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Abstract: With the development of remote sensing technology, the simultaneous acquisition of 3D
point cloud and color information has become the constant goal for scientific research and commercial
applications in this field. However, since radar echo data in practice refer to the value of the spectral
channel and its corresponding energy, it is still impossible to obtain accurate tristimulus values of the
point through color integral calculation after traditional normalization and multispectral correction.
Furthermore, the reflectance of the target, the laser transmission power and other factors lead to the
problems of no echo energy or weak echo energy in some bands of the visible spectrum, which further
leads to large chromatic difference compared to the color calculated from the spectral reflectance of
standard color card. In response to these problems, the hyperbolic tangent spectrum correction model
with parameters is proposed for the spectrum correction of the acquired hyperspectral LiDAR in the
470–700 nm band. In addition, the improved gradient boosting decision tree sequence prediction
algorithm is proposed for the reconstruction of missing spectrum in the 400–470 nm band where the
echo energy is weak and missing. Experimental results show that there is relatively small chromatic
difference between the obtained spectral information after correction and reconstruction and the
spectrum of standard color card, achieving the purpose of true color reconstruction.

Keywords: true-color reconstruction; multispectral correction; spectrum reconstruction; hyperspec-
tral LiDAR

1. Introduction

With the emergence of projects such as “Realistic 3D” and “Smart City”, there are
increasingly urgent needs for target true color reproduction in the fields of urban planning,
landform restoration, and scene reconstruction [1–7]. In order to reproduce the 3D urban
real scene or reflect the real geographic pattern and information, the structure and color
of the target or landform must be accurately restored [8]. In the visible range, spectral
reflectance is the fingerprint of target surface color, which characterizes the ratio of the
radiant exitance on object surface to the radiant incidence at each waveband, and reflects
the object’s absorption and reflection characteristics of radiant energy [9–11]. According
to the colorimetry principle, the tristimulus values {X, Y, Z} [12] of the object color are
obtained by integrating the relative spectral power distribution of illuminant l(λ), spectra of
object surface r(λ), standard colorimetric observer matching functions {x̄(λ), ȳ(λ), z̄(λ)},
adjustment factor K, and wavelength sampling interval d(λ), as shown in Equation (1).
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X = K
∫

l(λ)r(λ)x̄(λ)dλ;

Y = K
∫

l(λ)r(λ)ȳ(λ)dλ;

Z = K
∫

l(λ)r(λ)z̄(λ)dλ;

(1)

As shown in Figure 1a, the new hyperspectral LiDAR [13–19] not only retains the
three-dimensional space detection capability of laser radar, but also increases the number
of laser detection bands. By combining the advantages of active detection technology and
passive detection technology, the integrated acquisition of spatial 3D spectral information
on the same device is realized, which increases the possibility of conducting 3D reconstruc-
tion and true-color restoration simultaneously [20]. However, since the laser radar echo
data are the energy values corresponding to the spectral channel, there is relatively large
spectral difference between the spectral response function calculated by the traditional
normalization method and the spectrum correction with the standard spectrum provided
by the X-rite ColorChecker Classic in practical applications, which leads to the colour
difference in the color reconstruction. Moreover, the distribution of laser transmission
power also causes some problems. As shown in Figure 1b, within the visible light range
of 400–700 nm, there is no echo energy when the band is 400–430 nm, and the echo en-
ergy is weak when the band is 430–470 nm, which leads to the problem that the target
cannot be correctly reconstructed with true color. Therefore, conduct normalization and
spectrum correction on laser radar echo energy data, and perform spectrum reconstruction
on the missing spectral information in the band of 400–470 nm have become the key to the
true-color restoration of the target.

(a) Multispectral LiDAR (b) Laser radar divergence power and band

Figure 1. Laser radar and power diagram.

In terms of true-color reconstruction of hyperspectral LiDAR, Wang et al. [21] and
Chen et al. [22] found that the most suitable wavelength combinations for RGB true-color
reconstruction are 466 nm, 546 nm and 626 nm through the analysis of the true-color
synthesis results of different wavelengths. Therefore, they selected three wide bands near
the corresponding bands, especially the relatively wide blue band, to increase the energy
of the RGB channel and obtain a higher signal-to-noise ratio. This method can achieve
the color reconstruction of the target to a certain extent. On the other hand, due to the
metamerism problem and the failure to consider the standard illuminant and standard
observer, the color obtained by reconstruction will have color difference after changing
the illuminant.

Normalization and spectrum correction, as the key in hyperspectral laser radar energy
data processing, play a decisive role in the accuracy of the subsequent color integral calcu-
lation results of multispectral data. Traditional spectrum correction algorithms include first
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derivative spectrophotometry, centroid algorithm local similarity matching algorithm and
various improvement methods [23]. Among them, first derivative spectrophotometry [24]
and local similarity matching algorithm [25] have the advantages of simple operation and
high real-time, as well as the disadvantage of being easily affected by noise. The centroid
algorithm [26,27] is sensitive to the spectrum waveform asymmetry, which will cause the
corrected multispectral image to generate random direction deviation. After simulation
correction of radar echo energy through the above algorithms, the color obtained by spec-
tral response curve integral calculation and standard color block calculation still has great
color difference, which can cause the traditional spectrum correction method to fail to
perform true-color reconstruction on the target.

Regarding the reconstruction of missing spectrum, the missing band fixed by laser
radar is between 400–470 nm, and the information in the 470–700 nm band is relatively
intact. At the same time, there is a strong correlation between the multispectral spec-
trum segments. Therefore, it is feasible to restore the missing 400–470 nm band by using
470–700 nm. Adam et al. [28] sampled the low-quality spectrum segments in multispectral
data and the adjacent high-quality spectrum segments respectively, and rearranged them
to form a 3D data cube. Then, wavelet decomposition and sparse transformation were
used to restore the data cube. Zhong et al. [29] firstly established the conditional random
fields model between multiple spectrums to select the unusable part of the spectrum and
the spectrum segment with high signal-to-noise ratio. Then, the texture and statistical
information related to the spectrum segment with high signal-to-noise ratio was used to
restore the continuous missing spectrum segment. Yin et al. [30] believed that the spectral
information of multispectral images was highly redundant. They discussed the sparsity
of the spectrum by setting up the general Gaussian model. In addition, they conducted
the spectrum-dimensional reconstruction based on the compressed sensing theory, which
was superior to the linear interpolation in the recovery of missing spectrum. Liu et al. [31]
established a bi-inverted Gaussian fitting model. As atmospheric water vapor absorbed the
reconstruction vegetation and resulted in the unusable spectrum, the diagnostic spectrum
features of vegetation absorption peak were extracted for the inversion of water content.
It should be noted that the above model-based reconstruction methods for missing spec-
trum only have good effects for plants within certain wavelength ranges or specific types of
geographic objects, and their versatility in true-color reconstruction is significantly limited.

In order to solve the problem of the large spectral difference between the normalized
echo energy data based on traditional methods and the standard spectrum provided by X-
rite ColorChecker Classic, this article proposes a Hyperbolic Tangent Spectrum Correction
Model with Parameters. The echo energy processed by this model has a relatively small
spectral difference compared with the X-rite Eye One Pro spectrophotometer at 10 nm
intervals from 400 to 700 nm.

In order to solve the problem of serious color difference in true-color restoration due to
the missing of 400–470 nm band spectrum, a series forecasting algorithm based on gradient
boosting decision tree is proposed in this article. The spectrum data provided by X-rite
ColorChecker Classic is used as the radar control experiment data, and the multispectral
data set [32] provided by ICVL (interdisciplinary computational vision laboratory) is used
as the prior data and test data. Through cyclic learning, the spectrum data are divided
into 31 parts, and each feature is modeled separately. Through the locally weighted
linear regression algorithm, the missing 400–470 nm band information is cyclically and
accurately reconstructed, so as to solve the problem of great color difference in the true-color
reconstruction result.

Through the spectral reconstruction by hyperbolic tangent normalization and cor-
rection model with parameters and improved gradient boosting decision tree sequence
prediction algorithm, the relative energy data and coordinate point cloud data of the radar
echo can be directly processed into the color information and position information of each
point, thus achieving the integrated representation of echo energy-spectrum-color.
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2. HSL System Description

All spatial point cloud and echo energy data in this article were obtained through
the all-day active hyperspectral LiDAR prototype device. The laboratory HSL is mainly
composed of five parts, including supercontinuum laser, optical receiver, light-splitting,
signal reception and ranging components. First, high-nonlinearity photonic crystal fibers
are used to generate and emit wide-band white lasers. Among them, the output power of
the supercontinuum laser source is greater than 6 w, with the repetition rate of 0.1–1 mhz
and the pulse duration of 4 ns. The spectral range of the laser is 400–2400 nm. In order
to consider the data quality of backscattered signals, a high-precision two-dimensional
scanning platform is adopted, and it is equipped with off-axis parabolic mirror of high
reflectivity and Schmidt-Cassegrain telescope with focal length and diameter of 400 mm
and 200 mm. The collected signal is guided by fiber to a grating spectrometer. In order to
accurately project the spectral signals onto the detectors, we adopted a 150 g/mm blazed
grating with high spectroscopic efficiency. The 32-element photosensitive photomultiplier
tube array with a wavelength of 300–920 nm is selected as the received sensor. The output
signal of the laser source and the backscattered signals of the target will be recorded into
the APD detector respectively. By comparing the time interval between output signals
and backscattered signals, time-of-flight can be used to calculate distance. The laser
radar samples the multispectral data and point cloud data for each point on the X-rite
ColorChecker Classic, as shown in Figure 2. The standard color card used was X-rite
ColorChecker Classic, and the sampling method was the single point test of the color
sample of color card. The final value was the average of three samplings at a single point.
The collected standard diffuse reflection whiteboard channel energy values were used as
the peak value of the traditional normalization method.

(a) Laser (b) Simple scan (c) X-rite ColorChecker Classic

Figure 2. hyperspectral LiDAR data collection.

3. Hyperbolic Tangent Normalization and Correction Model with Parameters

After sampling the energy of X-rite ColorChecker Classic hyperspectral LiDAR,
the corresponding energy distribution of each band is shown in Figure 3. By analyz-
ing the corresponding relationship between energy and spectrum, the following findings
are obtained. When the spectral band is between 400 nm and 430 nm, the echo energy
obtained by the hyperspectral LiDAR is almost 0. As a result, the spectral information
of this band is completely lost. When the spectral band is between 430–470 nm, the echo
energy obtained by hyperspectral LiDAR is less than 5000. Therefore, it is a weaker echo
energy range. When the spectral band is between 470–700 nm, the hyperspectral LiDAR
has relatively normal echo energy data. Within the visible light range of 400–700 nm,
the energy curve also corresponds to the divergence power of the laser radar, as shown in
Figure 1b.
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Figure 3. Laser radar channel and energy diagram.

Although the echo energy in the 470–700 nm range is normal, by measuring the
standard diffuse reflection whiteboard, the spectral response curve of the normalized echo
energy is significantly different from the standard spectral response curve provided by the
X-rite ColorChecker Classic color card, as shown in Figure 4.

(a) (b)

Figure 4. Normalized spectral response curve by whiteboard. (a) Spectral response curve provided
by X-rite ColorChecker Classic color card, (b) Normalized spectral response curve measured by
hyperspectral LiDAR.

The expected spectral response curve has the higher sensitivity and change rate
when the echo energy is low, as well as the lower sensitivity and change rate when the
reflected energy approaches the maximum value. In order to get the accurate spectrum
normalization value, this article proposes a new normalization model. The min-max
normalization of the energy function in the 470–700 nm band is shown in Equation (2):

f (x) =
x−MIN

MAX−MIN
(2)

where, MIN is the minimum value among all the energy values collected in the 470–700 nm
band, and MAX is the maximum value. By comparing the spectral response curves,
we found that the two curves have the same trend but have larger fluctuations. The function
fitting method can solve this problem well. When it is close to 1, it can be flattened,
and the other parts retain their original sensitivity. Hyperbolic tangent function has this
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property. As shown in Equation (3), the hyperbolic tangent spectrum correction model
with parameters is used to correct the normalization value in the 470–700 nm band.

f (x, b) =
exp

(
b · x2)− exp

(
−b · x2)

exp(b · x2) + exp(−b · x2)
(3)

In the calibration process, the mean square difference between the target spectrum and
the source spectrum information ∃b is calculated. By making f (x, b) = 0 and substituting
the parameter b into the hyperbolic tangent calibration model, the normalized spectral
response curve of 470–700 nm band is obtained.

4. Improved Spectrum Reconstruction of Gradient Boosting Decision Tree
Series Forecasting

In essence, the gradient boosting decision tree is a kind of integrated learning method
based on tree structure. The basic tree structure is the classification and regression tree,
which is a locally weighted linear regression algorithm that divides the features into
multiple parts and models each feature separately. Different from the traditional methods,
the regression algorithm based on the tree structure is a parameter-based learning algorithm.
Through the data training of model, the parameter value of each tree node is determined,
without the need of updating in the subsequent prediction process.

Currently, Gradient Boosting Decision Trees [33–35] has many improved algorithms,
but they are all for classification tasks. Zhang J., et al. [36] proposed Fisher score and Gradient
Boosting Decision Trees algorithm, this paper combines Fisher algorithm with features trained
in the gradient boosting decision tree for cancer risk identification. Zhang W., et al. [37] This
paper is also an improved Gradient Boosting Decision Trees for the prediction model for air
conditioning system loads. Chen Yiyi, et al. [38] The paper is a classification of data related
to psychology by using gradient boosting decision trees. All of the above are improvements
to classification problems using gradient boosting decision trees, which are not suitable for
trend prediction tasks.

Firstly, the gradient boosting decision tree has been rewritten from the classification
method to the sequence prediction algorithm. Therefore, the output value is no longer
categories, but sequence prediction results. Secondly, if the correction function is not
added, the subsequent value will become larger and larger, thus affecting the accuracy of
prediction result.

It is assumed that the model is represented as F(x; P), where P represents the pa-
rameter set, P = {p0, p1, p2 · · · pn}, and F(x; P) represents the prediction function x with
P as the parameter. As each feature is modelled separately, the model is composed of
multiple sub models, where β represents the weight of each sub model, and α represents
the parameters in each sub model. Optimizing F(x; P) an be abstracted to optimizing
{β, α}, i.e., optimizing parameter P. Considering that the optimized data set is normalized
based on Equation (3), the expression for x in the form of Equation (3) is used to achieve
consistency between the optimized result and the expected result.

F(x; P) = F

(
exp

(
b · x2)− exp

(
−b · x2)

exp(b · x2) + exp(−b · x2)
; {βm, αm}M

1

)

=
M

∑
m=1

βmh

(
exp

(
b · x2)− exp

(
−b · x2)

exp(b · x2) + exp(−b · x2)
; αm

) (4)

Equation (4) performs a hyperbolic optimization of the expression for x. As it ap-
proaches 1, the model has less variation. At it is less than 1, the model can maintain its
original sensitivity. The parameter b is derived by Equation (3). The parameter {β, α} in
the model is represented by Equation (5):
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{βm, αm}M
1 = arg min

N

∑
i=1

L

(
yi,

M

∑
m=1

βmh(xi; αm)

)
(5)

The purpose of this equation is to use N sample points (xi, yi) to calculate the loss
function under the model F(x; β, α). The purpose of optimizing {β, α} is to minimize the
value of the loss function. The model Fm(x) is optimized in the direction where the loss
function of the previously obtained model Fm−1(x) declines fastest. Each point xi yields
−−−→
gm(xi). Equation (6) is used to derive the complete direction of gradient descent.

−→gm = {−gm(xi)}N
1 (6)

In order for Fm(x) to be in the direction of
−−−→
gm(xi), least-square method is used to

optimize the Equation (5) to get Equation (7):

αm = arg min
N

∑
i=1

(−gm(xi)− βh(x; α))2 (7)

On the basis of the derived αm, βm can be calculated, as shown in Equation (8):

βm = arg min
N

∑
i=1

L(yi, Fm−1(xi) + βh(xi; αm)) (8)

The final combined model equation is shown in Equation (9):

Fm(x) = Fm−1

(
exp

(
b · x2)− exp

(
−b · x2)

exp(b · x2) + exp(−b · x2)

)
+ βmh

(
exp

(
b · x2)− exp

(
−b · x2)

exp(b · x2) + exp(−b · x2)
; αm

)
(9)

where, the value of parameter b is the parameter value calculated by the normalization
equation. The overall algorithm flow chart is shown in Figure 5, where the parameter P is
the number of channels to be predicted, and M is the number of features.

Figure 5. Algorithm flow chart.
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In addition, there are many trend prediction algorithms, such as seq2seq and Random-
Forest. However, Seq2Seq and RandomForest are suitable for NLP tasks such as Machine
Translation and Semantic Recognition.

5. Results and Discussion
5.1. Results

In order to enable the monitor to display the color situation correctly, the angle 10◦

of CIE1964 was selected as the standard observer parameter, and the standard illuminant
information was used as the D65 illuminant parameter. The tristimulus values calculated
by the color integral equation were converted to the sRGB color gamut.

The spectral information provided by X-rite ColorChecker Classic was shown in
Figure 6a. The result normalized by the standard diffuse reflection whiteboard was used to
calculate the colors as shown in Figure 6b. The whiteboard with standard normalization is
corrected by first derivative spectrophotometry, local similarity matching algorithm and
centroid algorithm. The final calculated colors were shown in Figure 6d–f. As indicated,
this type of correction algorithm was not applicable to spectrum color restoration. Through
the hyperbolic tangent spectrum normalization and correction model with parameters
proposed in this article, the results calculated by color integral are shown in Figure 6c.

(a) (b) (c)

(d) (e) (f)

Figure 6. Color block diagram by color integral after normalization and correction. (a) X-rite
ColorChecker Classic, (b) Standard diffuse reflection whiteboard results from normalization, (c) Hy-
perbolic tangent spectrum normalization and correction model with parameters, (d) First derivative
spectrophotometry, (e) Local similarity matching algorithm, (f) Centroid algorithm.

According to the color calculation results, first derivative spectrophotometry, local
similarity matching algorithm and centroid algorithm were not suitable for true-color
reconstruction. The traditional normalization result based on diffuse reflection whiteboard
and the spectral difference between the normalization optimization algorithm proposed in
this article as well as the standard spectrum of X-rite ColorChecker Classic were shown in
Figure 7, the calculation method is shown in Equation (10).

RMSE =

√
1
n

n

∑
i=1

(s(λi)− ŝ(λi))
2 (10)

Among them, the abscissa was the color number, and the ordinate was the spectral
difference value. By comparison, it could be found that the spectrum after normalization
and correction by the algorithm proposed in this article was closer to the standard spectrum.
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Figure 7. Spectral difference diagram between the traditional method and the algorithm proposed in
this article with the standard spectrum.

According to the color calculation results in Figure 6, it can be found that there was
obvious colour difference between the spectral information missing the 400–470 nm channel
and the X-rite ColorChecker Classic. In this article, the processed ICVL multispectral data
set was used as the priori data set. Since 12 multispectral natural images with resolution
of were composed, there were a total of 21,715,200 spectral information in 400–700 nm
band in the data set. Among them, the first 80% of the spectral information of each image
was used as the priori data, and the last 20% of the spectrum data was used as the test
data. We did a five-fold cross-validation [39] on the training set and test set. The two
indicators for comparison are ∆E2000, which mainly measures the color difference between
the reconstructed color and the original color. The smaller the value, the more similar the
two colors. The reconstructed part and the original part are calculated by RMSE, which
measures the similarity between the reconstructed spectrum and the original spectrum.
The smaller the value, the more similar the two spectra. The results are shown in Table 1.

Table 1. 5-fold cross-validation.

Num ∆E2000

RMSE %
Only the Reconstruction

Part Is Calculated

1 6.148465671 1.76555
2 6.061711912 1.591006
3 6.555953527 2.924124
4 6.503468054 2.899935
5 6.331956111 2.120579

Based on the calculated prior data parameters, the improved gradient boosting de-
cision tree series forecasting algorithm was applied to reconstruct the missing channel
between 400–470 nm, and the results were shown in Figure 8b. The bi-inverted Gaussian
model is applied to reconstruct the missing part of spectrum, and the color calculation
result was shown in Figure 8d. The color calculation results of the normalized spectrum
based on the traditional standard diffuse reflection whiteboard was shown in Figure 8c.
The color calculation results based on the Linear Interpolation was shown in Figure 8e.
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(a) (b)

(c) (d) (e)

Figure 8. Color block diagram of spectral response function through color integral. (a) X-rite
ColorChecker Classic, (b) Algorithm in this article, (c) Diffuse reflection whiteboard, (d) Bi-inverted
Gaussian model, (e) Linear Interpolation.

Figure 9 showed the color difference between the reconstruction results based on the
above three methods and the X-rite ColorChecker Classic. Among them, the abscissa was
the color number, and the ordinate was the color difference value [40].

Figure 9. Color difference diagram between algorithm in this article, bi-inverted Gaussian model,
Linear Interpolation, Ours, and Traditional method with standard spectrum.

According to the color difference value, there was smaller color difference between
color information calculated by using the energy obtained by laser radar and X-rite Col-
orChecker Classic.

At the same time, a simulation experiment based on Munsell 1269 color chip was
carried out to verify the adaptability of the algorithm in this paper. According to the spectral
reflectance of each color published by Munsell, the color calculated by the color integral
equation was converted into the CIE Lab Color Space. Figure 10a was obtained, where
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value a was the abscissa (X-axis) and value b was the ordinate (Y-axis). After removing
the 400–470nm band information, the calculated result was shown in Figure 10b. Through
improved spectrum reconstruction of gradient boosting decision tree series forecasting,
the 400–470 nm band information was complemented, and the calculated results were
shown in Figure 10c. The results obtained by complementing the spectrum by the bi-
inverted Gaussian model and linear Interpolation were shown in Figure 10d,e respectively.

(a) (b)

(c) (d) (e)

Figure 10. Munsell 1269 color chip simulation experiment. (a) Result of the complete spectrum, (b)
Result of missing 400–470 nm band information, (c) Result of spectral recovery using the method
proposed in this article, (d) Result based on bi-inverted Gaussian model, (e) Result based on linear
interpolation algorithm.

The color difference relationship between the color calculated by the recovered spec-
trum based on the above 4 methods and the color calculated by the complete spectrum was
calculated, as shown in Figure 11.

As can be seen from the line chart Figure 11, the average color difference between
24 colors and 1269 colors was calculated as shown in Table 2 for the color blocks missing
the 400–470 nm band by the method proposed in this article.

As can be seen from Table 2, compared with B the bi-inverted Gaussian model and
the linear interpolation algorithm, the color results calculated by the method proposed in
this paper had the advantage of smaller color difference.

For both data results of Mean and Max, the performance of the improved algorithm
will be significantly enhanced than that of the original method. In the analysis of Figure 11,
there was relatively large color difference in individual colors. The color difference heat
map Figure 12 involved the missing spectra in the 400–470 nm band Figure 12a, the restored
spectra based on the algorithm Figure 12b in this paper, and the complete spectra. Since
the missing 400–470 nm band belongs to the blue band, a serious color cast appeared in the
blue color zone. The algorithm in this paper had a relatively large color difference between
the cyan area and the central area, which caused large fluctuations in these parts of the
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spectrum, which in turn led to the deviations in the prediction results. This could be used
as the optimization direction for follow-up research.

Figure 11. Color difference line chart of Munsell 1269 color chip.

Table 2. Color difference between X-rite ColorChecker Classic 24 color chip and Munsell
1269 color chip.

Num Algorithm Result Color Difference of 1269
Munsell Color Chip

X-Rite Color
Checker

1 Missing Mean 26.42 26.009
400–700 nm Max 55.417 47.687

2 Algorithm Mean 4.67 6.484
in this paper Max 13.22472 10.514766

3 Bi-inverted Mean 11.999 16.034
Gaussian model Max 26.714542 22.414988

4 Linear Mean 11.052 13.28
Interpolation Max 29.2666469 21.1400417

5 Gradient Boosting Mean 7.771 8.954
Decision Tree Max 17.3334863 13.59832

In order to verify whether it can accurately restore the color information of geographic
objects in the actual application, experiments on color card with 17 colors and real object
are carried out, as shown in Figure 13.

By scanning the laser radar array of the color card with 17 colors, the spatial infor-
mation of the color card with 17 colors and the energy information corresponding to
the channel are obtained. The collected energy information is normalized and corrected
through the hyperbolic tangent spectrum correction model with parameters. Then, spectral
reconstruction is performed on the missing 400–470 nm bands based on the parameters
calculated above. Finally, the spectrum integral of each reconstructed point is used to
calculate the corresponding color information, as shown in Figure 14.
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(a) (b)

Figure 12. Normalized spectral response curve by whiteboard. (a) Result of missing 400–470 nm
band information, (b) Result of spectral recovery using the method proposed in this article.

(a) Color card with 17 colors (b) Real object

Figure 13. color card and real object.

Figure 14. Result diagram of reconstruction on color card with 17 colors.

Based on the same approach, the result of real object data is shown in Figure 15.
The experimental results show that the high spectrum correction algorithm and the missing
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reconstruction algorithm proposed in this article can also restore the target color accurately
in actual application.

Figure 15 is obtained by scanning the HSL system array. A total of 2800 points are
obtained. In addition to the x.y.z coordinate data, there are 27 channels of data from
440–700 nm at 10 nm intervals.

Figure 15. Result diagram of reconstruction on real object.

Through the processing of the spectral reconstruction by hyperbolic tangent normal-
ization and correction model with parameters, the reconstruction of the missing part by the
improved gradient boosting decision tree sequence prediction algorithm, and the combina-
tion of the color value of the point calculated based on the color integral formula and the
x.y.z coordinate data, the final result figure is obtained. In addition, the problem of mixed
pixels also led to inaccurate colors. As shown in Figure 12, the red part of the Rubik’s Cube
appeared muddy. This issue was also worthy of in-depth study.

5.2. Discussion

The above experiment did not consider the negative impact of atmospheric effects
on the high-precision acquisition of backscattered intensity. Various conditions such as
atmospheric components will make the backscattered laser energy suffer a certain degree
of attenuation. For some satellite LiDAR systems, atmospheric effects may cause varying
degrees of interference to the reconstructed colors, which further causes the reconstruction
accuracy to fail to reach the laboratory effect.

Similarly, good hardware performance of system configuration is a prerequisite for
true color reconstruction. Continuous supercontinuum laser source device is needed,
with spectral output range that can cover most of the visible range and the acquired signal
that has a higher signal-to-noise ratio (SNR). In order to the improve photoelectric transfor-
mation efficiency, photoelectric detectors also need to exhibit high quantum efficiency.

This research provides a reconstruction method that combines hyperspectral LiDAR
echo energy and true-color. In the laboratory scenario, this method can more accurately
reconstruct the true colors of color cards and objects in the absence of part of the visible
light spectrum. Moreover, this method can also be applied to hyperspectral imaging to
optimize the color reconstruction results.

6. Conclusions

This article proposes the hyperbolic tangent spectrum normalization and correction
model and the improved spectrum reconstruction algorithm with gradient boosting de-
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cision tree sequence prediction, with the aim of directly converting radar echo energy
data into image color information. The point cloud information obtained by hyperspectral
LiDAR and the energy information of corresponding channel are used as the experimental
data set. The results show that the color integral equation based on the normalization
and correction function and the missing part spectrum reconstruction provided in this
article can accurately achieve the true color reconstruction. By comparing various spectrum
correction algorithms based on 24-color and 1269-color cards, it is found that the traditional
spectrum correction algorithm is not applicable to the true color reconstruction. Compared
with the traditional normalization method with standard diffuse reflection whiteboard,
the spectrum corrected by the algorithm proposed in this article is closer to that of the stan-
dard color card. The improved spectrum reconstruction algorithm with gradient boosting
decision tree sequence prediction proposed in this article can accurately reconstruct the
missing multispectral band information between 400–470 nm. In addition, experiments
suggest that it can also achieve good effects in practical application of hyperspectral LiDAR.
This article demonstrates the possibility of true color reconstruction through hyperspectral
LiDAR echo energy data, which is of vital significance and value for multispectral imaging
and ecological monitoring.

Author Contributions: Methodology, Visualization and Writing—original draft, T.W.; Resources,
X.W. and S.S.; Data curation, B.C.; funding acquisition, X.W. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

GitHub: https://github.com/wangtengfeng0809/True-color-Reconstruction-Based-on-Hyperspectral-
LiDAR-Echo-Energy (accessed on 1 May 2021).

References
1. Beger, R.; Gedrange, C.; Hecht, R.; Neubert, M. Data fusion of extremely high resolution aerial imagery and LiDAR data for

automated railroad centre line reconstruction. ISPRS J. Photogramm. Remote Sens. 2011, 66, S40–S51. [CrossRef]
2. Debes, C.; Merentitis, A.; Heremans, R.; Hahn, J.; Frangiadakis, N.; van Kasteren, T.; Liao, W.; Bellens, R.; Pižurica, A.;

Gautama, S.; et al. Hyperspectral and LiDAR data fusion: Outcome of the 2013 GRSS data fusion contest. IEEE J. Sel. Top. Appl.
Earth Obs. Remote Sens. 2014, 7, 2405–2418. [CrossRef]

3. Khodadadzadeh, M.; Li, J.; Prasad, S.; Plaza, A. Fusion of hyperspectral and LiDAR remote sensing data using multiple feature
learning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2971–2983. [CrossRef]

4. Dong, J.; Zhuang, D.; Huang, Y.; Fu, J. Advances in multi-sensor data fusion: Algorithms and applications. Sensors 2009,
9, 7771–7784. [CrossRef] [PubMed]

5. Alonzo, M.; Bookhagen, B.; Roberts, D.A. Urban tree species mapping using hyperspectral and lidar data fusion.
Remote Sens. Environ. 2014, 148, 70–83. [CrossRef]

6. Dalponte, M.; Bruzzone, L.; Gianelle, D. Tree species classification in the Southern Alps based on the fusion of very high
geometrical resolution multispectral/hyperspectral images and LiDAR data. Remote Sens. Environ. 2012, 123, 258–270. [CrossRef]

7. Sankey, T.; Donager, J.; McVay, J.; Sankey, J.B. UAV lidar and hyperspectral fusion for forest monitoring in the southwestern USA.
Remote Sens. Environ. 2017, 195, 30–43. [CrossRef]

8. Gong, W.; Sun, J.; Shi, S.; Yang, J.; Du, L.; Zhu, B.; Song, S. Investigating the potential of using the spatial and spectral information
of multispectral LiDAR for object classification. Sensors 2015, 15, 21989–22002. [CrossRef]

9. Liu, Q.; Liu, Y.; Pointer, M.R.; Huang, Z.; Wu, X.; Chen, Z.; Luo, M.R. Color discrimination metric based on the neutrality of
lighting and hue transposition quantification. Opt. Lett. 2020, 45, 6062–6065. [CrossRef]

10. Liang, J.; Wan, X. Optimized method for spectral reflectance reconstruction from camera responses. Opt. Express 2017,
25, 28273–28287. [CrossRef]

11. Technical Committee International Commission on Illumination. Practical Methods for the Measurement of Reflectance and
Transmittance; Commission Internationale de l’Eclairage: Vienna, Austria, 1998.

https://github.com/wangtengfeng0809/True-color-Reconstruction-Based-on-Hyperspectral-LiDAR-Echo-Energy
https://github.com/wangtengfeng0809/True-color-Reconstruction-Based-on-Hyperspectral-LiDAR-Echo-Energy
http://doi.org/10.1016/j.isprsjprs.2011.09.012
http://dx.doi.org/10.1109/JSTARS.2014.2305441
http://dx.doi.org/10.1109/JSTARS.2015.2432037
http://dx.doi.org/10.3390/s91007771
http://www.ncbi.nlm.nih.gov/pubmed/22408479
http://dx.doi.org/10.1016/j.rse.2014.03.018
http://dx.doi.org/10.1016/j.rse.2012.03.013
http://dx.doi.org/10.1016/j.rse.2017.04.007
http://dx.doi.org/10.3390/s150921989
http://dx.doi.org/10.1364/OL.400422
http://dx.doi.org/10.1364/OE.25.028273


Remote Sens. 2021, 13, 2854 16 of 16

12. Liang, J.; Xiao, K.; Pointer, M.R.; Wan, X.; Li, C. Spectra estimation from raw camera responses based on adaptive local-weighted
linear regression. Opt. Express 2019, 27, 5165–5180. [CrossRef] [PubMed]

13. Gong, W.; Song, S.; Zhu, B.; Li, F.; Cheng, X. Multi-wavelength canopy LiDAR for remote sensing of vegetation: Design and
system performance. ISPRS J. Photogramm. Remote Sens. 2012, 69, 1–9.

14. Woodhouse, I.H.; Nichol, C.; Sinclair, P.; Jack, J.; Morsdorf, F.; Malthus, T.J.; Patenaude, G. A multispectral canopy LiDAR
demonstrator project. IEEE Geosci. Remote Sens. Lett. 2011, 8, 839–843. [CrossRef]

15. Gaulton, R.; Danson, F.; Ramirez, F.; Gunawan, O. The potential of dual-wavelength laser scanning for estimating vegetation
moisture content. Remote Sens. Environ. 2013, 132, 32–39. [CrossRef]

16. Song S.; Wang B.; Gong, W.; Chen Z.; Lin X.; Sun J.; Shi S. A new waveform decomposition method for multispectral LiDAR.
ISPRS J. Photogramm. Remote Sens. 2019, 3, 40–49. [CrossRef]

17. Sun, J.; Shi, S.; Yang, J.; Chen, B.; Gong, W.; Du, L.; Mao, F.; Song, S. Estimating leaf chlorophyll status using hyperspectral lidar
measurements by PROSPECT model inversion. Remote Sens. Environ. 2018, 1, 1–7. [CrossRef]

18. Zhao, X.; Shi, S.; Yang, J.; Gong, W.; Sun, J.; Chen, B.; Guo, K.; Chen, B. Active 3D imaging of vegetation based on multi-wavelength
fluorescence LiDAR. Sensors 2020, 3, 935. [CrossRef] [PubMed]

19. Chen, B.; Shi, S.; Sun, J. Using HSI Color Space to Improve the Multispectral Lidar Classification Error Caused by Measurement
Geometry. IEEE Trans. Geosci. Remote Sens. 2020, 99, 1–13. [CrossRef]

20. Wang, J.; Li, C. Development and prospect of hyperspectral imager and its application. Chin. J. Space Sci. 2021, 41, 22–33.
(In Chinese)

21. Wang, B.; Song, S.; Gong, W.; Cao, X.; He, D.; Chen, Z.; Lin, X.; Li, F.; Sun, J. Color Restoration for Full-Waveform Multispectral
LiDAR Data. Remote Sens. 2020, 12, 593–611. [CrossRef]

22. Chen, B.; Shi, S.; Gong, W.; Sun, J.; Chen, B.; Du, L.; Yang, J.; Guo, K.; Zhao, X. True-Color Three-Dimensional Imaging and Target
Classification Based on Hyperspectral LiDAR. Remote Sens. 2019, 11, 1541. [CrossRef]

23. Zhou, J.; Zeng, Y.; Wang, X.; Wu, C.; Cai, Z.; Gao, B.Z.; Gu, D.; Shao, Y. The capture of antibodies by antibody-binding proteins
for ABO blood typing using SPR imaging-based sensing technology. Sens. Actuators B Chem. 2019, 304, 1–15. [CrossRef]

24. Taulier, A.; Levillain, P.; Lemonnier, A. Determining methemoglobin in blood by zero-crossing-point first-derivative spectropho-
tometry. Clin. Chem. 2020, 33, 10–17. [CrossRef]

25. Owega, S.; Poitras, D. Local similarity matching algorithm for determining SPR angle in surface plasmon resonance sensors.
Sens. Actuators B Chem. 2007, 123, 35–41. [CrossRef]

26. Wang, X.; Dong, L.; Zhan, S. Without-Baseline Centroid Algorithm for Surface Plasmon Resonance Spectra. Chin. J. Sens. Actuators
2012, 25, 365–369.

27. Zhan, S.; Wang, X.; Liu, Y. Fast centroid algorithm for determining the surface plasmon resonance angle using the fixed-boundary
method. Meas. Sci. Technol. 2011, 22, 1–7. [CrossRef]

28. Adam, C.; Vivek, K. Denoising Hyperspectral Imagery and Recovering Junk Bands using Wavelets and Sparse Approximation.
In Proceedings of the IEEE Geoscience and Remote Sensing Symposium, Denver, CO, USA, 31 July–4 August 2006; pp. 387–390.

29. Zhong, P.; Wang, R. Multiple-Spectral-Band CRFs for Denoising Junk Bands of Hyperspectral Imagery. IEEE Trans. Geosci.
Remote Sens. 2013, 51, 2260–2275. [CrossRef]

30. Yin, J.; Sun, J.; Jia, X. Sparse Analysis Based on Generalized Gaussian Model for Spectrum Recovery with Compressed Sensing
Theory. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2752–2759. [CrossRef]

31. Liu, X.; Zhang, Y.; Teng, T.; Ding, Z. Estimation of Vegetation Water Content based on Bi-inverted Gaussian Fitting Spectral
Feature Analysis Using Hyperspectral Data. Remote Sens. Technol. Appl. 2016, 31, 1075–1082.

32. Arad, B.; Ben-Shahar, O. Sparse Recovery of Hyperspectral Signal from Natural RGB Images. In European Conference on Computer
Vision; Springer: Berlin/Heidelberg, Germany, 2016; pp. 19–34.

33. Schonlau M. Boosted regression (boosting): An introductory tutorial and a Stata plugin. Stata J. 2005, 5, 330–354. [CrossRef]
34. Arumugam, P.; Kuppan, V. A GBDT-SOA approach for the system modelling of optimal energy management in grid-connected

micro-grid system. Int. J. Energy Res. 2020, 45, 1–19.
35. Friedman J.H. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 2005, 29, 1189–1232.
36. Zhang, J.; Xu, D.; Hao, K.; Zhang, Y.; Chen, W.; Liu, J.; Gao, R.; Wu, C.; De Marinis, Y. FS-GBDT: Identification multicancer-risk

module via a feature selection algorithm by integrating Fisher score and GBDT. Brief. Bioinform. 2020, 1, 1–13. [CrossRef]
[PubMed]

37. Zhang, W.; Yu, J.; Zhao, A.; Zhou, X. Predictive model of cooling load for ice storage air-conditioning system by using GBDT.
Energy Rep. 2021, 7, 1588–1597. [CrossRef]

38. Chen, Y.; Liu, Y. Which Risk Factors Matter More for Psychological Distress during the COVID-19 Pandemic? An Application
Approach of Gradient Boosting Decision Trees. Int. J. Environ. Res. Public Health 2021, 18, 1–17.

39. Amiri, M.M.; Amirshahi, S.H. A step by step recovery of spectral data from colorimetric information. J. Opt. 2015, 44, 373–383.
[CrossRef]

40. Cao, B.; Liao, N.; Cheng, H. Spectral reflectance reconstruction from RGB images based on weighting smaller color difference
group. Color Res. Appl. 2017, 42, 327–332. [CrossRef]

http://dx.doi.org/10.1364/OE.27.005165
http://www.ncbi.nlm.nih.gov/pubmed/30876119
http://dx.doi.org/10.1109/LGRS.2011.2113312
http://dx.doi.org/10.1016/j.rse.2013.01.001
http://dx.doi.org/10.1016/j.isprsjprs.2019.01.014
http://dx.doi.org/10.1016/j.rse.2018.04.024
http://dx.doi.org/10.3390/s20030935
http://www.ncbi.nlm.nih.gov/pubmed/32050619
http://dx.doi.org/10.1109/TGRS.2020.3006577
http://dx.doi.org/10.3390/rs12040593
http://dx.doi.org/10.3390/rs11131541
http://dx.doi.org/10.1016/j.snb.2019.127391
http://dx.doi.org/10.1093/clinchem/33.10.1767
http://dx.doi.org/10.1016/j.snb.2006.07.018
http://dx.doi.org/10.1088/0957-0233/22/2/025201
http://dx.doi.org/10.1109/TGRS.2012.2209656
http://dx.doi.org/10.1109/JSTARS.2014.2336834
http://dx.doi.org/10.1177/1536867X0500500304
http://dx.doi.org/10.1093/bib/bbaa189
http://www.ncbi.nlm.nih.gov/pubmed/34020547
http://dx.doi.org/10.1016/j.egyr.2021.03.017
http://dx.doi.org/10.1007/s12596-015-0299-9
http://dx.doi.org/10.1002/col.22091

	Introduction
	HSL System Description
	Hyperbolic Tangent Normalization and Correction Model with Parameters
	Improved Spectrum Reconstruction of Gradient Boosting Decision Tree Series Forecasting
	Results and Discussion
	Results
	Discussion

	Conclusions
	References

