adding Landsat-derived vegetation indices, which track well at the phenology of decidu-
ous rubber plantations [12,14,19–21]. However, the complex and fragmented landscape of
Xishuangbanna means the accuracy of such models is uncertain. This is further complicated
by the mix of other land use types (e.g., paddy rice). Therefore, in later research, Xiao
and colleagues (2020) added a digital elevation model (DEM) layer in order to improve
the accuracy [22,23]. We found a few previous studies that had included DEM among the
classifiers, which demonstrated the great potential of DEM to improve the efficiency and
accuracy of rubber plantation mapping, especially for rugged regions [22–24].

To date, multiple classification approaches have been used in mapping rubber plan-
tations by combining phenological information, among which the maximum likelihood
(ML) classification method, QUEST decision tree (QDT) classification method [12,18,25],
object-based classification method [15,20], the random forest method (RF) [17,26], and
other machine learning-based classification methods [26] have been widely used. However,
limited information exists on how these classifiers perform when phenological information
is incorporated.

In this paper, we will assess the application of the above three classifiers (maxi-
mum likelihood classification, QUEST decision tree, and random forest) to phenological
based/topographical-based rubber plantation mapping. We address three objectives: (1) to
assess the accuracy and stability of three classifiers based on four data inputs for mapping
rubber plantations; (2) to assess the performance of phenological and topographical infor-
mation for mapping rubber plantations; and (3) to update rubber plantation distribution
maps for Xishuangbanna.
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2. Materials and Methods
2.1. Study Area

Xishuangbanna is the second largest natural rubber development region in China. It is
located at the northern edge of the Asian tropical zone (Figure 1) [27,28]. Compared to the
flat landscape of the largest rubber producing region of Hainan, Xishuangbanna is much
more mountainous, with elevations ranging from 397 m to 2428 m. Around 35.9% of the
land is above 1200 m, and only 18.1% below 800 m. Xishuangbanna has a tropical monsoon
climate with two seasons: the rainy season (May–October) and the dry season (November–
April), which is further divided into a cool-dry season (November–February) and a hot-dry
season (March–April) [29,30]. The cool-dry season features the lowest annual temperatures
and little rainfall. The annual average temperature of Xishuangbanna is 22.6 ◦C, and
annual average rainfall is 1130 mm, with more than 80% of the rainfall occurring in the
rainy season [31].
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Figure 1. The location of Xishuangbanna in China and its altitudinal range.

In contrast to the natural evergreen forests of Xishuangbanna, rubber trees experience
interannual leaf defoliation (or ‘wintering’, from early December to the middle of January)
and refoliation (from the end of January to the end of March) [31]. This interannual de-
foliation (via leaf shedding or wintering) and foliation (emergence of new leaves or leaf
flushing) of rubber trees provides a physiological and phenological basis by which remote
sensing techniques can be used to distinguish between rubber plantations and natural
forest. However, we found that variation in the timing of defoliation and refoliation, which
are affected by climate, rubber clones, and locations [31,32], might affect the temporal
window for selecting candidate images. The growth of rubber trees requires relatively
high temperatures and precipitation. Even for cold-tolerant clones, rubber trees are un-
productive at higher and steeper areas [7]. Therefore, the distribution of rubber trees in
Xishuangbanna is significantly affected by topographical factors [7,24].

2.2. Landsat Images and Data Pre-Processing

We used Level 1 terrain-corrected standard surface reflectance products of the Landsat
time series data of the United States Geological Survey (USGS) Earth Resources Observation
and Science (EROS) Center Science Processing Architecture (ESPA). We freely downloaded
the data from the geospatial data cloud (http://www.gscloud.cn/, accessed on 25 Decem-
ber 2020) (Table 1). Landsat images from 1989 to 2011 are Thematic Mapper sensor (TM)
and images from 2018 to 2020 are Operational Land Imager (OLI). The Level 1 terrain-
corrected products have consistent geometric, radiometric, and precision corrections, and
are also inter-calibrated across different Landsat sensors.

http://www.gscloud.cn/
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Table 1. The number of Landsat images (Path/Row) used in this study.

Year
Path/Row

129/045 130/044 130/045 131/045

1989 1 1 1 3
1990 0 0 1 1
1991 3 3 2 0
1998 1 0 1 0
2000 1 2 3 0
2001 0 1 3 0
2009 1 1 1 1
2010 0 2 3 1
2011 1 0 1 1
2018 1 2 4 1
2019 2 1 5 1
2020 0 0 4 0

The pre-processing of the Landsat time series images included a quality check, at-
mosphere correction, and topographic rectification. Atmospheric correction of the sur-
face reflectance data was generated from the Landsat Ecosystem Disturbance Adaptive
Processing System (LEDAPS), and we further corrected the data with Fast Line-of-sight
Atmospheric Analysis of Spectral Hypercubes (FLAASH). The Landsat images were then
processed for topographic rectification using the Teillet model, and we used Global Digital
Elevation Model Version 2 (GDEM V2) for the model. GDEM V2 was downloaded from
the geospatial data cloud (http://www.gscloud.cn/, accessed on 28 December 2020) and
processed in ArcGIS 10.3. The Fmask model has been used to filter pixels caused by clouds
and identify shadows. The workflow is shown in Figure 2.
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For the candidate Landsat images, we calculated the Normalized Difference Vegetation
Index (NDVI) [33], Enhanced Vegetation Index (EVI) [34], and Land Surface Water Index
(LSWI) [35]:

http://www.gscloud.cn/
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NDVI =
ρnir − ρred
ρnir + ρred

(1)

EVI = 2.5 × ρnir − ρred
ρnir + 6 × ρred − 7.5 × ρblue + 1

(2)

LSWI =
ρnir − ρswir1

ρnir + ρswir1
(3)

where ρblue, ρred, ρnir, and ρswir1 are the reflectance values of blue band, red band, near-
infrared band (NIR), and shortwave-infrared band (SWIR) in Landsat images, respectively.
Regarding EVI, the canopy background adjustment factor is 1, and the aerosol resistance
weights are 6 and 7.5.

2.3. Ground Reference Data

We collected ground-truth data for 2020 using stratified sampling based on a thematic
map from 2014 [36]. In January 2021, we conducted a field survey in Xishuangbanna in
order to collect ground-truthing data, which were then double-checked on Google Earth.
Finally, 3546 points of interests (POIs) were collected (Figure A1), which included 827 points
for natural forests, 611 for rubber plantations, 218 for shrublands, 211 for water bodies, 319
for constructed lands, 1199 for cultivated lands, and 161 for tea plantations. For the natural
forests, we collected the points along different slopes, aspects, and even valleys to cover all
the forest types. The rubber plantations included both young and mature plantations. The
water bodies included rivers, reservoirs, and lakes. The cultivated lands included paddy
fields, non-irrigated farmland, and banana plantations. The constructed lands included
both urban and rural settlements, mining sites, and roads. We then randomly collected
5946 POIs on Google Earth (Figure A1), with the aim to cover the whole of Xishuangbanna.
Among these POIs, there were 2481, 1833, 654, 257, 189, 452, and 80 POIs for natural forests,
rubber plantations, shrublands, water bodies, constructed lands, cultivated lands, and tea
plantations, respectively. We classified water bodies, constructed lands, cultivated land,
and tea plantations as non-forests. We used 460 and 780 points of ground-truthing data
from Chen et al. (2016) and Yi et al. (2013) for the years of 1990 and 2000 [6,7], and 1462
from Chen et al. (2016) and Zhai et al. (2018) for the year of 2010 [6,20]. In addition, we
used Google Earth and Landsat images to randomly select 9048, 7936, and 8906 POIs from
1990, 2000, and 2010, respectively.

2.4. Seasonal Changes and Spectral Features of Rubber Plantations and Natural Forests

Although previous studies have investigated the seasonal changes in rubber plan-
tations [12,14,20], we checked these using the most recent Landsat OLI images from
2018–2019. Seven images at the Path/Row of 130/45 were finally selected to investi-
gate seasonal changes. The date of year (DOY) and year were 19 (2018), 38 (2019), 51
(2018), 67 (2018), 99 (2018), 342 (2019), and 358 (2019), respectively. All of the images used
to capture the seasonal changes were freely downloaded from the geospatial data cloud
(http://www.gscloud.cn/, accessed on 4 January 2021). All of these images underwent
FLAASH-based atmospheric correction and Teillet model-based topographic correction.
The NDVI, EVI, and LSWI of each Landsat OLI image was calculated. We then derived
the NDVI, EVI, and LSWI of rubber plantations and natural forests using fifty rubber
plantation points from state farms and fifty natural forest points from nature reserves
from Google Earth. Another fifty points of shrublands were selected to check the spectral
differences with natural forests and rubber plantations.

2.5. Classification Algorithm

In this study, we used the ML, QDT, and RF to investigate mapping efficiency and
accuracy for Xishuangbanna.

Rubber plantations in Xishuangbanna underwent defoliation and refoliation from
December to March of the following year, which was captured by the Landsat images

http://www.gscloud.cn/
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(Figure 3). Rubber plantations experienced defoliation from early January to the end of
February before undergoing a refoliation period from early March to the middle of April
(Figure 3). Previous studies had found that phenological spectral information or vegetation
indices-based phenological information in rubber defoliation and refoliation periods can
effectively identify rubber plantations and other vegetation [12,20,22]. Therefore, the
spectral differences between rubber refoliation and defoliation of the three vegetation
indexes EVI, NDVI, and LSWI were used to capture changes in rubber phenology, which
were calculated in the ENVI 5.3, e.g., EVIre f oliate − EVIde f oliate and EVIre f oliate + EVIde f oliate,
and the same was carried out for NDVI and LSWI.
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Topography is a limiting factor for rubber expansion in Xishuangbanna, and it was
found that rubber trees are mainly planted below 1200 m [6,37]. Therefore, this study
calculated the topography indexes, including elevations, slopes, and aspects, in order to
assess topographical influences on rubber mapping.

Accordingly, our spectral bands were classified into three groups: Landsat spectral
band information (7 non-thermal bands: coastal aerosol, blue, green, red, NIR, SWIR1, and
SWIR2), vegetation indices derived from phenological information (EVI, NDVI, and LSWI),
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and topographic indices (elevation, slope, and aspect). To investigate the performance of the
three classification methods and the input information of spectral, phenology, and topogra-
phy, four kinds of input data have been assessed for each classification: bands of Landsat im-
ages, phenology information (e.g., EVIre f oliate – EVIde f oliate and EVIre f oliate + EVIde f oliate
for EVI), topographic indices, and phenology and topography information (combined phe-
nology and topographic indices), which finally produced twelve outcomes. We recorded
input data for the classification of Landsat spectral bands (L), phenology–Landsat spectral
bands (PL), topography–Landsat spectral bands (TL), and phenology–topography–Landsat
spectral bands (PTL). For clarity, we recorded each according to the input data and the
classification approach, e.g., the images classified by the RF algorithm with the input
information of PL would be recorded as PL–RF classification. We ran all classifications in
the ENVI environment.

2.6. Rubber Plantation Mapping in Xishuangbanna during 1990–2020

It was found the PTL-based RF algorithms achieved the highest accuracy in 2020 as
well as the lowest commission and omission. Therefore, PTL-based RF algorithms were
employed to map the rubber plantations of Xishuangbanna in 1990, 2000, and 2010. Finally,
we mapped rubber plantations from 1990–2020 and updated them for 2020.

2.7. Validation and Comparison

Cross-validation is an effective way to assess mapping results and algorithms for
remote sensing [38]. We used K-fold cross validation of a randomly selected subset of
80% of POIs as training sets for mapping the land use/land cover in Xishuangbanna in
2020. The remaining 20% of POIs were used to assess the produced map [38]. In order
to reduce overfitting, we repeated these steps 10 times, for both training and accuracy
assessment for each classifier (Figure 5). We then employed the F1 Score (FS) to assess
the mapping accuracy [39]. The mean value (MV) and standard deviation (SD) of the FS
and kappa coefficient (KA) were used to assess the mapping accuracy and stability of the
classifiers (Figure 5). In addition, we also assessed the mapping accuracy of each classifier
by the producer’s accuracy (PA), user’s accuracy (UA), and overall accuracy (OA) metrics
(Table 2).

3. Results
3.1. The Phenological Characteristics of Rubber Plantations and Natural Forests

The vegetation indices had better separability than the seven Landsat bands, among
which the SWIR1 performed better in separating the rubber from the natural forests than
other Landsat bands (Figures 3 and 4b). NDVI, LSWI, and SWIR1 performed better
during both defoliation and refoliation than the Landsat bands (Figures 3 and 4b). Further
analysis of the NDVI, LSWI, and EVI between defoliation and refoliation found that rubber
plantations could be separated from natural forests and shrublands, while it was difficult
to separate natural forests from the shrublands (Figure 4c).
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green, red, NIR, SWIR 1, and SWIR 2) and the six indices based on the NDVI, LSWI, and EVI of
natural forests (Forest), rubber plantations (Rubber), and shrublands (Shrub) during the rubber
defoliation and refoliation stages. Based on the temporal profile of vegetation indices, the Landsat
OLI image in 7 February 2019 was selected for signature analysis of the defoliation: (a), the Landsat
OLI image in 12 April 2019 was selected for that of the refoliation; (b), the six indices based on of
the NDVI, LSWI, and EVI in the two different stages of natural forest, rubber plantations and shrub-
lands; (c), NDVI1 is NDVIre f oliation − NDVIde f oliation, NDVI2 is NDVIre f oliation + NDVIde f oliation,
LSWI1 is LSWIre f oliation − LSWIde f oliation, LSWI2 is LSWIre f oliation + LSWIde f oliation, and EVI1 is
EVIre f oliation − EVIde f oliation, EVI2 is EVIre f oliation + EVIde f oliation.

3.2. Random Forest Algorithm-Based Classifier Performs Better Than the Other Two Classifiers

We found that the RF classifier had the highest mapping accuracy compared to the
ML and QDT classifiers.

For rubber plantation mapping, the highest user accuracy was classified by the RF
classifier, followed by the ML and QDT classifiers for the classification of TL, PL, and PTL
approaches. However, the ML classification performed better than the QDT and RF for the
classification of L (Table 2 and Figure 5).

Table 2. The producer’s accuracy (PA), user’s accuracy (UA), kappa coefficient (KA), and overall
accuracy (OA) in 2020 of three classifiers with four kinds of data input: Landsat spectral bands (L),
phenology–Landsat spectral bands (PL), topography–Landsat spectral bands (TL), and phenology–
topography–Landsat spectral bands (PTL).

M
L

PA UA

Land use types L PL TL PTL L PL TL PTL

Natural Forests 99.29% 98.43% 99.77% 99.47% 98.66% 98.91% 96.37% 97.33%
Rubber Plantations 92.84% 92.43% 96.38% 95.83% 95.22% 96.64% 98.11% 97.36%

Shrublands 87.18% 95.92% 95.98% 98.68% 75.43% 75.90% 83.61% 81.23%
Non-Forests 95.60% 95.48% 92.13% 91.66% 98.93% 99.20% 99.17% 99.36%

Q
D

T

PA UA

Land use types L PL TL PTL L PL TL PTL

Natural Forests 98.75% 98.55% 98.64% 98.94% 96.45% 97.21% 94.16% 94.73%
Rubber Plantations 79.02% 89.51% 92.72% 94.52% 90.19% 93.82% 94.98% 95.63%

Shrublands 70.29% 76.78% 84.25% 88.05% 54.28% 70.43% 77.41% 81.87%
Non-Forests 95.97% 96.81% 91.76% 91.62% 97.19% 97.27% 97.86% 98.05%

R
F

PA UA

Land use types L PL TL PTL L PL TL PTL

Natural Forests 99.49% 99.53% 99.58% 99.73% 98.18% 98.24% 97.76% 97.92%
Rubber Plantations 83.76% 95.46% 95.60% 97.53% 93.50% 97.64% 98.28% 98.80%

Shrublands 81.95% 88.51% 94.66% 95.86% 62.30% 84.35% 86.81% 90.04%
Non-Forests 95.51% 97.40% 96.86% 96.40% 97.71% 98.50% 99.43% 99.39%
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Table 2. Cont.

KA OA

Classifiers L PL TL PTL L PL TL PTL

ML 93.73% 94.23% 94.87% 94.69% 95.41% 95.76% 96.24% 96.10%
QDT 86.99% 91.47% 91.54% 92.68% 90.22% 93.70% 93.72% 94.59%
RF 90.10% 95.63% 96.25% 96.96% 92.63% 96.83% 97.28% 97.80%
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We further tested the three classifiers with four kinds of input information from
Xishuangbanna (Figures 5 and 6). The RF performed better than the other two classifiers.
The PTL-based RF achieved the highest KA (Table 2). The QDT achieved higher KA
when classified with PTL compared to the other three data input (L, TL, and PL) (Table 2
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and Figure 5). However, the ML achieved higher KA when classified with TL. Without
considering topography, rubber plantations were distributed across higher elevations using
the RF classifier with L and PL compared to that with TL and PTL (Table 2, Figures 5 and 6).
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3.3. Either Phenology or Topography Could Improve Mapping Accuracy

We found that adding either phenological or topographical information to the clas-
sifiers could improve mapping accuracy (Table 2, Figures 5 and 6). In particular, for
topography, TL-based classification achieved higher accuracy than that of L and PL on both
classifiers, while showing slightly lower accuracy than PTL-based RF and QDT classifiers.
By adding topographical information, the TL-based classification improved KA by 3.95%
and 0.45% over L and PL-based classification on all three classifiers, respectively (Table 2).

For rubber plantation mapping, the highest commission and omission error was
produced by L with all three classifiers, which indicated that adding phenology and/or
topography could decrease the commission and omission error (Table 2). Without the addi-
tion of phenology and/or topography, ML performed better than the other two classifiers,
while by adding phenology, the RF classifier performed best with the lowest commission
and omission error (2.36% and 4.54%, Table 2). By adding phenology, topography, or both,
the QDT classifier performed worse than the other classifiers. The PTL had the lowest
commission and omission error compared to the other three in all three classifiers, with the
RF performing the best (97.53% and 98.80% for PA and UA). The above results indicated
that either phenology or topography could improve rubber mapping accuracy, and both
ML and RF could achieve reliable results (>92% for both PA and UA). In order to achieve
higher mapping accuracy, it is recommended to use the RF classifier with the addition of
phenology and topography; this combination is supported by its KA of 97%.

3.4. Natural Forests and Shrublands Were the Major Sources of the Increased Rubber Plantations

Between the years of 1990–2020, the area of rubber plantation more than tripled from
1.45 × 103 km2 in 1990 to 4.46 × 103 km2 in 2020, shifting from covering 7.58% of the area
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of the Xishuangbanna in 1990 to 23.24% in 2020 (Table 3 and Figure 7). Natural forests and
shrublands were the two major sources for the new rubber lands, jointly contributing to
82.97% of the new rubber landcover (Table 4). Every ten years, 1.03 × 103 km2 of natural
forests and 0.56 × 103 km2 of shrublands were converted to rubber plantations. From
1990–2020, more than 3.09 × 103 km2 of natural forests were converted to rubber plantation,
which occupies approximately 69.38% of the total rubber area by 2020, constituting 2.1 times
the size of its area in 1990.

Table 3. Land use/land cover changes and change rate of Xishuangbanna during 1990–2020.

Area (1000 km2) Change Rate (% yr)

Land Use Types 1990 2000 2010 2020 1990–2000 2000–2010 2010–2020 1990–2020

Natural Forests 12.91 11.87 10.50 10.69 −0.81% −1.15% 0.18% −0.57%
Rubber

Plantations 1.45 2.65 4.32 4.46 8.23% 6.31% 0.31% 6.89%

Shrublands 3.04 2.46 2.98 2.14 −1.91% 2.10% −2.81% −0.99%
Non- Forests 1.77 2.19 1.37 1.88 2.41% −3.76% 3.76% 0.22%
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Table 4. Land use/land cover transfer matrix in Xishuangbanna in 1990, 2000, 2010, 2020 (%).

1990

2000

Land Use Types Natural Forests Rubber Plantations Shrublands Non-Forests

Natural Forests 53.99 0.98 5.31 1.62
Rubber Plantations 5.21 4.85 2.33 1.43

Shrublands 5.39 0.61 5.47 1.37
Non-Forests 2.74 1.14 2.76 4.79

2000

2010

Land Use Types Natural Forests Rubber Plantations Shrublands Non-Forests

Natural Forests 48.12 2.00 3.31 1.34
Rubber Plantations 7.13 9.95 2.89 2.58

Shrublands 5.81 1.23 5.75 2.75
Non-Forests 0.85 0.63 0.89 4.77

2010

2020

Land Use Types Natural Forests Rubber Plantations Shrublands Non-Forests

Natural Forests 45.30 4.30 5.20 0.96
Rubber Plantations 3.79 14.83 3.55 1.08

Shrublands 4.16 1.42 4.52 1.07
Non-Forests 1.53 2.01 2.26 4.03

In contrast, from 1990–2020, Xishuangbanna lost 17.18% and 29.63% of its natural
forests and shrublands, respectively. The degradation of natural forests to shrubland
has markedly decreased, from 5.81% in 2000–2010 to 4.16% in 2010–2020, while during
these two periods more shrublands have been reforested to natural forests, from 3.31%
in 2000–2010 to 5.20% in 2010–2020, indicating that these degradation and reforestation
patterns might be related to local conservation policies.

4. Discussion

In the current study, we used three classification approaches with four kinds of data
input on Landsat imagery to investigate the mapping accuracy for rubber plantations.
The results demonstrated that by adding phenology and topography information to the
RF classifier, it has the potential for accurate mapping of mountainous and fragmented
landscapes. Incorporating more data leads to higher accuracy when using the RF, indi-
cating that RF could show a good performance while handling more input data, while
minimizing overfitting.

4.1. Combining Phenological and Topographical Information to Improve the Mapping Efficiency for
Rubber Plantations

Our results illustrate the benefits of using phenological information to improve rubber
mapping accuracy [14,16,20,23,40]. The deciduous features of intra-annual defoliation and
refoliation for rubber plantations differ from those of natural forests (Figures 3 and 4). This
distinction provides the basis for spectral discrimination between rubber plantations and
other land uses [20,22]. The timing and duration of defoliation and refoliation periods
varied between years, indicating that researchers need to check the phenological condition
of the candidate images in advance [20,31,40]. Phenological information for rubber planta-
tions is recommended for future mapping studies, especially for those based on artificial
intelligence algorithms.

The inclusion of topography has also been found to improve rubber mapping accuracy,
which might be related to the following three facts: (1) the growth and production of rubber
plantations have a tropical climatic requirement for suitable temperature and precipitation.
This shapes its distribution pattern both globally and within Xishuangbanna [3,41]; (2) the
distribution of rubber plantations in Xishuangbanna is mainly across elevations below
1200 m a.s. [3,6,36,37,42]; and (3) rubber trees are an important industrial species, mainly
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planted in the form of monoculture in China, causing relatively homogeneous pixels in the
relevant Landsat imagery [43]. However, the relatively better performance of RF, ML, and
QDT with the topography input, compared to only the addition of phenology, indicated that
machine learning or artificial intelligence approaches could use topography as an important
assisting factor. Without considering topography, the object-based phenology approach
in Zhang et al. (2019) might fail to distinguish between rubber plantations and seasonal
deciduous tropical forests or shrublands in higher elevations [36,44] (Figure A2). We found
that without topographical information, the classifier confounded rubber plantations with
shrublands and natural forests, mostly failing to distinguish between rubber plantations
and shrublands (Figure 5). It mainly overestimated the rubber plantation at the higher
elevations, while underestimating it at the lower elevations (Figure A2). Therefore, as
computing power improves, artificial intelligence algorithms should be developed that
include the habits or habitat information of vegetation to the classifier in order to improve
mapping accuracy. Xiao et al. (2020) used a DEM mask to facilitate rubber mapping
efficiency in northern Laos after a decision-based forest cover extraction [22]. We found a
high overestimation of rubber plantations on elevations higher than 1200 m using all the
classifications besides topography (Figure A2). Therefore, phenological information could
be used to improve mapping accuracy by combining with spectral bands. Combining
topographical information with the classifier shows great potential in improving mapping
accuracy for mountainous rubber-developing regions.

4.2. Random Forest Classifier Could Improve the Accuracy and Stability for Mapping
Rubber Plantations

The stability and accuracy of RF were higher than that of QDT and ML algorithms for
mapping rubber plantations, with a smaller SD (Figure 5). While comparing the SD, we
found both the ML and RF had a smaller SD than the QDT classifier, which indicated that
the QDT classifier had a lower stability and a lower accuracy, which was consistent with
that of Xu et al. (2005) and Han et al. (2015) who found that the decision tree classifier not
only may suffer from overfitting, but that its accuracy was also lower than that of RF [45,46].
A higher stability and accuracy were achieved by the RF based on the input data of PL, TL,
and PTL. However, L-RF showed the lowest accuracy, which might relate to underfitting
arising from the limited data inputs to the classifiers [47]. The higher stability of the RF may
relate to the algorithm’s use of training data in order to develop trees, which was repeated
more than 500 times in order to vote for each new datum input, with the most voted new
datum input then produced for the final results [48–50]. The RF reduced overfitting and
increased stability by the number of trees [51]. Due to the higher accuracy and stability of
RF, we recommend using RF classifier-based phenological and topographical information
for mapping rubber plantations.

4.3. Reversal of Rubber Plantations Expansion in Xishuangbanna

Using the PTL-based RF classifier, we mapped and updated the distribution of rubber
plantations and natural forests until 2020. In 2020, rubber plantations occupied 23.2%
of the area of Xishuangbanna, which was higher than the 22.4% in 2010 [6] while lower
than that of 24.3% in 2014 [36] and slightly higher than that of 20.7% in 2018 [36]. It
appears that rubber plantations achieved their highest coverage in Xishuangbanna in 2014,
decreasing after 2014 until 2020 [36]. It is necessary to map the annual rubber plantation
distribution after 2014 to investigate smallholder responses and behaviors, which are
related to famer welfare and industrial safety and also have implications for the local
plantation-related economy [52,53]. Our findings differed from the continuous expansion
of rubber plantations previously reported for the region [54]. Smallholders might reduce
their total rubber plantation area in the future, as low rubber latex prices continue to
drop [53,55]. It appears that the continued expansion of rubber plantations is no longer a
serious issue for local natural forest conservation, despite the strong global demand. With
the continuous reduction of rubber prices starting in 2011 and the shrinking of its land
area, the time for restoration work may be now, especially for steeper land and land with
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a higher elevation [56,57]. Our thematic maps provide the necessary support for future
carbon storage calculations of rubber plantations in Xishuangbanna and for planning and
implementing regional restoration projects.

5. Conclusions

In this study, we evaluated three widely used classification approaches for mapping
rubber plantations, and we also evaluated four kinds of data inputs in order to investi-
gate the mapping accuracy of phenology, topography, and Landsat-based spectral bands.
We applied these three classification approaches with four kinds of data inputs across
Xishuangbanna and further tested it in a small area (near the city of Jinghong) within
Xishuangbanna. The RF achieved the highest producer and user accuracies, especially
the RF classifier with PTL. This demonstrated the superior data processing abilities of
artificial intelligence over statistical approaches. We also found that adding either phe-
nology or topography could further improve the mapping accuracy, achieving higher
producer and user accuracies than by only using L. We mapped the distribution of rubber
plantations from 1990–2020 using the RF based on PTL. We found that from 1990–2020,
the rubber plantations expanded while natural forests shrank. The land area occupied by
rubber plantations more than tripled, whereas the natural forests lost more than 17% of
their area. Natural forests and shrublands contributed to more than 80% of new rubber
plantation cover, but it seems that this pattern of expansion did not continue after 2014.
From 2014 onwards, the land area occupied by rubber plantations decreased. Our thematic
maps provide necessary support for regional planning and ecosystem service assessments.
The classification approach used in this study constitutes a trial of the effectiveness of
combining artificial intelligence with growth habitat information for plants in order to
improve mapping accuracy. Such an approach could also be used in other plantations and
other ecosystems.
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