
remote sensing  

Article

Simulation and Assessment of the Capabilities of Orbita
Hyperspectral (OHS) Imagery for Remotely Monitoring
Chlorophyll-a in Eutrophic Plateau Lakes

Runfei Zhang 1, Zhubin Zheng 1,*, Ge Liu 2, Chenggong Du 3 , Chao Du 1, Shaohua Lei 4 , Yifan Xu 5 , Jie Xu 4,
Meng Mu 4, Shun Bi 4 and Jianzhong Li 1

����������
�������

Citation: Zhang, R.; Zheng, Z.; Liu,

G.; Du, C.; Du, C.; Lei, S.; Xu, Y.; Xu,

J.; Mu, M.; Bi, S.; et al. Simulation and

Assessment of the Capabilities of

Orbita Hyperspectral (OHS) Imagery

for Remotely Monitoring

Chlorophyll-a in Eutrophic Plateau

Lakes. Remote Sens. 2021, 13, 2821.

https://doi.org/10.3390/rs13142821

Academic Editors: Jiayi Pan,

Bo Huang, Hongsheng Zhang and

Adam T. Devlin

Received: 27 May 2021

Accepted: 15 July 2021

Published: 18 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, China;
zhangrunfei98@gmail.com (R.Z.); chao.du@gnnu.edu.cn (C.D.); lijianzhong@gnnu.edu.cn (J.L.)

2 The Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences,
Changchun 130102, China; liuge@iga.ac.cn

3 Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection,
Huaiyin Normal University, Huai’an 223000, China; ducg1023@163.com

4 Key Laboratory of Virtual Geographic Environment, Ministry of Education, College of Geographic Science,
Nanjing Normal University, Nanjing 210023, China; 171301035@stu.njnu.edu.cn (S.L.);
171301036@stu.njnu.edu.cn (J.X.); 161301037@stu.njnu.edu.cn (M.M.); 161302127@stu.njnu.edu.cn (S.B.)

5 State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic
Research Institute, Nanjing 210029, China; xuyf@nhri.cn

* Correspondence: zhengzhubin@gnnu.edu.cn

Abstract: The chlorophyll-a (Chl-a) concentration of eutrophic lakes fluctuates significantly due to
the disturbance of wind and anthropogenic activities on the water body. Consequently, estimation
of the Chl-a concentration has become an immense challenge. Due to urgent demand and rapid
development in high-resolution earth observation systems, it has become crucial to assess hyper-
spectral satellite imagery capabilities on inland water monitoring. The Orbita hyperspectral (OHS)
satellite is the latest hyperspectral sensor with both high spectral and spatial resolution (2.5 nm and
10 m, respectively), which could provide great potential for remotely estimating the concentration
of Chl-a for inland waters. However, there are still some deficiencies that are mainly manifested
in the Chl-a concentration remote sensing retrieval model assessment and accuracy validation, as
well as signal-to-noise ratio (SNR) estimation of OHS imagery for inland waters. Therefore, the
radiometric performance of OHS imagery for water quality monitoring is evaluated in this study by
comparing different atmospheric correction models and the SNR with several remote sensing images.
Several crucial findings can be drawn: (1) the three-band model ((1/B15-1/B17)B19) developed
by OHS imagery is most suitable for estimating the Chl-a concentration in Dianchi Lake, with the
root-mean-square error (RMSE) and the mean absolute percentage error (MAPE) of 15.55 µg/L and
16.31%, respectively; (2) the applicability of the FLAASH (Fast Line-of-sight Atmospheric Analysis of
Spectral Hypercubes) atmospheric correction model for OHS imagery in a eutrophic plateau lake
(Dianchi Lake) was better than the 6S (Second Simulation of Satellite Signal in the Solar Spectrum)
model, and QUAC (Quick Atmospheric Correction) model, as well as the dark pixel method; (3) the
SNR of the OHS imagery was similar to that of Hyperion imagery and was significantly higher
than SNR of the HSI imagery; (4) the spatial resolution showed slight influence on the SNR of the
OHS imagery. The results show that OHS imagery could be applied to remote sensing retrieval of
Chl-a in eutrophic plateau lakes and presents a new tool for dynamic hyperspectral monitoring of
water quality.

Keywords: orbita hyperspectral imagery; Dianchi Lake; Chlorophyll-a; atmospheric correction;
signal-to-noise ratio
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1. Introduction

Chlorophyll-a (Chl-a) is a crucial parameter which impacts the watercolor of inland
lake water, and is a vital indicator measuring the eutrophication degree of lake water [1,2].
The nutrients transported by Chl-a reduce the spread of light through a water column
and affect the natural operation of the entire aquatic ecosystem. Therefore, accurate
prediction of Chl-a concentration and its spatiotemporal distribution pattern is of great
significance to the protection of lake ecosystems and the improvement of water quality
monitoring capabilities, and is the basis of water environment remote sensing monitoring
and evaluation. Precise prediction of Chl-a concentration is also the focus and challenge of
watercolor remote sensing [3–6].

Dianchi Lake is the largest freshwater lake in Southwest China and the sixth-largest
freshwater lake in China. It is an important drinking water source for residents, one of many
important habitats for migratory birds, and an essential part of the wetland ecosystem.
Due to continuous urbanization, Dianchi Lake has become a “sewage bucket” for domestic
sewage, industrial wastewater, and agricultural sewage. The eutrophication of water bodies
has become increasingly serious, and this lake has matured into a typical representative of
eutrophic lakes in the country. The pollution of the Dianchi Lake has caused an undesirable
evolution of the biological population structure and aquatic ecosystems. The resulting
cyanobacterial blooms have greatly impacted the production and life of local inhabitants
and are a major threat to the ecological environment and biological diversity [7–10]. Hence,
it is particularly important to judiciously monitor the eutrophication level of Dianchi Lake
and consider Dianchi Lake as a chief target for eutrophication control.

This eutrophic plateau lake is greatly affected by the disturbance of wind and anthro-
pogenic activities, making it difficult to retrieve the Chl-a concentration. Moreover, most
previous studies focused on multi-spectral remote estimation [11–16], with few studies for
hyperspectral inversion models in eutrophic plateau lake existing [17]. O’Reilly et al. [18]
used the blue-green band ratio model to estimate the concentration of Chl-a in the ocean
based on Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) images. Gurlin et al. [19]
proposed the near-infrared and red band ratio model and applied it to Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) and Medium Resolution Imaging Spectrometer
(MERIS) images to estimate the Chl-a concentration. Matthews et al. [20] utilized the
maximum peak height algorithm to estimate the Chl-a concentration of inland waters.
Liu et al. [21] executed semi-analytical algorithms to retrieve the Chl-a concentration of var-
ious lakes based on Ocean and Land Color Instrument (OLCI) images. Ioannou et al. [22]
implemented neural network algorithms to predict the Chl-a concentration and used them
on MODIS images. Due to the complexity of the optical properties of water bodies and
the diverse performance of each image, the Chl-a concentration retrieval accuracy was
significantly different. Hence, the current dilemmas mainly include the following: (1) the
accuracy of multi-spectral inversion models for eutrophic plateau lakes needs improve-
ment; (2) while there is less research on hyperspectral data, its inversion models results
may be more accurate compared to multi-spectral data; (3) there is no research on the
applicability of OHS (Orbita hyperspectral) data for eutrophic plateau lakes; (4) the prob-
lems of atmospheric correction and SNR (signal-to-noise ratio) of OHS imagery have not
been resolved.

Retrieving the concentration of Chl-a in eutrophic plateau lakes using the OHS image
was a major challenge. This challenge was mainly addressed because OHS imagery has
rarely been used in the field of remote sensing and the uncertainty of OHS imagery for Chl-a
concentration estimation is still unknown. OHS imagery is an imaging product integrating
high spectral resolution, high spatial resolution, and high temporal resolution, and is a
hyperspectral satellite with great development potential. Most existing hyperspectral im-
agers can no longer be used. For instance, the Hyperion hyperspectral sensor mounted on
the EO-1 (Earth Observing-1) satellite platform and the AVIRIS (Airborne Visible Infrared
Imaging Spectrometer) hyperspectral imager positioned on the ER-2 (European Remote
sensing-2) aircraft platform has been terminated; the HJ-1 HSI (Hyperspectral Imager) and
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the images produced by the CHRIS (Compact High-Resolution Imaging Spectrometer)
sensor mounted on the PROBA (Project for On-Board Autonomy) satellite cannot be used
due to stripe noise. In addition, the Hyperspectral Precursor of the Application Mission
(PRISMA) satellite launched in March 2019 offers great potential for hyperspectral monitor-
ing of water quality in inland lakes, but its imaging products have certain uncertainties [23];
the DESIS (DLR Earth Sensing Imaging Spectrometer) hyperspectral sensor installed on the
International Space Station can play a crucial role in monitoring coastal and inland water
bodies, but has difficulty monitoring small-scale lake water bodies due to the low spatial
resolution [24]; the HISUI (Hyperspectral Imager Suite) hyperspectral instrument onboard
the ALOS-3 (Advanced Land Observing Satellite-3) satellite was successfully launched in
December 2019, but the quality of its imaging products and its ability to monitor inland
water bodies are still unknown. Therefore, the emergence of the OHS satellite provides
opportunities for hyperspectral remote sensing monitoring of small-scale inland lakes. This
study assesses the performance of OHS imagery for remote sensing inversion of water
quality parameters from the perspective of inland lake water quality monitoring.

This study aims to quantitatively reveal and analyze the spatial pattern of Chl-a
concentration in eutrophic plateau lakes using OHS imagery in Dianchi Lake, with the
following main objectives: (1) Develop a model based on the novel OHS imagery for
Chl-a remote sensing retrieval in eutrophic plateau lakes; (2) Explore the applicability and
feasibility of OHS imagery for monitoring Chl-a concentration in eutrophic plateau lakes.

2. Materials and Methods
2.1. Study Area

Located on the Yunnan–Guizhou Plateau, Dianchi Lake (102◦31′E~102◦56′E, 24◦32′N
~25◦17′N, Figure 1) is the largest freshwater lake in Yunnan Province and the largest plateau
lake in the southwest region of China, with an altitude of 1886 m, a lake area of 330 km2,
and an average water depth of 5 m. It is a typical plateau lake with eutrophication and
is significantly affected by wind and human activities. Dianchi Lake is a vital source
of drinking water for local inhabitants. It also functions as a reservoir for industry and
agriculture, flood control, shipping, tourism, aquaculture, hydroelectric power generation,
and meteorological regulation, and plays a critical role in the development of Kunming’s
social economy. Over recent decades, the rise of industry, rapid social and economic
development, and constant population growth around Dianchi Lake have caused more and
more pollutants access to Dianchi Lake, resulting in increasingly severe eutrophication. In
current years, although the water quality of Dianchi Lake has improved, it is still in Level-
IV (extremely eutrophic water body according to Dianchi Lake Administration Bureau).
The management and ecological restoration of Dianchi Lake is threatened.
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Figure 1. Dianchi Lake and sampling sites location distribution in China. The chromatic points
indicate the sampling sites, and the light green area indicates Dianchi Lake. The red pushpins indicate
the sampling sites in April 2009, the yellow pushpins represent the sampling sites in April 2017,
the green pushpins denote the sampling points in November 2017, and the blue dots refer to the
sampling points in April 2019.

2.2. Remote Sensing Images and Images Pre-Processing

Five types of imagery data were used in this study, including (1) the OHS imagery on
2 April 2019, with both high spectral and spatial resolution (2.5 nm and 10 m, respectively),
a band range of 400 nm–1000 nm, and a total of 32 spectral bands [25] (Table A1), was
downloaded from Zhuhai Orbita Aerospace Technology Co., Ltd. in Zhuhai, China (https:
//ohs.obtdata.com/, accessed on 30 May 2019); (2) Landsat-8 OLI imagery on 7 May 2019,
originating from the United States Geological Survey (USGS, https://glovis.usgs.gov/,
accessed on 5 June 2019); (3) Hyperion imagery on 21 May 2004, from the United States
Geological Survey (USGS, https://glovis.usgs.gov/, accessed on 5 June 2019); (4) HJ-1
HSI imagery on 25 November 2014, which came from China Centre for Resources Satellite
Data and Application (CRESDA, http://www.cresda.com/, accessed on 5 June 2019), and
(5) Sentinel-2 MSI (Multispectral Instrument) imagery on 7 April 2019, collected from the
European Space Agency (ESA, https://scihub.copernicus.eu/, accessed on 5 June 2019).
Among them, OHS imagery was used for all operations in this study, and other imageries
were used to estimate the SNR.

2.2.1. Radiometric Calibration

Radiometric calibration is the process of converting the digital number value (DN)
of remote sensing images into top-of-atmosphere (TOA) radiance or apparent reflectance.
In this study, radiometric calibration was performed using Environment for Visualizing
Images (ENVI) software to convert its DN value into apparent radiance via [25,26]. First,
we performed radiometric calibration on OHS imagery in this study.

Le = gain× DN
TDIStage

+ o f f set (1)

where, Le is the apparent radiance, gain is the gain coefficient, offset is the offset coefficient,
and TDIStage is the integration series (Table A1).

https://ohs.obtdata.com/
https://ohs.obtdata.com/
https://glovis.usgs.gov/
https://glovis.usgs.gov/
http://www.cresda.com/
https://scihub.copernicus.eu/
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2.2.2. Atmospheric Correction

Atmospheric correction eliminates and corrects the absorption or scattering of sunlight
caused by the atmosphere, the reflection from the target or absorption and scattering of
scattered light, and the incident light to the sensor in addition to the light from the target.
Its basic algorithm is given in Equation (2) [26]. We performed atmospheric correction on
OHS imagery in this study.

L =

(
A ∗ ρ

1− ρe ∗ S

)
+

(
B ∗ ρe

1− ρe ∗ S

)
+ (La) (2)

where, L is the total radiance received by the pixel at the sensor, ρ is the real surface
reflectance of the pixel, ρe is the average surface reflectance around the pixel, S is the atmo-
sphere spherical albedo, and La is the atmospheric backscattered radiance (atmospheric
range radiation); A and B are two coefficients depending on atmospheric conditions and
geometric conditions.

In this study, the FLAASH (Fast Line-of-sight Atmospheric Analysis of Spectral Hy-
percubes) model, QUAC (Quick Atmospheric Correction) model, 6S (Second Simulation of
Satellite Signal in the Solar Spectrum) model, and dark pixel method were used to perform
atmospheric correction on the OHS image. Among them, FLAASH is an atmospheric
correction module based on the MODTRAN5 (Moderate Resolution Atmospheric Trans-
mission) radiation transfer model, which can be applied to hyperspectral and multispectral
images; QUAC model is a quick atmospheric correction method incorporated in ENVI
software; 6S model is used to simulate the radiation transfer process of 0.25~4.00 µm
solar reflectance wave band and is an improved version of the 5S (Simulation of Satellite
Signal in the Solar Spectrum) model; dark pixel method assumes that the radiance of water
body dark pixel in the infrared band is approximately 0 and the radiation received by the
sensor in this band comes from atmospheric effects from which the atmospheric parameters
and aerosol factors are derived. The visible bands are extrapolated and atmospherically
corrected [26].

2.3. Field Measurements

Three cruise field surveys conducted on 19 to 20 September 2009, 13 to 16 April
2017, and 13 to 15 November 2017 over Dianchi Lake measured and collected remote
sensing reflectance (Rrs) and water sample data. We collected 93 samples in 3 field surveys
(Figure 1). At each station, the longitude and latitude coordinates were recorded using a
Global Positioning System (GPS) receiver and roughly 1000–1500 mL surface water samples
from a 50 cm water depth were collected for laboratory measurement and analysis [27,28].
In addition, we obtained the measured Chl-a concentration data collected by Dianchi
Administration Bureau on 2 April 2019. Among them, 93 observation stations datasets
from three field measurements (19 to 20 September 2009, 13 to 16 April 2017, and 13 to
15 November 2017) were used to develop and validate the Chl-a retrieval models; the in
situ Chl-a concentration data (N = 10) of Dianchi Lake synchronized with OHS imagery (2
April 2019) were used to validate the performance of the OHS imagery retrieval results
(Table 1).

Table 1. The description of field measurement data set of four cruise field surveys on 19 to 20 September 2009, 13 to 16 April
2017, 13 to 15 November 2017, and 2 April 2019.

Total Dataset Sampling Time
(YYYY/MM/DD)

Training
Dataset

Validation
Dataset Usage

N = 24 2009/09/19–2009/09/20 N = 16 N = 8
Simulated OHS-based model calibration

and validation
N = 30 2017/04/13–2017/04/16 N = 20 N = 10
N = 39 2017/11/13–2017/11/15 N = 25 N = 14

N = 10 * 2019/04/02 N = 0 N = 10 Validation of derived Chl-a from OHS imagery

* This data set originated from the Dianchi Administration Bureau and only has the in situ Chl-a concentration data synchronized with the
OHS imagery but does not have the spectral reflectance data.
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2.3.1. Radiometric Measurements

Spectral reflectance was measured using an ASD FieldSpec spectroradiometer. The
instrument has 512 spectral channels with a spectral resolution of 1.5 nm across a spectral
range of 350–1050 nm. The radiance spectra of the reference panel, water, and sky were
measured using the above-water measurement method followed by the Ocean Optics
Protocols [29,30]. The observation geometry with an azimuth of 135◦ and a nadir angle
of 40◦ was used to avoid direct sunlight reflection on the water [30]. Ten spectra were
obtained for each sampling site, from which we eliminated abnormal spectra due to
occasional factors and averaged valid ones to calculate the remote sensing reflectance
(Rrs(λ)) via the following equation [30,31] (Figure 2):

Rrs(λ) =

(
Lt − ρLsky

)
∗ Rg

Lgπ
(3)

where, Lt is the measured total radiance from the water surface; ρ is the skylight reflectance
received from the air–water surface, which is considered as 2.2% for calm weather, 2.5%
for wind speed reaching 5 m·s−1, and 2.6%–2.8% for wind speed of 10 m·s−1; Lsky is the
determined radiance of the sky; Lg is the radiance measured with the reference panel; Rg is
the reflectance from the reference panel, and its value is 30%.
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the remote sensing reflectance properties of each sampling point.

2.3.2. Water Sample Analysis

Water samples were filtered using Whatman GF/F fiberglass filters, and phytoplank-
ton pigments were extracted in 90% hot ethanol at 80 ◦C. Chl-a concentration was measured
using hot ethanol methods [32], that is, the concentration of Chl-a was extracted with 90%
hot ethanol at 80 ◦C, the resulting extract was acidified with 1% dilute hydrochloric acid,
and the absorbance at 665 nm and 750 nm was measured by a UV2550 spectrophotometer.
The Chl-a concentration was determined using the absorbance at 665 nm and 750 nm.
The concentrations of total suspended matter (TSM), organic suspended matter (OSM),
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and inorganic suspended matter (ISM) were measured using detailed descriptions from
American Public Health Association [33]. The water sample was filtered on a Whatman
GF/F glass fiber filter and weighed according to the method of Huang [34]. The filter was
then re-heated at 550 ◦C for 4 h to remove the organic ingredients and weighed again to
determine ISM. The OSM concentration can be obtained by subtracting ISM from TSM.

2.4. Model Calibration Based on Simulated OHS Imagery

To estimate the Chl-a concentration using the OHS image, the spectral reflectance of
the field measurements and the spectral response function of the OHS image were used by
the atmosphere-surface scene simulation method to simulate the spectral characteristics of
the in situ remote sensing reflectance to the spectral characteristics of OHS image. Rrs(λ)
was used to represent the remote sensing reflectance received by the water-surface reflecting
sunlight and reaching the ASD sensor detector. After considering the spectral response
function f (λ), the simulation result can be derived by the following formula [35,36]:

Rrs(Bi) =

∫ λmax
λmin

Rrs(λ) f (λ)dλ∫ λmax
λmin

f (λ)dλ
(4)

where, Rrs(Bi) denotes the simulated field-measured Rrs(λ) for the i-th band of OHS image,
with integration from λmin to λmax for the i-th band.

2.5. Signal-to-Noise Ratio Estimation

SNR is a measure of the relationship between signal and noise and is a particularly
important indicator to evaluate the performance of a sensor. According to Tobler’s first
law of geography, adjacent features of the same kind have similar spectral characteristics,
corresponding to a similar gray value in the image of the same band. The SNR of the OHS
image was determined using the variance method [37,38]. However, the premise of the
method must ensure that the pixels involved in the operation were homogeneous features.
The central area of Dianchi Lake selected in this study was rather homogeneous, and it was
assumed that their bio-optical characteristics were spatially stable.

The specific process was: (1) extracted a pure window, that is, an area with relatively
homogeneous optical properties in the center of Dianchi Lake; (2) determined the average
DN value and standard deviation of all pixels in the pure window; (3) the ratio of the mean
value and the standard deviation was SNR of remote sensing imagery. The formula of SNR
is as follows:

MDN =
∑ DNi

N
. (5)

S =

√
∑(DNi −MDN)2

N − 1
(6)

SNR =
MDN

S
(7)

where, MDN is the mean DN value of the pixels, DNi is the DN value of each pixel in the
image of the selected area, N is the number of pixels, S is the standard deviation of the DN
value of the pixels, and SNR is the signal-to-noise ratio of the OHS image.

2.6. Statistical Analysis

Statistical analyses including calculations of the mean, maximum, and minimum
values, correlation analysis, and linear and non-linear regressions were performed us-
ing the Microsoft Excel software. Additionally, several metrics were used to assess the
algorithm’s performance and uncertainties in this study, which include (1) the Pearson
correlation coefficient (r), (2) the determination coefficient (R2), (3) the root-mean-square
error (RMSE), (4) the mean absolute percentage error (MAPE), and (5) p-value that rep-
resents the significance level of the association between two variables, and was reported
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to be significant (p < 0.05) or not significant (p > 0.05) with a t-test. Among them, the r
and R2 indicate the degree of correlation between the coupled data; the RMSE represents
the difference between the predicted value and the actual value, smaller RMSE denotes
higher prediction accuracies; and the MAPE is a measure of the prediction accuracy of
a forecasting method, smaller MAPE indicates better modeling results. These accuracy
criteria are defined as [39,40]:

RMSE =

√
1
n

n

∑
i=1

(Chl-ai − Chl-ai
′)2 (8)

MAPE =
1
n

n

∑
i=1

∣∣∣∣Chl-ai − Chl-ai
′

Chl-ai

∣∣∣∣× 100% (9)

where, n refers to the number of samples, and Chl-ai and Chl-ai’ are measured and predicted
values of Chl-a concentration, respectively.

3. Results and Discussion
3.1. Data Descriptive Statistics

The water quality parameters obtained from field sampling sites showed a high dy-
namic range and considerable variability (Table 2). The mean Chl-a during the sampling pe-
riod was 87.35 µg/L, with a maximum of 187.01 µg/L and a minimum of 38.97 µg/L. TSM
ranged from 20.98 to 66.60 mg/L (mean = 37.04 mg/L, standard deviation = 8.19 mg/L).
OSM and ISM varied from 11.16 to 52.10 mg/L and 0.00 to 28.10 mg/L, with a mean value
of 23.54 mg/L and 13.50 mg/L. A total of 93 sample data were randomly divided into two
groups: 61 of them were used as training samples for the development of the algorithm,
and the remaining 32 samples were used as the validation data set to evaluate the accuracy
of the algorithm [41].

Table 2. Statistics of the water quality parameters measured for Chl-a concentration (Chl-a, µg/L), total suspended matter
concentrations (TSM, mg/L), organic suspended matter concentrations (OSM, mg/L), and inorganic suspended matter
concentrations (ISM, mg/L) from Dianchi Lake. S.D. represents the standard deviation (mg/L), and C.V. represents the
coefficient of variation (%).

Sampling Time (YYYY/MM/) Parameters Maximum Minimum Mean S.D. C.V.

Aggregated Chl-a (µg/L) 187.01 38.97 87.35 24.14 27.64%
(N = 93) TSM (mg/L) 66.60 20.98 37.04 8.19 22.11%

OSM (mg/L) 52.10 11.16 23.54 8.41 35.73%
ISM (mg/L) 28.10 0.00 13.50 4.84 35.88%
OSM/TSM 1.00 0.41 0.63 0.12 19.82%
ISM/TSM 0.58 0.00 0.37 0.12 33.41%

2009/09 Chl-a (µg/L) 156.69 38.97 93.90 32.91 35.05%
(N = 24) TSM (mg/L) 66.60 24.70 44.40 9.59 21.59%

OSM (mg/L) 52.10 16.20 35.52 8.35 23.50%
ISM (mg/L) 22.80 0.00 8.88 4.49 50.55%
OSM/TSM 1.00 0.41 0.80 0.10 12.98%
ISM/TSM 0.58 0.00 0.20 0.10 52.94%

2017/04 Chl-a (µg/L) 107.53 61.86 79.69 10.67 13.39%
(N = 30) TSM (mg/L) 50.00 20.98 33.47 6.51 19.46%

OSM (mg/L) 22.35 11.16 17.85 2.63 14.76%
ISM (mg/L) 28.10 8.76 15.62 4.67 29.88%
OSM/TSM 0.69 0.44 0.54 0.06 11.03%
ISM/TSM 0.56 0.31 0.46 0.06 12.93%

2017/11 Chl-a (µg/L) 187.01 59.67 90.04 25.51 28.33%
(N = 39) TSM (mg/L) 54.37 26.89 36.04 6.07 16.83%

OSM (mg/L) 36.15 15.50 21.80 4.32 19.82%
ISM (mg/L) 22.10 7.14 14.24 3.46 24.29%
OSM/TSM 0.74 0.50 0.61 0.07 11.33%
ISM/TSM 0.50 0.26 0.39 0.07 17.42%
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3.2. Model Development and Validation Based on Simulated-OHS Imagery
3.2.1. Blue-Green Band Ratio Model

This band ratio model can eliminate the atmospheric influence to some extent, and
can also reduce the interference of the roughness from the water surface [42]. The
blue-green band ratio model is mainly used for Case-I water bodies with phytoplank-
ton as the dominant. The blue-green band ratio model commonly adopted include
Rrs(490) > Rrs(510)/Rrs(560), Rrs(490)/Rrs(560), etc. We referred to the Rrs(490)/Rrs(560)
model in this study, the reflectance ratio factor B2/B7 was used as the independent variable,
and the corresponding Chl-a concentration was the dependent variable:

Chl-a_BG = a× B2
B7

+ b (10)

where, B2 and B7 represent the simulated OHS-based remote sensing reflectance at spectral
channels of 2nd and 7th band, respectively (the following spectral bands expressions are
similar to this), and coefficient a = −154.84 and b = 156.71 are determined empirically.

3.2.2. Near-Infrared and Red (NIR-Red) Band Ratio Model

The near-infrared and red band ratio model is commonly used in optically complex
Case-II water bodies mainly affected by Chl-a concentration, total suspended solids, and
colored dissolved organic matter [19]. The generally used near-infrared and red band ratio
models are Rrs(700)/Rrs(670), Rrs(719)/Rrs(667), Rrs(706)/Rrs(682), Rrs(708)/Rrs(665), etc.
We referred to the Rrs(708)/Rrs(665) model in this study:

Chl-a_NR = a× B17
B14

+ b (11)

where, coefficient a = 56.226 and b = 0.2191.

3.2.3. Three-Band Model

The three-band model is based on bio-optical theory and is used for remote sens-
ing retrieval of Chl-a concentration in turbid Case-II water bodies, and its manifesta-
tion is [Rrs

−1(λ1) − Rrs
−1(λ2)] Rrs(λ3), the model is based on three assumptions [43]:

(1) the backscattering coefficients of the three bands are approximately equal, that is,
bb(λ1) ≈ bb(λ2) ≈ bb(λ3), where bb(λ1), bb(λ2), bb(λ3) represent the backscattering co-
efficients at λ1, λ2, λ3, respectively; (2) λ3 is dominated by the absorption coefficient
of pure water, and the absorption coefficients in-water constituents could be ignored,
i.e., aw(λ3) >> anap(λ3) + aCOOM(λ3) + bb(λ3), where aw(λ3), anap(λ3), aCOOM(λ3) are the
absorption coefficient of pure water, non-pigmented particulate matter and colored dis-
solved organic matter at λ3, respectively; (3) the absorption coefficients of non-pigmented
particulate matter and colored dissolved organic matter at λ1 and λ2 are approximately
equal, and λ1 is located near the absorption peak of Chl-a, namely, anap(λ1) ≈ anap(λ2),
aCOOM(λ1) ≈ aCOOM(λ2) and aph(λ1) >> aph(λ2) where aph(λ1) and aph(λ2) are the absorp-
tion coefficient of phytoplankton pigment particles at λ1 and λ2, respectively. Regularly
used band combination forms of three-band model are [Rrs

−1(690) − Rrs
−1(693)]Rrs(800),

[Rrs
−1(666) − Rrs

−1(688)]Rrs(725), [Rrs
−1(671) − Rrs

−1(710)]Rrs(740), and [Rrs
−1(753) −

Rrs
−1(665)]Rrs(708), etc. By analyzing the optical properties of the Dianchi Lake waters,

we found that the above conditions were satisfied when λ1 = 680 nm, λ2 = 710 nm, and
λ3 = 745 nm, and the three-band model used in this study is:

Chl-a_TB = a× [1/B15− 1/B17]× B19 + b (12)

where, a = 137.35 and b = 59.741.
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3.2.4. Four-Band Model

Due to the optically complex properties of inland eutrophic lakes, the assumptions in
the three-band model cannot be established simultaneously. For this reason, a new near-
infrared band was introduced in the four-band model to reduce the impact of the absorption
of pure water and non-pigmented particles on estimation of the Chl-a concentration [44].
We referred to the method described by Le et al. [44] for the four-band model, namely,
[Rrs

−1(662) − Rrs
−1(693)] [ Rrs

−1(740) − Rrs
−1(705)]:

Chl-a_FB = a× 1/B13− 1/B15
1/B19− 1/B16

+ b (13)

where, a = −0.0002 and b = 89.498.

3.2.5. Fluorescence Line Height (FLH) Model

The fluorescence line height model was first proposed by Neville & Gower [45] to be
applied to the estimation of Chl-a concentration in various types of water. This method
is based on the relationship between the peak distance from the baseline and the Chl-a
concentration. The fluorescence line height model is as follows:

FLH = B15−
[

B17 + (B14− B17)× λB17 − λB15

λB17 − λB14

]
(14)

Chl-a_FLH = a× FLH + b (15)

where, a = −11510 and b = 75.573; λB14, λB15, and λB17 are central wavelength of 14th, 15th,
and 17th band of OHS imagery, respectively.

3.2.6. Model Validation Based on Simulated-OHS Imagery

Model validation was used to assess the effect of the Chl-a concentration estimation
model and the existing uncertainty and can be used to evaluate whether the retrieval
algorithm has practical application value. In this study, the root mean square error (RMSE)
and the mean absolute percentage error (MAPE) were used to assess the accuracy of the
Chl-a concentration estimation model via Formulas (8) and (9), and to analyze the accuracy
difference and uncertainty among different algorithms (Figure 3 and Table 3).

Table 3. Estimation model of Chl-a concentration based on simulated OHS imagery. R2, RMSE, and MAPE represent the
determination coefficient, root-mean-square error, and mean absolute percentage error, respectively.

Model Name Variable (x) For Form R2 RMSE (µg/L) MAPE

Blue-Green
Band Ratio B2/B7 Chl-a_BG = −154.84x + 156.71 0.144 22.97 24.78%

NIR-Red
Band Ratio B17/B14 Chl-a_NR = 56.226x + 0.2191 0.729 17.78 17.16%

Three-band (1/B15–1/B17)B19 Chl-a_TB = 137.35x + 59.741 0.809 15.55 16.31%

Four-band (1/B13–1/B15)
(1/B19–1/B16) Chl-a_FB = −0.0002x + 89.498 0.001 24.44 28.17%

FLH FLH Chl-a_FLH = −11510x + 75.573 0.636 22.40 21.59%

As shown in Figure 3 and Table 3, the effect of the four-band model was the worst
(RMSE = 24.44 µg/L, MAPE = 28.17%); the three-band model had the highest accuracy
(RMSE = 15.55 µg/L, MAPE = 16.31%) with the error within the acceptable range, which
was suitable for the remote estimation of the Chl-a concentration in Dianchi Lake. The
results of the estimation model were validated based on the simulated OHS imagery.
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simulated OHS-based derived Chl-a through Equations (10)–(15). Chl-a is chlorophyll-a concentration
and OHS is OHS imagery.
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3.3. Validation and Spatial Patterns of Chl-a from OHS Imagery
3.3.1. Validation of Derived Chl-a for OHS Imagery

To further assess the effectiveness of the three-band algorithm for the OHS image, the
measured Chl-a concentration data synchronized with OHS imagery from 10 observation
stations evenly distributed in Dianchi Lake on 2 April 2019 (OHS imaging date) were used
for model evaluation. In order to determine the influence of atmospheric correction on
Chl-a concentration inversion, we used satellite–ground synchronization data to validate
the Chl-a concentration retrieval results obtained by applying different atmospheric cor-
rection algorithms such as the FLAASH model, 6S model, QUAC model, and dark pixel
method (Figure 4). Among them, the FLAASH model had the best validation effect (m
MAPE = 8.26%) and could be applied to the atmospheric correction of the OHS imagery
of Dianchi Lake, while the Chl-a concentration obtained by the 6S atmospheric correction
model was significantly higher than the in situ Chl-a concentration (RMSE = 31.49 µg/L,
MAPE = 56.86%), and was not suitable for the OHS imagery of Dianchi Lake. The Chl-a
concentration estimated based on the three-band model had a significant correlation with
the measured Chl-a concentration (R2 = 0.858, p < 0.05) with RMSE of 5.71 µg/L and
MAPE of 8.26% of the relative difference (Figure 4). Comparisons between the in situ Chl-a
measured and the Chl-a estimated using the proposed three-band model in this study
showed that these values were acceptable. These results indicate that the three-band model
could be used with satisfactory performance to retrieve Chl-a concentration in this inland
water body.
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3.3.2. Spatial Patterns of Chl-a in Dianchi Lake

The three-band model was applied to the OHS imagery to obtain the spatial distribu-
tion pattern of Chl-a concentration in Dianchi Lake (Figure 5a), which revealed that the
concentration of Chl-a in Dianchi Lake showed an increasing trend from the center of the
lake to the coast of the lake. To quantitatively reveal the spatial distribution characteristics
of Chl-a concentration in Dianchi Lake, three cross-section lines were randomly selected to
analyze the variation of Chl-a concentration with the distance from the lakeshore. Figure 5b
intuitively describes the overall decreasing trend of Chl-a concentration as the distance
from the lake shore increases. The center of the lake had the lowest concentration of
Chl-a, being 20~40 µg/L; the Chl-a concentration along the lake was the highest, reaching
100~180 µg/L; and the mean Chl-a concentration of the whole Dianchi Lake on 2 April
2019, was estimated to be 66.43 ± 12.98 µg/L.
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3.4. Uncertainty Analysis of OHS Imagery
3.4.1. Signal-to-Noise Ratio of OHS Imagery

In order to compare the SNR of the OHS image with other multispectral and hyper-
spectral images, Landsat-8 OLI (Operational Land Imager) (spatial resolution of 30 m),
Sentinel-2 MSI (Multispectral Instrument, spatial resolution of 10 m, 20 m and 60 m), EO-1
Hyperion (Earth Observing-1, spatial resolution of 30 m), and HJ-1 HSI (Hyperspectral
Imager, spatial resolution of 100 m) were selected to perform comparable analysis with
OHS imagery. A comparatively large area with relatively stable bio-optical properties in
Dianchi Lake was selected as the SNR study area (Figure 6a). Simultaneously, the OHS
imagery was resampled to 30 m and 100 m to explore the effect of spatial resolution on the
SNR of the OHS imagery. The SNR of the Landsat-8 OLI imagery was significantly higher
than that of the OHS imagery, Hyperion imagery, HSI imagery, and Sentinel-2 imagery, but
it gradually decreased with wavelength increase. The SNR of multispectral images was
generally higher than that of hyperspectral images. The SNR of the HSI image in all bands
was relatively low, indicating that as the spectral resolution advances, the noise decreases
accordingly. The SNR of the Hyperion imagery gradually declined with the increase of
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the wavelength, which was similar to that of the OHS imagery. Although the SNR of OHS
imagery after resampling has improved, the change was not obvious, reflecting that the
spatial resolution had no significant effect on the OHS imagery (Figure 6b,c, Table 4). This
result is different from the change of multi-spectral image SNR with spatial resolution [46].
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selected SNR calculation area. (b) designates the SNR of different images (the black line is the SNR of the Landsat-8 image,
the red line is the SNR of the HSI image, the blue line is the SNR of the Hyperion image, the green line is the SNR of the
OHS image (spatial resolution of 10 m), the cyan line is the SNR of the OHS image (spatial resolution of 30 m), the pink
line is the SNR of the OHS image (spatial resolution of 100 m), the yellow line is the SNR of the Sentinel-2 image (spatial
resolution of 10 m), the brown line is the SNR of the Sentinel-2 image (spatial resolution of 20 m)). (c) denotes the stretched
version of the SNR of the OHS imagery (spatial resolution of 10 m) in (b).

Table 4. Comparison of the SNR of OHS image, Landsat-8 OLI image, HJ-1 HSI image, EO-1 Hyperion image, and Sentinel-2
MSI image for typical bands.

Images Coastal Aerosol
(435–451 nm)

Blue
(452–512 nm)

Green
(532–600 nm)

Red
(635–673 nm)

NIR
(845–892 nm)

OHS-10 m 25.91 24.31 22.99 20.34 17.80
OHS-30 m 26.03 24.25 22.88 20.33 17.77
OHS-100 m 26.62 24.71 22.70 20.32 18.07

Landsat-8 OLI-30 m 166.87 139.23 110.25 74.18 67.97
HJ-1 HSI-100 m 4.41 7.71 11.53 10.07 5.61

EO-1 Hyperion-30 m 38.63 51.14 44.97 36.63 19.54
Sentinel-2 MSI-10 m —— 82.13 43.66 58.40 5.75
Sentinel-2 MSI-20 m —— —— —— —— 5.18
Sentinel-2 MSI-60 m 127.60 —— —— —— ——

The SNR of the OHS image generally decreased with increasing wavelength, and there
was an obvious minimum near 760 nm (Figure 6). As a result of the weak water signal in
watercolor and the low SNR of high spatial resolution sensors, it was difficult to distinguish
the subtle differences among signals, limiting its application in watercolor remote sensing
to some extent and reducing the accuracy of Chl-a concentration estimation.

3.4.2. Limitation

The three-band model based on simulated OHS imagery proposed in this study has
successfully retrieved the Chl-a concentration in eutrophic plateau lakes but still has the
following limitations: (1) Limitations of the application area. Compared with the existing
Chl-a concentration retrieval algorithms [19,47–52] (Tables A2 and A3, Figures A1–A4),
the three-band model developed in this study is most suitable for remote sensing retrieval
of Chl-a concentration in eutrophic plateau lakes. However, due to the optically complex
properties of the water body, whether the three-band model proposed in this study is
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applicable to other optical water types such as Dongting Lake and Poyang Lake is still
unknown. In addition, the three-band model developed in this study is an empirical
algorithm, which appears to rely on measured data. Therefore, for different in situ data sets,
the model coefficients may vary, and the model needs to be re-calibrated. (2) Limitations
of OHS imagery. This study only discusses the capability of OHS imagery to monitor
the water quality in eutrophic plateau lakes; further research needs to be undertaken on
whether OHS imagery could be applied to other types of water bodies or other application
fields such as vegetation remote sensing.

4. Conclusions

A new and customized Chl-a concentration retrieval algorithm based on measured
spectral data and OHS imagery is proposed in this study. The model improved Chl-a
estimation accuracy using the OHS imagery in extremely eutrophic plateau water bodies
compared to the existing models proposed for clear open sea and turbid coastal waters.
This was then used to document the temporal and spatial patterns of Chl-a distributions in
Dianchi Lake, leading to several key findings.

First, the three-band model based on OHS imagery is most suitable for estimating
the concentration of Chl-a in Dianchi Lake, with RMSE and MAPE of 15.55 µg/L and
16.31%, respectively.

Second, the patterns of Chl-a retrieval from OHS imagery exhibit a significant spatial
heterogeneity in Dianchi Lake, which is significantly higher in the surrounding region than
the central waters.

Third, the FLAASH model is appropriate for estimating the concentration of Chl-a in
Dianchi Lake, while the 6S model, QUAC model, and dark pixel method are not suitable
for eutrophic Dianchi waters.

Moreover, the SNR of the OHS image (mean value of 19.43) is similar to that of the
Hyperion image (mean value of 27.87) but nearly 2.5 times SNR of the HSI image (mean
value of 8.47), and the variations in spatial resolution do not show a significant effect on
the SNR of the OHS image. The findings indicated that the performance of SNR is much
improved from HSI to OHS imagery; however, further improvement is still needed since
there is still a gap compared with advanced hyperspectral imageries, such as Hyperion, etc.

Lastly, OHS imagery can be applied to remote sensing retrieval of Chl-a concentration
in eutrophic plateau lakes.
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Appendix A

Table A1. OHS image bands setting and radiometric calibration coefficient. Wavelength represents the central wavelength
of each band, FWHM (Full-Width Half-Maximum) is the wave width of each band, Radiance Gains and Radiance Offsets
are the radiometric calibration gain coefficient and offset coefficient respectively, TDIStage is the integration series. The
parts in bold are the bands used in this study.

Bands Wavelength (nm) FWHM (nm) Radiance Gains
(W·m−2·sr−1·µm−1)

Radiance Offsets
(W·m−2·sr−1·µm−1) TDIStage

B1 466 5.0 0.31711 0.00000 6
B2 480 5.0 0.33824 0.00000 6
B3 500 5.0 0.42547 0.00000 6
B4 520 6.0 0.45222 0.00000 6
B5 536 6.0 0.45314 0.00000 6
B6 550 7.0 0.47178 0.00000 6
B7 566 7.0 0.43948 0.00000 6
B8 580 8.0 0.42103 0.00000 6
B9 596 8.0 0.46463 0.00000 5

B10 610 7.0 0.41791 0.00000 5
B11 626 8.0 0.37667 0.00000 5
B12 640 8.0 0.36352 0.00000 5
B13 656 8.0 0.39356 0.00000 4
B14 670 9.0 0.38094 0.00000 4
B15 686 10.0 0.31421 0.00000 4
B16 700 10.0 0.42416 0.00000 3
B17 716 10.0 0.36147 0.00000 3
B18 730 10.0 0.38121 0.00000 3
B19 746 10.0 0.35642 0.00000 3
B20 760 10.0 0.28216 0.00000 3
B21 776 9.0 0.36163 0.00000 3
B22 790 12.0 0.34793 0.00000 3
B23 806 11.0 0.36328 0.00000 3
B24 820 12.0 0.35926 0.00000 3
B25 836 9.0 0.38408 0.00000 3
B26 850 11.0 0.38707 0.00000 3
B27 866 11.0 0.38515 0.00000 3
B28 880 12.0 0.32043 0.00000 4
B29 896 11.0 0.28990 0.00000 5
B30 910 11.0 0.30713 0.00000 5
B31 926 14.0 0.34246 0.00000 6
B32 940 13.0 0.22125 0.00000 8
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Table A2. Comparison between this study and existing Chl-a concentration inversion algorithms and commonly used
ocean color satellite images. GOCI represents Geostationary Ocean Color Imager; OLCI describes Ocean and Land Colour
Instrument; SCI stands for Synthetic Chlorophyll Index algorithm.

Model Model Form Study Region Image Applied RMSE (µg/L) MAPE

Gurlin et al. [19]

Rrs(748)/Rrs(667) Fremont Lakes MODIS 6.10 27.6%

Rrs(709)/Rrs(665) Fremont Lakes MERIS 3.60 11.6%

(Rrs
−1(665)-Rrs

−1(709))
Rrs(754)

Fremont Lakes MERIS 3.30 18.0%

Bi et al. [47]

FLH Erhai Lake OLCI 1.92 13.5%

(Rrs
−1(665)-Rrs

−1(709))
Rrs(754)

Erhai Lake OLCI 1.61 12.4%

Yang et al. [48] (Rrs
−1(665)-Rrs

−1(709))
(Rrs

−1(754)-Rrs
−1(709))

Kasumigaura Lake MERIS 8.68 12.3%

Guo et al. [49]

(Rrs
−1(680)-Rrs

−1(660))
Rrs(745)

Taihu Lake GOCI 16.31 32.5%

(Rrs
−1(681)-Rrs

−1(709))
Rrs(754)

Taihu Lake GOCI 15.17 26.5%

Härmä et al. [50] (Rrs(531)-Rrs(748))
(Rrs(551)-Rrs(748)) Finland Lake MODIS 11.60 77.0%

Du et al. [51] (Rrs
−1(691)-Rrs

−1(722))
Rrs(854)

Taihu Lake Hyperion 13.93 23.7%

Lyu et al. [52]

SCI Taihu Lake MERIS 4.89 38.1%

(Rrs
−1(665)-Rrs

−1(709))
Rrs(779)

Taihu Lake MERIS 15.67 24.5%

(Rrs
−1(665)-Rrs

−1(709))
(Rrs

−1(865)-Rrs
−1(709))

Taihu Lake MERIS 7.88 31.3%

This study (Rrs
−1(686)-Rrs

−1(716))
Rrs(746)

Dianchi Lake OHS 15.55 16.31%

Table A3. Comparison of Chl-a concentration estimation results of this study and existing algorithms applied to Dianchi
Lake. Bi is the band of the OHS image corresponding to the wavelength in the citation. SCI stands for Synthetic Chlorophyll
Index algorithm.

Model Variable (x) Model Form R2 RMSE (µg/L) MAPE

Gurlin et al. [19]
B19/B14 Chl-a = 110.03x − 0.4494 0.691 21.10 22.41%
B16/B14 Chl-a = 54.529x − 7.5799 0.452 20.79 23.01%

(1/B14-1/B16)B20 Chla = 142.93x + 40.651 0.712 21.64 23.35%

Bi et al. [47]
FLH Chl-a = −11510x + 75.573 0.636 22.40 21.59%

(1/B14-1/B16)B20 Chl-a = 142.93x + 40.651 0.712 20.68 23.29%

Yang et al. [48] (1/B14-1/B16)(1/B20-1/B16) Chl-a = 8*10−6x + 89.593 0.000 24.43 28.15%

Guo et al. [49]
(1/B15-1/B13)B19 Chl-a = 273.31x + 52.424 0.515 21.32 21.69%
(1/B15-1/B16)B20 Chl-a = 178.45x + 42.631 0.738 21.23 21.87%

Härmä et al. [50] (B5-B19)(B6-B19) Chl-a = −17937x + 94.359 0.017 24.62 28.46%

Du et al. [51] (1/B15-1/B17)B26 Chl-a = 190.48x + 65.261 0.602 20.26 20.16%

Lyu et al. [52]
SCI Chl-a = 4841.8x + 57.761 0.120 21.64 24.71%

(1/B14-1/B16)B21 Chl-a = 143.67x + 39.666 0.718 20.55 22.81%
(1/B14-1/B16)(1/B27-1/B16) Chl-a = −0.0002x + 90.107 0.003 24.45 28.00%

This study (1/B15-1/B17)B19 Chl-a = 137.35x + 59.741 0.809 15.55 16.31%
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Figure A1. Comparison of existing Chl-a concentration retrieval algorithms based on measured data. (a–n) are the models 
reconstructed by applying the algorithms in Table A2 to Dianchi Lake through calibration parameters. 
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