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Abstract: Lunar craters are very important for estimating the geological age of the Moon, studying
the evolution of the Moon, and for landing site selection. Due to a lack of labeled samples, processing
times due to high-resolution imagery, the small number of suitable detection models, and the
influence of solar illumination, Crater Detection Algorithms (CDAs) based on Digital Orthophoto
Maps (DOMs) have not yet been well-developed. In this paper, a large number of training data are
labeled manually in the Highland and Maria regions, using the Chang’E-2 (CE-2) DOM; however, the
labeled data cannot cover all kinds of crater types. To solve the problem of small crater detection, a
new crater detection model (Crater R-CNN) is proposed, which can effectively extract the spatial and
semantic information of craters from DOM data. As incomplete labeled samples are not conducive for
model training, the Two-Teachers Self-training with Noise (TTSN) method is used to train the Crater
R-CNN model, thus constructing a new model—called Crater R-CNN with TTSN—which can achieve
state-of-the-art performance. To evaluate the accuracy of the model, three other detection models
(Mask R-CNN, no-Mask R-CNN, and Crater R-CNN) based on semi-supervised deep learning were
used to detect craters in the Highland and Maria regions. The results indicate that Crater R-CNN with
TTSN achieved the highest precision (of 91.4% and 88.5%, respectively) in the Highland and Maria
regions, even obtaining the highest recall and F1 score. Compared with Mask R-CNN, no-Mask R-
CNN, and Crater R-CNN, Crater R-CNN with TTSN had strong robustness and better generalization
ability for crater detection within 1 km in different terrains, making it possible to detect small craters
with high accuracy when using DOM data.

Keywords: crater detection; Crater R-CNN; Mask R-CNN; Two-Teachers Self-training with Noise (TTSN);
DOM; CE-2; deep learning; semi-supervised

1. Introduction

Craters are the main type of lunar topography, which record information about past
meteorite impacts and solar activities, such as solar winds and cosmic X-ray radiation [1].
Therefore, craters are used to study the geological age [2,3], evolution, dynamic mech-
anisms, and the meteorite impact history [4,5] of the Moon. Additionally, craters are a
hindrance to lunar landings and cruising, affecting landing site selection, rover navigation
and positioning, and cruising route planning [6]. As craters play an important role in lunar
scientific research and engineering, lunar crater detection has become a critical problem.
In the past, several crater databases have been built using low-resolution remote sensing
data. As shown in Table 1, most craters are manually identified, where the size of manually
identified craters has been becoming smaller and smaller; thus, the number of identified
craters has become larger and larger. The Selene, Lunar Reconnaissance Orbiter (LRO), and
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Chang’E-2 (CE-2) orbiters have recently successfully acquired high-resolution (i.e., meter-
level) images covering the whole Moon, making it possible to detect small-scale craters.
Due to the low efficiency and high cost of manual identification, it is difficult to identify
craters in a large range quickly and accurately, especially when using high-resolution
imagery. Therefore, many computerized crater detection methods have been developed.

Table 1. Main Lunar Crater Databases.

Year Author Count Minimum Diameter (km) Methods

1935 Mary Blagg [7] 677 50 manual
1965 D. W. G. Arthur [8–11] 17,000 3.5 manual
1978 Wood [12] 11,500 7 manual
1985 Rodionova [13] 14,923 10 manual
2010 Head [14] 5185 20 manual
2013 Goran Salamunićcar [15] 78,287 8 CDA
2015 Öhman [16] 8716 1 manual
2015 Wang Jiao [17] 106,030 0.5 manual
2018 Povilaitis [18] 22,746 5 manual
2018 Robbins [19] 1,296,879 1 manual

In the past 10 years, more and more machine learning methods have been applied to
the detection of craters and have been demonstrated to have higher accuracy, compared
with other automatic crater detection methods [20]. Traditional machine learning methods,
such as Decision Tree, Bayesian Network (BN), Support Vector Machine (SVM), and En-
semble Learning, can be used to identify craters based on manual feature extraction and
selection. Tomasz F. Stepinski et al. [21] used a Decision Tree and DEM data to identity Mar-
tian craters with 90.1% precision, while Erik R. Urbach et al. [22] obtained 70% recall using
the same method and DOM data. Yang et al. [23] used a BN to detect craters based on LRO
with an average F1 score of 84.8%. Machado et al. [24] used a SVM and Selena TC-DEM
data to detect craters in Sinus Iridium with 85% precision. Di et al. [25] applied a Boosting
method and DEM data to extract Martian craters, with recall in the range of 76–90%. The
above methods all depend on hand-crafted feature extraction and selection; that is, the
quality of the hand-crafted features directly affects the identification performance. Poor
feature extraction and selection will result in higher deviations, while the selection of too
many features will result in over-fitting. On the other hand, in the case of deep learning,
the features are learned automatically and are represented hierarchically in multiple levels.
Therefore, deep learning CNN-based techniques have shown state-of-the-art accuracy in
the ImageNet task [26]. In recent years, a variety of deep learning methods have been
applied to the detection of craters [20]. U-Net [27] provides an excellent model to segment
the rims of craters, following which a geometric method can be used to obtain the location
of the crater. Silburt et al. [28] applied the U-net model and LOLA-DEM data to extract
craters with 92% recall. Lee et al. [29] used the same model and DTM imagery to detect
Martian craters and found three-quarters of the resolvable craters with a median diameter
difference of 5–10%, compared to an existing database. Delatte et al. [30] labeled 2–32 km
craters on Mars, by training a U-Net crater detection model with infrared imagery, and
obtained 65–76% precision. As U-net segmentation of a crater requires the crater rim to be
clear in the image, it is not effective when identifying craters with no clear rim or when
there is serious degradation in the image. R-CNN [31] series models, which mainly focus
on the probability that a given pixel belongs to a crater, have been used to extract craters
from DOM and DEM data in recent years. Ali-Dib et al. [32] used Mask R-CNN to detect
craters in LOLA-DEM with 87% recall and 66.5% precision.

The objective of this paper is to construct a small crater detection method using
DOM. We describe a robust and highly accurate method based on Crater R-CNN and
Two-Teachers Self-training with Noise (TTSN) for small crater detection using CE-2 DOM.
Specifically, we evaluated and compared the semi-supervised learning performance of four
models with CE-2 DOM in the Highland and Maria regions. The recommendations from
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this study are expected to be helpful in detecting small craters from image data and to
build new small crater databases for scientific research and lunar exploration engineering.

2. Data Preparation
2.1. Data Set Selection

In this paper, CE-2 DOM data (https://moon.bao.ac.cn/searchOrder_pdsData.search
(accessed on 15 July 2021)), derived from Chang’E-2 stereo imagery, were selected; which
cover the whole Moon at 7 m, 20 m, and 50 m resolution [33]. We carried out a series
of data processing, including radiometric correction, ortho-rectification, and photometric
correction, on the DOM. To reduce the projection distortion, the DOM was divided into
844 map sheets with different projections and parameters. The Mercator Projection, Lam-
bert Conformal Conic Projection, and Polar Azimuth Projection were used in low-latitude,
middle, and polar areas, respectively [34,35].

A data set based on CE-2 should contain as many types of craters as possible, in
order to obtain a deep learning model with promising generalization ability. The selection
of lunar research areas should include craters with different reflectances, morphologies,
and shadow directions. Therefore, the craters in the Highland and Maria Regions were
considered at first. Highland and Maria have high and low reflectance, respectively. The
Moon has neither an atmosphere nor water and, so, the surface records information about
the moon’s geological evolution [36]. The density of craters is usually an indication of
geological age. The young Maria region has not had enough time to form as many craters.
In contrast, the Highland is much older, with many more craters. Additionally, in the
Highland, the shape of old craters can be modified by fresh ones, showing a degradation
phenomenon [37]. Furthermore, the solar altitude angle affects the shadows of craters in
different latitudes: in the equatorial area, the shadows are not as clear, compared with
those in high-latitude areas. Therefore, the selection of research areas should cover various
morphological types, different reflectances, and shadows in the DOM. Therefore, the crater
samples in the Highland and Maria regions were considered initially. Figure 1 and Table 2
show the six research areas (R1–R6). R1 and R2 are in low-latitude and middle–high-
latitude areas, respectively, indicating different shadows and illumination. R3 and R5 are
in Maria, while R4 and R6 are in Highland, such that the associated craters had different
shapes and reflectances. Among them, R1–4 were used for labeling training data and
validation data, while R5 and R6 were used for labeling test data.

Figure 1. Distribution of the Research Areas.

https://moon.bao.ac.cn/searchOrder_pdsData.search
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Table 2. Research Areas.

Region Longitude Range (◦) Latitude Range (◦)

R1 −172.51∼−164.99 −7.01∼0.01
R2 −178.00∼−164.97 62.99∼70.01
R3 −63.01∼−53.99 34.99∼39.40
R4 159.98∼170.02 43.44∼49.01
R5 −59.44∼−58.60 39.41∼41.16
R6 165.34∼ 68.91 41.99∼43.43

2.2. Data Set Labeling

Data set labeling should obey the following principles:

1. The diameter of a sample crater is no more than 1000 m.
2. The shadow direction of any given crater in the same area is consistent, as a dome

has opposite shadow direction in the same area at the same time.

Labeling of the training and validation data sets was accomplished using the ArcMap
software to draw circles manually, thus recording the coordinates and radii of the crater
samples. As shown in Figure 2, 38,121 craters were labeled in the Highland, Maria,
equatorial, and high-latitude areas. In Figure 3, the cumulative size-frequency diagrams
(CSFD) of the labeled crater are plotted, 12.2% of the samples were 100–200 m in diameter,
66.5% were 200–400 m, 17.2% were 400–1000 m, 4% were more than 1 km, and the remaining
0.1% were less than 100 m in diameter.

(a) (b)

(c) (d)

Figure 2. Labeled craters in four areas: (a) Equatorial area (R1), with 8632 craters; (b) high-latitude
area (R2), with 8857 craters; (c) Maria area (R3), with 14,501 craters; and (d) Highland area (R4), with
6131 craters.
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Figure 3. Labeled craters size-frequency distributions represented as CSFD plots, for our training areas.

102 Then, the labeled data were used to generate training and validation images. First,
considering that the data should cover all kinds of craters, we sub-sampled the data of the
four areas ten times and obtained eight images in total. Secondly, each image of the area
was divided into a number of 512 pixel × 512 pixel image blocks, in order to speed up the
model training and detection. Finally, pseudo-color images were constructed, in order to
obtain the number of craters per image and to distinguish overlapping craters. In Figure 4,
each crater contributes to an index value, such that the maximum value of the index is the
number of craters in the image block.

(a) (b)

Figure 4. Image and pseudo-color image: (a) Original DOM image; and (b) labeled crater samples
with pseudo-color.
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As for the test data set, all of the craters were labeled in R5 and R6. R5 was in Maria,
near Mons Rumker, where Chang’E-5 landed in 2020; meanwhile, R6 was in Highland,
covering the Highland Ponds. A total of 1105 and 2388 craters were labeled in the R5 and
R6 areas, respectively, and their size–quantity distribution is shown in Figure 5. It can be
seen, from the figure, that the radius of most craters in the two areas was smaller than
200 m, and the number of craters with a radius larger than 500 m in the R5 area was smaller
than that in the R6 area.

Figure 5. CSFD of labeled craters in test areas.

2.3. CE-2 DOM Comparison in Highland and Maria

The training data and test data selection in most previous studies has not paid attention
to the difference in DOM data for different terrain. Additionally, to further quantitatively
compare the differences between lunar Maria and Highland data in the DOM data obtained
by CE-2, we prove the necessity of constructing crater samples under different terrain
types. We also analyze the generalization ability of the constructed model. Furthermore,
to analyze the crater detection performance of the models (see Section 4), the difference
between the R5 and R6 CE-2 DOM was compared. As can be seen from Figure 6, the
histogram of the pixel values in Maria was more scattered than that for Highland, which
means that the data quality was low in Maria. For this reason, it was not easy to label
the craters with radius less than 100 m, which led to a large number of missing labels for
craters within 100 m radius in the training data.

Figure 6. Histogram of CE-2 DOM in Maria and Highland.
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Additionally, to quantitatively analyze the difference between the Highland and Maria
DOM, the gray mean (µ), gray variance (σ), information entropy (f ), and energy function
of gradient (EOG) [38] were calculated, as follows:

µ =
1

m× n

n

∑
i=0

m

∑
j=0

f (i, j), (1)

σ2 =
1

m× n

n

∑
i=0

m

∑
j=0

[ f (i, j)− µ]2, (2)

where m, n are the height and width of the image, respectively, and f (i, j) is the pixel value;

f =
L−1

∑
i=0

L−1

∑
j=0

p(i, j) ln p(i, j), (3)

where i is the value of the pixel and j is the mean value of the neighborhood; and

EOG =
1

m× n ∑
x

∑
y
{[ f (x + 1, y)− f (x, y)]2 + [ f (x, y + 1)− f (x, y)]2}, (4)

where m, n are the height and width of the image, respectively, and f (i, j) is the pixel value.
The gray mean, gray variance, information entropy, and EOG reflect the overall

radiation status of the image, hierarchical information, information content, and clarity of
the image, respectively. In Table 3, the correlation values of image quality are given. The
overall radiation status of the image, the hierarchical information of the image gray, and the
image clarity of the image of Maria were all higher than those in Highland, except for the
information content. In particular, the EOG value in Maria was 624.81, which was nearly
five times more than that in Highland (126.14). Therefore, overall, the DOM in Highland
was different from that in Maria.

Table 3. Quality Evaluation of DOM in Maria and Highland.

Area Mean Variance Comentropy EOG

Maria 113.84 2924.19 5.17 624.81
Highland 80.96 2756.20 6.91 126.14

3. Methods

The identification and location extraction of craters essentially comprise a target
detection task. Target detection based on deep learning can mainly be divided into one- and
two-stage detection frameworks. One-stage detection frameworks, such as YOLO [39–41]
and SSD [42], rely on the deep feature layer in the network, which has a large receptive field,
low precision, and poor performance when detecting small objects. However, two-stage
detection frameworks, such as R-CNN, use algorithms to generate a series of candidate
boxes as samples, then classify these samples through the use of a fully connected layer,
such that high accuracy can be obtained in detecting both small and large objects [43].
The edge of a lunar crater is irregular, and there is often overlap between craters of
different sizes. Moreover, most craters are very small in high-resolution imagery, such
that a one-stage detection framework cannot meet the crater detection task with high
accuracy. Therefore, R-CNN, which has better performance at present, was selected to
detect craters in the considered high-resolution DOM. In this Section, to solve the problem
of low identification precision and location information extraction in the small crater
detection task, the Crater R-CNN model (Section 3.2) is proposed and compared with the
popular Mask R-CNN [44] model (Section 3.1). Furthermore, the Two-Teachers Self-training
with Noise (TTSN) method (Section 3.3) is proposed for model training, in order to solve
the problem of poor model detection performance caused by incomplete crater sample
labels in the DOM.
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3.1. Mask R-CNN and No-Mask R-CNN Used for Crater Detection

Mask R-CNN, proposed by He Kaiming et al. [44], is a general framework for object
detection and instance segmentation. Mask R-CNN is a neural network which generates
a series of candidate regions with potential targets, and then classifies, regresses, and
segments each region, according to the characteristics of the candidate regions. Mask
R-CNN was used to detect craters using DOM data, and the instance segmentation of
craters was realized. The overall framework of using Mask R-CNN (as well as no-Mask
R-CNN, see below) to detect craters, is shown in Figure 7. First, DOM data are input
to the deep network, in order to extract the semantic information of craters. As a re-
sult, feature graphs with different sizes are created, including the spatial and semantic
information of craters with different sizes. Then, a Region Proposal Network (RPN) im-
plements the classification and regression operations for craters in different feature maps.
The probability of a crater being included in the input anchor is obtained by classification,
and the location information of the anchor is preliminarily extracted by regression. Further-
more, after classifying and regressing the target boxes, the candidate boxes are screened
twice. The former are sorted according to the probability of each target box containing a
crater, and the latter solves the IoU for the selected craters and the real craters used for
training. Region of Interest Alignment (RoIAlign) is used to realize the accurate extraction
of crater target boxes, and finally completes the screening of those target boxes containing
craters. According to the size of the selected candidate box, the corresponding feature
layer is selected for binary classification of the crater and regression of the box position
information, and the real pixel position of the crater is obtained. At the same time, instance
segmentation of the crater target is carried out. In the whole process, the cross-entropy loss
function is used for classification, and the smooth L1 loss function is used for regression.

Figure 7. Mask R-CNN and no-Mask R-CNN model structure diagrams.

Furthermore, the segmentation module was removed to obtain no-Mask R-CNN,
which has a similar overall structure to Faster R-CNN [45]. Ali DIB et al. [32] have applied
Mask R-CNN to detect the craters in a DEM, demonstrating it as a good semi-supervised
learning-based model. While the training target is a circle in the ideal state, mask R-CNN
can still segment non-circular polygons, which are closer to the shape of real craters.
Therefore, we further compared whether adding instance segmentation is conducive to
crater detection in the case of the inaccurately labeled rims in the DOM. In Figure 7, the
instance segmentation operation in Mask R-CNN is removed. Thus, it is called no-Mask
R-CNN. Compared with the original model, no-Mask R-CNN has no instance segmentation
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function, while the rest of the model is the same, such that it can achieve faster training
and detection.

3.2. Crater R-CNN

Crater R-CNN is improved from Faster R-CNN, which was first proposed by Ren, S. [45];
however, it does not include an instance segmentation step. Faster R-CNN is mainly
divided into two stages: the first stage, called a Region Proposal Network (RPN), proposes
candidate object bounding boxes. The second stage of Faster R-CNN—which is, in essence,
Fast R-CNN [46]—extracts features, using the RoIPool operation, for each candidate box
and performs classification and bounding box regression. However, in the process of feature
extraction, it lacks low-level features and loses local detail information; that is, it lacks
the information required for extraction of craters, leading to poor detection performance
for small craters. In addition, although the calculation of the RoIPool operation in Faster
R-CNN is fast, there may be a large deviation in mapping to the real position of the
original image, which is caused by rounding of the position of the target box on the small
feature map.

Based on this, Crater R-CNN was proposed, which is efficient in terms of feature extrac-
tion, as well as being more accurate in terms of identification and location.
To extract deeper crater features in the DOM, the ResNet 101 layer (instead of VGG)
was used to extract features. In addition, to solve the inaccurate target box location prob-
lem, the ROI pooling layer was replaced by the ROIAlign, such as in Mask R-CNN, and the
bilinear interpolation method was used to obtain the pixel coordinates of the floating-point
numbers in the image, thus eliminating the error of the model related to obtaining the
target location.

As shown in Figure 8, to obtain more comprehensive spatial semantic informa-
tion of craters, the related operation in the up-sampling process was further improved.
In the feature extraction process, Mask R-CNN adopts a feature pyramid network module.
First, the feature map of the previous layer is convolved to eliminate the aliasing effect
and extract the target spatial information, then it is added to the feature map obtained by
up-sampling. The above operations still cannot effectively extract the features of craters,
due to the overlapping, degradation, and size variation of craters. Therefore, compared
with Mask R-CNN, the skip connection operation is used to merge channels (instead of
add operations), in order to fuse the feature information. Additionally, in the process
of up-sampling, compared with the add operation in the channel, the skip connection
method increases the resolution of image detail features; furthermore, skip connections are
helpful in eliminating singularities and in deep network training [47,48], thus promoting
the detection of craters and the extraction of location information.

3.3. Two-Teachers Self-Training with Noise (TTSN)

A self-training method can realize semi-supervised deep learning and solve the prob-
lem of low accuracy caused by a lack of labeled data. An obvious problem related to
lunar crater data is not the lack of a labeled data set, but the incompleteness of labeled
data sets, which can have a great influence on crater detection. Traditional self-training,
based on the single-teacher model, can solve the problem relating to a lack of labeled data.
First, a single learner or integrated learning model is trained to label all or most of the
unlabeled samples, and then “pseudo-labeled” data are combined with the original labeled
data, in order to train the model or other models. Semi-supervised methods based on
“pseudo-labeled” data usually need the model to be trained repeatedly, leading to poor
generalization performance and over-fitting [49]. In addition, this method may create a
large amount of crater training data: as it requires extra unlabeled samples for training, the
number of training samples will be increased.
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Figure 8. Improvements to encoding and decoding operations.

To solve the above problem of incomplete crater labels, the Two-Teachers Self-training
with Noise (TTSN) method is proposed. Algorithm 1 gives the detailed steps of TTSN, and
Figure 9 shows an overview of TTSN. To reduce the amount of training data, first of all,
the incomplete training set is split into two parts. To obtain a teacher model with higher
robustness, Gaussian noise is added into the two incomplete training images. The models
are consequently trained, in order to obtain teacher model 1 and teacher model 2. Then,
we exchange the original training data between the two models. We do not add noise,
and input the data into the teacher model as unlabeled data, thus obtaining two sets of
prediction results. The craters predicted by the teacher models with confidence greater
than 0.75 are used as pseudo-labeled data, and the crater locations are exported to a text file,
which is further compared with the original labeled crater data. The additionally identified
craters are fused as label information. Furthermore, the training samples are generated
according to the “complete” position information of the crater, and noise is added into the
student model. Differing from traditional self-training methods, the original training data
are not integrated here. Due to the semi-supervised ability of the model, the original crater
to be predicted can be extracted with high precision. By improving the confidence of the
predicted target, we can obtain the target with high confidence as the “pseudo-labeled”
data, which increases the model’s crater detection accuracy. During the training process, it
is necessary to re-train the student model using the “pseudo-labeled” data obtained from
the two teacher models. Finally, we use the test data to evaluate the student model.
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Figure 9. Illustration of the Two-Teachers Self-training with Noise model: Line 1 trains noisy data set
1 and obtains teacher model 1, which is then used to predict the noiseless data set 2. Line 2 trains
noisy data set 2 and obtains teacher model 2, which is then used to predict noiseless data set 1. Finally,
the output of the two is fused with the original labels and used to train the student model.

Algorithm 1: Two-Teachers Self-training with Noise.

Data: Incomplete labeled images divided into {(x1, y1), (x2, y2), · · · , (x n
2
, y n

2
)}

and {(x n
2 +1, y n

2 +1), (x n
2 +1, y n

2 +1), · · · , (xn, yn)}.
Step 1: Train the teacher models Θt

1 and Θt
2, which minimize the cross-entropy

loss and smooth L1 loss on incomplete labeled images:
2
n ∑

n
2
i=1 lcross(yi, f (xi, noise)) + 2

n ∑
n
2
i=1 lL1(yi, f (xi, noise)),

2
n ∑n

i= n
2 +1 lcross(yi, f (xi, noise)) + 2

n ∑n
i= n

2 +1 lL1(yi, f (xi, noise)).
Step 2: Use two normal (i.e., non-noisy) teacher models to generate pseudo-labels.
The new pseudo-labels with confidence level higher than δ are selected and fused
with manual labels. Here, δ indicates a confidence of 0.75.

ỹ = ( fmodel(xi) > δ)new + y
Step 3: Train a better student model, Θs, which minimizes the cross-entropy loss
and smooth L1 loss on labeled and pseudo-labeled images.

1
n ∑n

i=1 lcross(ỹi, f (xi, noise)) + 1
n ∑n

i=1 lL1(ỹi, f (xi, noise))

3.4. Model Training

All of the obtained data sets were fed into the above models, which were constructed
using TensorFlow. A total of 5000 images were generated from R1—4, of which 4000 images
were randomly selected for model training, and the remaining 1000 images were used for
model validation, in order to obtain model parameters. In model training, to improve the
generalization ability of the model, horizontal and vertical flip strategies were randomly
applied to the training data. To obtain the hyper-parameters of Crater R-CNN with TTSN,
Crater R-CNN was trained first. As for the training and hyper-parameters of Mask R-CNN
and no-Mask R-CNN, we used the same procedure as in [32]. In the process of training,
the IoU was mainly used to filter the bounding boxes. First, the bounding boxes with
IoU between bounding boxes and highest confidence target greater than 0.7 were deleted
through the non-maximum suppression method [44]. Then, the IoU values between the
bounding boxes preserved in the previous step and ground truth were calculated, which
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were used to divide the samples into positive and negative samples for training (IoU ≥ 0.6,
positive samples; IoU < 0.4, negative samples; and 0.4 ≤ IoU < 0.6 was not considered).
A multi-task loss on each sampled RoI was defined as L = Lcls + Lbox. The classification
loss, Lcls, and bounding-box loss, Lbox, were identical to those defined in [46]. To speed up
the minimization of the loss value, the Adam optimizer was used to update the network
weights, while the backbone of the four models was ResNet101, which was pre-trained
using ImageNet data [26]. Defining an “epoch” as a single pass through the entire training
set and “batch size” as the number of examples seen per back-propagation gradient update,
each model was trained for 10 epochs with a batch size of 2, which meant that the final
loss value was less than 0.1 and the loss change between the last two epochs was less than
0.001. The model was trained with different hyper-parameters, and those which led to the
minimum loss value—according to the results on the verification data set—were chosen as
the best hyper-parameters. Finally, we determined a set of hyper-parameters for Crater
R-CNN (see the Appendix A). The names of all hyper-parameters were the same as those
given here (https://github.com/matterport/Mask_RCNN (accessed on 15 July 2021).

After determining the hyper-parameters, the TTSN method was used to train Crater
R-CNN, thus creating the new model: Crater R-CNN with TTSN. Thus, the hyper-parameters
of the following models were the same as those in Crater R-CNN. A total of 2500 images were
randomly selected from the 5000 images and Gaussian noise with a mean of 0 and 1 variance
was added, in order to train Crater R-CNN and obtain teacher model 1. In the same way,
teacher model 2 was trained using the other half of the data. To obtain crater “pseudo-labels”,
the data of each teacher model was used as input to the other for crater detection without
noise, and craters with identification probability greater than 0.75 were extracted from each
image. By fusing the "pseudo-label" and the ground truth in each image, 5000 new training
images were obtained. The final number of crater labels in these images was about 1.1 times
the original number of craters. Finally, Gaussian noise with a mean of 0 and variance of 1 was
added to the 5000 images, which were then used for model training, in order to obtain the
student model.

4. Results

To test the performance of Mask R-CNN, no-Mask R-CNN, Crater R-CNN, and Crater
R-CNN with TTSN, all of the test image data were divided into 512 × 512 pixel blocks and
input into the detection models. Additionally, the following parameters were defined, in
order to evaluate the detection accuracy:

P =
TP

TP + FP
, (5)

R =
TP

TP + FN
, (6)

F1 =
2PR

P + R
, (7)

where P is the precision, R is the recall and F1 score is a comprehensive evaluation index.
TP, FP, and FN are the number of true positives, false positives, and false negatives, respec-
tively. As the crater with 256 pixels can always be displayed completely in one image block,
we only kept craters with diameter ≤256 pixels (1792 m) in the detection result.

4.1. Crater Detection Post-Processing

After model training is completed, the accuracy of a model needs to be tested. On one
hand, it was necessary to detect the craters in the whole test area and obtain the projection
coordinates of the craters. On the other hand, it is necessary to remove duplicate craters
and judge whether the craters are detected correctly.

In the process of cutting R5 and R6 into image blocks (see Section 2.2), we left a
half-intersection between adjacent images, such that the model could detect the craters in

https://github.com/matterport/Mask_RCNN
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the research area. These data were fed into the deep learning models as a test set, in order
to assess the detection accuracy of the models. To improve the accuracy of crater detection,
the bounding boxes with confidence greater than 0.75 were preserved, the bounding boxes
with IoU between bounding boxes and highest confidence bounding box greater than 0.3
were deleted using non-maximum suppression method and, finally, only the bounding
boxes with the highest confidence were obtained. At the same time, duplicate detected
craters in a single image block were removed. As a result of the detection step, the detected
craters were presented as a rectangle with an image pixel coordinate. The diameter (D) of
the detected crater was defined as the average of the length and width of the rectangle, and
the location was the center point of the rectangle. To obtain the coordinates, the image pixel
coordinates should be transformed into a projection coordinate, using Equations (8)–(10),
following which a projection function can be used to obtain the geographic coordinates.
All of the transformation parameters were stored in an image file, which was obtained
using the osgeo package in Python.

xUL, Wpix, yUL, Wpix = GetGeoTrans f orm(Data), (8)

xm = xpix ×Wpix + xUL, (9)

ym = ypix × Hpix + yUL, (10)

where xUL, yUL represents the projection coordinate of the upper-left corner of the image;
Wpix and Hpix represent the horizontal and vertical resolutions, respectively; xpix, ypix is
the image pixel coordinate; and xm, ym is the projection coordinate.

The duplicate craters in the results were mainly generated by regions duplicated
during image clipping. Additionally, on the boundary of the image, duplicate craters
were produced with little difference in location and size. Therefore, in the post-processing
step, an overlapping index (α) and a simulation index (θ) were used to identify duplicate
craters. As a result, the largest crater was the retained, and the others were deleted. Finally,
we evaluated the accuracy, for which the final results were compared with the ground
truth in the test set. When Equations (11) and (12) were satisfied, it was judged as a true
positive result.

α <
distance

min(r1, r2)
, (11)

θ <
min(r1, r2)

max(r1, r2)
, (12)

where r1 and r2 are the radii of the craters, and the distance is measured between the center
points of the craters. After testing, when α is 1 and θ is 0.25, all of the duplicate craters can
be deleted.

4.2. Accuracy Evaluation

In the model test, Mask R-CNN, no-Mask R-CNN, Crater R-CNN, and Crater R-
CNN with TTSN detected 1941, 2055, 2070, and 2464 craters, respectively, in the Highland
and Maria regions. Figure 10 shows the distribution of the number of craters identified
by the above methods and manual labeling at different scales, and it can be seen that
the number of craters decreased with the increase of radius. However, the number of
small detected craters (radius < 150 m) was less than that of those which were labeled.
Meanwhile, no-Mask R-CNN detected fewer small craters (radius < 100 m) and more
medium craters (100 m < radius < 150 m) in Highland. In Maria, no-Mask R-CNN found
fewer small craters (radius < 100 m) only. It can be seen, from Figure 11, that the detection
result of no-Mask R-CNN for small craters was larger than the true number of craters.
Thus, the use of no-Mask R-CNN led to crater rim detection errors.
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(a) (b)

Figure 10. Distribution of the number of craters detected by Mask R-CNN, no-Mask R-CNN, Crater
R-CNN, Crater R-CNN with TTSN, and manual labeling: (a) Highland; and (b) Maria.

(a) (b)

Figure 11. Difference between no-Mask R-CNN and Crater R-CNN with TTSN. The detection results
of Crater R-CNN with TTSN (a) and no-Mask R-CNN (b) are shown. It can be seen that the crater
size detected by no-Mask R-CNN was larger than the actual crater size, and the number of detections
was also smaller than that of Crater R-CNN with TTSN.

Table 4 presents the accuracy evaluation for the different crater detection models.
The overall accuracy evaluation was based on the detected results in Highland and Maria
regions. The table shows that Crater R-CNN with TTSN had the best overall precision
(P = 90.5%), highest overall recall (R = 63.5%), and best comprehensive evaluation index
(F1 = 74.7%). The overall accuracy of Crater R-CNN (R = 49.5%, P = 83.9%, F1 = 62.2%), no-
Mask R-CNN(R = 43.5%, P = 74.3%, F1 = 54.9%), and Mask R-CNN (R = 36.9%, P = 66.6%,
F1 = 47.5%) became consecutively smaller. The accuracies in Highland and Maria regions
were consistent with the overall accuracy, indicating that the above models could effectively
overcome the topographic differences. Compared with the other three models, the recall
rate of the Crater R-CNN with TTSN was significantly higher, which means that Crater
R-CNN with TTSN produced a large number of correct “pseudo-labels” and had a strong
generalization performance. In the table, we further provide the average IoU between
the detected craters and the ground truth, as well as the ratio of the radii of detected
craters (Pre_R) to those of the ground truth (R). It can be seen, from the results, that the
IoUs of Crater R-CNN and Crater R-CNN with TTSN were better, while the IoU of Mask
R-CNN was the lowest. Thus, Mask R-CNN and no-Mask R-CNN performed poorly when
locating craters. From the perspective of the radius ratio, the radii of craters predicted by
Mask R-CNN were lower, while the radii of craters predicted by no-Mask R-CNN were
larger than those predicted by other methods. Therefore, no-Mask R-CNN, as shown in
Figures 11 and 12, was quite different from the other methods.
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(a) (b)

(c)

Figure 12. Detection accuracy under different radii: (a–c) show the precision, recall, and F1 of the
four methods in whole test set, respectively.

Table 4. Accuracy evaluation for different crater detection models.

Type Model R P F1 IoU Pre_R/R

Whole

Mask R-CNN 0.369 0.666 0.475 0.682 0.602
no Mask R-CNN 0.435 0.743 0.549 0.76 1.19

Crater R-CNN 0.495 0.839 0.622 0.892 0.962
Crater R-CNN with TTSN 0.635 0.905 0.747 0.886 0.964

Highland

Mask R-CNN 0.405 0.617 0.489 0.695 0.624
no Mask R-CNN 0.439 0.71 0.542 0.776 1.25

Crater R-CNN 0.525 0.827 0.642 0.896 1.01
Crater R-CNN with TTSN 0.661 0.914 0.767 0.895 1.01

Maria

Mask R-CNN 0.29 0.871 0.435 0.642 0.538
no Mask R-CNN 0.428 0.827 0.564 0.726 0.105

Crater R-CNN 0.43 0.872 0.576 0.88 0.846
Crater R-CNN with TTSN 0.581 0.885 0.702 0.865 0.833

To understand the effect of scale on the models, statistical analysis of the accuracy was
carried out under different radii. Overall, Figure 12 shows that R, P, and F1 were not stable.
When the radius was less than 100 m or more than 600 m, R was low, while it was high between
100 and 600 m. The P and F1 values were consistent with each other. The value of P for Mask
R-CNN was low within 400 m of radius and increased rapidly between 400–550 m, indicating
that Mask R-CNN was more unstable. The P and F1 values of Crater R-CNN and Crater
R-CNN with TTSN were higher than 0.8 when the radius was within 350 m. Almost all the
P and F1 values of Crater R-CNN and Crater R-CNN with TTSN were larger than those of
Mask R-CNN and no-Mask R-CNN. As can be seen from Figure 12, in all dimensions and
indicators, Crater R-CNN with TTSN had better performance. According to the number and
distribution of craters, we divided them into three categories, according to radius: radius < 100 m,
100 m≤ radius < 200 m, and radius≥ 200 m. In Table 5, the accuracy of crater detection under
these three sizes is provided. As the resolution of CE-2 DOM is 7 m/pixel, the craters with radius
less than 100 m occupied less pixels, and there were a lot of missing crater labels, such that the
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detection accuracy of craters with R < 100 m was relatively low, but the detection accuracy of
craters with radius more than 100 m was relatively high and consistent. With the improvement
of DOM data resolution, Crater R-CNN with TTSN can meet the requirements of crater detection
within 1 km.

Table 5. Accuracy evaluation under different crater sizes.

Type Size R P F1

Whole
Radius < 100 m 0.549 0.915 0.687

100 m ≤ Radius < 200 m 0.754 0.944 0.838
200 m ≤ Radius 0.816 0.794 0.805

Highland
Radius < 100 m 0.581 0.938 0.718

100 m ≤ Radius < 200 m 0.779 0.96 0.86
200 m ≤ Radius 0.832 0.774 0.802

Maria
Radius < 100 m 0.476 0.871 0.615

100 m ≤ Radius < 200 m 0.714 0.907 0.799
200 m ≤ Radius 0.768 0.922 0.838

Figure 13 shows the spatial distribution of the craters detected by Crater R-CNN with
TTSN in the Highland and Maria regions. There were more small true negatives (blue)
than large ones. However, the former were mainly located in areas with high crater density.
The distribution of the false positives (red) was relatively random, and its scale was mainly
medium-sized. Therefore, as shown in Figure 11, the value of P for Crater R-CNN with
TTSN was relatively low at medium scales. The true positives (green) covering the small
and middle scale were mainly found at the bottom of complex craters, indicating that
Crater R-CNN with TTSN has strong robustness.

(a) (b)

Figure 13. Distribution of craters detected by Crater R-CNN with TTSN in Highland (a) and Maria
(b) regions: Green, true positives; red, false positives; blue, true negatives.

To further analyze the effect of instance segmentation on crater detection using DOM,
the detection results of Crater R-CNN with TTSN and Mask R-CNN were randomly
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selected in Highland and Maria. Figure 14 shows that more small craters were detected by
Crater R-CNN with TTSN than Mask R-CNN. Due to label errors at crater rims and the
unclear rims of craters in the DOM, the rims of craters segmented by Mask R-CNN were
inaccurate. Figures 14a,c show that Crater R-CNN with TTSN detected a large number of
small craters in Highland, but Mask R-CNN missed many small ones. In Maria, the image
data quality was poor, as mentioned in Section 2.3. As a result, Mask R-CNN missed a
large number of small craters, incorrectly detected overlapping craters in the upper left
corner, and did not detect large craters located at the bottom of the image. However, Crater
R-CNN with TTSN could effectively distinguish overlapping craters, small craters, and
large craters, as shown in Figure 14d. Therefore, Crater R-CNN with TTSN had better
generalization ability and was more suitable for crater detection using DOM.

(a) (b)

(c) (d)

Figure 14. Difference between Mask R-CNN and Crater R-CNN with TTSN: (a,b), Mask R-CNN in
Highland and Maria; (c,d), Crater R-CNN with TTSN in Highland and Maria.

5. Summary and Conclusions

Based on an investigation of CE-2 DOM data and various crater detection methods,
a new small crater detection method, called Crater R-CNN with TTSN, was proposed in
this paper. Several crater samples in the Highland, Maria, low-altitude, and medium–high-
latitude areas were labeled, in order to train and evaluate Mask R-CNN, no-Mask R-CNN,
Crater R-CNN, and Crater R-CNN with TTSN models. The results indicated that Crater
R-CNN with TTSN had the highest overall accuracy (P = 90.5%, R = 63.5%, F1 = 74.7%), and
had better localization ability (IoU = 88.6%) and size estimation (Pre_R/R = 96.4%). The
accuracy of the proposed model in the Highland and Maria regions was consistent with
the overall accuracy, and the recall of Crater R-CNN with TTSN was higher than that of the
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other three models, as the proposed method generated a large number of “pseudo-labels”
to overcome the problem of missing labels, has strong generalization performance, and is a
high-precision semi-supervised learning method. In addition, the use of a segmentation
network is not conducive to the detection of craters in DOM imagery, such that it was
difficult for no-Mask R-CNN to obtain the true size of small craters. Therefore, Crater
R-CNN with TTSN could accurately detect craters with a radius of more than 100 m, as
well as accurately locating the craters and estimating their size.

With the acquisition of high-resolution imagery by CE-2, LRO, and Selene, as well
as that obtained by future missions, Crater R-CNN with TTSN provides a new way
to detect small craters within 1 km diameter using DOM—instead of DEM (with low
resolution)—making it possible to effectively detect small lunar craters and to build lunar
crater databases at different scales. New lunar craters can be used to analyze the distri-
bution of lunar craters and modify the accurate geological age of the Moon, which may
provide support in answering some questions about its origin and evolution. Additionally,
small craters can be used for landing site selection and navigation on the Moon in the
future. However, the samples used in this paper did not cover the polar regions—especially
the permanent shadow areas—and the sample data sources were limited to CE-2 DOM.
Therefore, future research should focus on improving the generalization capability of the
model and expanding the diversity of the sample data.
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Appendix A

We adopted the following model hyper-parameters in our work:
BACKBONE : resnet101
BACKBONE_STRIDES : [4, 8, 16, 32, 64]
BATCH_SIZE : 2
BBOX_STD_DEV : [0.1 0.1 0.2 0.2]
COMPUTE_BACKBONE_SHAPE : None
DETECTION_MAX_INSTANCES : 400
DETECTION_MIN_CONFIDENCE : 0.75

https://moon.bao.ac.cn/searchOrder_pdsData.search
https://moon.bao.ac.cn/searchOrder_pdsData.search
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DETECTION_NMS_THRESHOLD : 0.3
FPN_CLASSIF_FC_LAYERS_SIZE : 1024
GPU_COUNT : 1
GRADIENT_CLIP_NORM : 5.0
IMAGES_PER_GPU : 2
IMAGE_CHANNEL_COUNT : 1
IMAGE_MAX_DIM : 512
IMAGE_META_SIZE : 14
IMAGE_MIN_DIM : 512
IMAGE_MIN_SCALE : 0
IMAGE_RESIZE_MODE : square
IMAGE_SHAPE : [512, 512, 1]
LEARNING_MOMENTUM : 0.9
LEARNING_RATE : 0.001
LOSS_WEIGHTS : The proportion is the same
MAX_GT_INSTANCES : 400
NUM_CLASSES : 2
POOL_SIZE : 7
POST_NMS_ROIS_INFERENCE : 1000
POST_NMS_ROIS_TRAINING : 2000
PRE_NMS_LIMIT : 6000
ROI_POSITIVE_RATIO : 0.33
RPN_ANCHOR_RATIOS : [0.5, 1, 2]
RPN_ANCHOR_SCALES : (16, 32, 64, 128, 256)
RPN_ANCHOR_STRIDE : 1
RPN_BBOX_STD_DEV : [0.1 0.1 0.2 0.2]
RPN_NMS_THRESHOLD : 0.7
RPN_TRAIN_ANCHORS_PER_IMAGE : 600
TOP_DOWN_PYRAMID_SIZE : 256
TRAIN_BN : False
TRAIN_ROIS_PER_IMAGE : 600
WEIGHT_DECAY : 0.0001
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