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Abstract: Recently, deep learning (DL) has been successfully applied in automatic target recognition
(ATR) tasks of synthetic aperture radar (SAR) images. However, limited by the lack of SAR image
target datasets and the high cost of labeling, these existing DL based approaches can only accurately
recognize the target in the training dataset. Therefore, high precision identification of unknown
SAR targets in practical applications is one of the important capabilities that the SAR–ATR system
should equip. To this end, we propose a novel DL based identification method for unknown SAR
targets with joint discrimination. First of all, the feature extraction network (FEN) trained on a
limited dataset is used to extract the SAR target features, and then the unknown targets are roughly
identified from the known targets by computing the Kullback–Leibler divergence (KLD) of the target
feature vectors. For the targets that cannot be distinguished by KLD, their feature vectors perform
t-distributed stochastic neighbor embedding (t-SNE) dimensionality reduction processing to calculate
the relative position angle (RPA). Finally, the known and unknown targets are finely identified based
on RPA. Experimental results conducted on the MSTAR dataset demonstrate that the proposed
method can achieve higher identification accuracy of unknown SAR targets than existing methods
while maintaining high recognition accuracy of known targets.

Keywords: synthetic aperture radar; automatic target recognition; Kullback–Leibler divergence;
relative position angle; deep learning

1. Introduction

Synthetic aperture radar automatic target recognition (SAR-ATR) is an extremely
challenging task in radar surveillance and reconnaissance systems [1–4]. Most conventional
SAR–ATR methods achieve the correct recognition through SAR image target detection,
feature extraction and matching the target template library. In recent years, data driven
target recognition methods based on deep learning (DL) have been widely used owing to
their powerful learning and fitting ability [5–8]. Chen et al. investigated and used the DL
network for the recognition of SAR target images, which significantly improved the target
recognition performance [9]. Clemente et al. exploited a discrete defined Krawtchouk
moments to represent the detected extended target with few features, which enhanced
the robust performance of target recognition algorithm [10]. Zhao et al. proposed a multi-
stream CNN for SAR–ATR by leveraging SAR images from multiple views to make full
use of limited SAR image data [11]. Since then, many researchers have carried out research
on target recognition algorithms combining DL models and SAR images [12–15], and
achieved good recognition results. The performance of these DL based target recognition
algorithms largely depends on the quality, size, and completeness of sample categories in
the dataset. However, in practical applications, it is almost impossible to obtain a dataset
that contains target information of all categories. The main reasons can be attributed to the
following two aspects: (a) SAR imaging is particularly sensitive to changes between the
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target and the radar platform, and these changes may cause the SAR imaging results of the
same target to vary immensely, for example, target attribute variations of position, angle,
material, structure, etc., and the radar parameter variations of wavelength, irradiation
angle, platform jitter and the others. (b) Acquiring a true, effective and complete SAR target
dataset in different imaging environments is a time-consuming, costly and impractical
task. Furthermore, there are few channels to obtain specific targets, such as enemy military
targets, advanced fighter planes, aerospace crafts, etc. The influence of these comprehensive
factors undoubtedly limits the acquisition and labeling of SAR target image datasets.

In recent years, due to the lack of SAR target image datasets and the high cost of
manual labeling, SAR target recognition methods based on few-shot learning (FSL) have
been garnering increasing attention [16–20]. Currently, researchers studying FSL are mainly
dedicated to two research fields: transfer learning [16,17] and generative models [18–20].
Transfer learning first utilizes a DL network to train and build a basic model on other
datasets, and then uses a small amount of SAR target image data to fine tune the basic
model parameters to achieve accurate target classification and recognition. The main idea
of the generative model method is to generate new SAR target image data, such as the
generative adversarial network (GAN). Next, the newly generated data and the original
data are combined to build a large dataset, which makes the target data distribution more
complete and facilitates subsequent modeling and classification.

However, most of the SAR image target recognition methods based on data driven
and FSL can only recognize known targets in the library. For those unknown SAR targets
that are not involved in training, the above methods are completely unable to accurately
identify. Zero-shot learning (ZSL) is a technique for learning and discriminating unknown
sample data [21–26]. Compared with other DL based methods, the main characteristic of
ZSL is that there is no intersection between the training sample set and the test sample
set. Therefore, ZSL attempts to construct a feature prior knowledge space, by learning
and mapping the known class sample sets (KCSS), and uses the features of KCSS to infer
and identify unknown class samples. In 2009, Palatucci et al. first proposed the concept
of “Zero-Shot Learning”. They utilized semantic output code (SOC) classifiers and a
label library with considerable semantic information to train DL models, and successfully
extended the classification ability of the training model into the unknown test samples
to realize ZSL [21]. Inspired by the idea that the auxiliary information used in ZSL is
essentially the attributes of the sample, Lampert and Hinton adopted attribute auxiliary
information to implement ZSL [22] for visual object classification. Suzuki et al. employed
the frequency of attribute information to set the weight of each attribute instead of direct
attribute prediction, which effectively improved the recognition performance of ZSL [23].
Socher et al. first proposed the ZSL method with cross-modal transfer learning (CMTL) [24],
and converted the ZSL problem into a subspace problem. The core idea of CMTL is to map
images and class labels to the semantic space simultaneously, and determine the labels
of test class samples through some similarity or distance measurement methods. Zhang
et al. employed a deep neural network (DNN) to map the attribute features into the image
feature space [25], which, to a certain extent, alleviated the hubness problem in ZSL, and
increased the prediction accuracy and robustness of the model, to some extent.

When ZSL is applied to SAR–ATR, a stable and interpretable reference space needs to
be constructed to guarantee the identification accuracy of unknown targets by embedding
the prior knowledge of known targets [27–31]. For this purpose, Toizumi contributed
to solving the problem of reference space instability due to insufficient target sample by
combining the information of the optical image [29]. Song et al. proposed a deep generative
neural network (DGNN) to construct a continuous SAR target reference space [30]. In order
to increase the degree of clustering of the target in the reference space, Song et al. introduced
electromagnetic simulated (EM simulated) image information during the construction
of the reference space [31], and obtained a good reference space by learning from the
knowledge of other data sources. However, the aforementioned methods exist the following
two deficiencies: a) The network architecture is very complex and generally comprises a
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plurality of joint training models, such as the constructor net, the supervisor net and the
interpreter net, etc., which not only significantly increases the computational cost, but also
probably aggravates the mapping domain offset of feature subspace. b) The methods lack
effectiveness analysis and processing of the target feature. Specifically, the unknown SAR
target image is simply mapped and discriminated by referencing prior knowledge of the
trained subspace, so that the recognition performance cannot be guaranteed.

To better address the target features of SAR images extracted by DL models and
improve the identification performance of the unknown SAR target, this paper proposes
an unknown SAR target identification method based on the joint discrimination of feature
extraction network (FEN), Kullback–Leibler divergence (KLD) and relative position angle
(RPA), called Fea-DA. Firstly, the SAR target images are trained by FEN to extract stable
and reliable target features and construct the target feature space. Next, the target features
will be fed into the KLD module to roughly identify the known target and the unknown tar-
get. For the targets that the KLD module cannot identify correctly, t-distributed stochastic
neighbor embedding (t-SNE) is performed to transform the high dimensional feature space
to the two-dimensional plane space. And then, calculating the RPA of SAR target feature
in the low dimensional space. Finally, the known and unknown target are finely identified
based on RPA. It is worth noting that the KLD–RPA unknown SAR target joint discrimina-
tion algorithm can effectively solve the problems of multitarget KLD numerical aliasing
(NA) [32] and the multiclass target space collinear aliasing (SCA) [33] in the target feature
space. Meanwhile, the high dimensional feature space dimensionality reduction can be
realized by utilizing the t-SNE technique to reduce the calculation amount and facilitating
visualization purposes. Experimental results on MSTAR datasets illustrate that the Fea-DA
unknown SAR target joint discrimination method can achieve state of the art unknown
target identification accuracy while ensuring high known target recognition accuracy.

The scope of this research focuses on contributing within the area of SAR–ATR. The
main benefits expected from this work are as follows:

(1) We propose an end to end feature extraction network model (FEN), which is capable
of implementing feature mapping of SAR targets and building a stable and efficient
target feature mapping space.

(2) The KLD similarity measurement method is introduced to realize fast and rough
identification of unknown SAR targets.

(3) Aiming at the problem of multitarget spatial collinear aliasing that easily appears
in the process of absolute angle measurement, this paper proposes a target feature
measurement method based on relative position angles (RPA). To the best of our
knowledge, this is the first study to use RPA measurement for the analysis and
calculation of SAR image data. In addition, we believe that this RPA measurement
method can also be applied to the other types of data.

The main contents of this paper are organized as follows: Section 2 describes the
overall structure of our Fea-DA unknown SAR target joint discriminant method. Section 3
details the FEN architecture and principle, and the role of each part. In Section 4, the
KLD-RPA unknown SAR target joint discriminant algorithm is elaborated and reasoned.
The experimental results and analysis on the MSTAR dataset are presented in Section 5,
and Sections 6 and 7 are the discussion and conclusion of this paper, respectively.

2. Fea-DA Overall Framework

Traditional end to end SAR image unknown target recognition methods [3,6,26,29,31]
bear problems such as target feature closure, lack of effective processing, and operation for
target features. When faced with unknown targets that are not involved in training, these
traditional methods cannot effectively identify the unknown targets. Therefore, this paper
leverages two parts, feature extraction and target identification, to fully process the target
features and achieve the accurate identification of unknown targets. Firstly, the SAR target
is trained by FEN to construct a feature mapping space and extract the target features.
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Then, the KLD–RPA joint discrimination algorithm for the unknown SAR target is used to
accurately identify known and unknown targets.

Figure 1 is the overall framework of the Fea-DA unknown SAR target identification
method and its specific implementation steps are as follows.
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Figure 1. Fea-DA overall framework.

Step1: A 7-layer deep convolutional neural network (DCNN) is built as the FEN of
the SAR image target to extract the SAR target features and construct the feature mapping
space. After that, the original SAR target image is transformed into a 128 × 1 dimensional
feature vector through FEN mapping.

Step2: Performing single category K-Means clustering on the SAR target features of
the training set to obtain the target feature centers of all categories.

Step3: When a new target appears, it is first transformed into a 128 × 1 dimensional
feature vector via FEN, and the KLD between the feature vector and the feature center of
all known training targets is calculated to obtain the similarity measurement between the
new target and the known target. Then, the new target is roughly identified by setting an
appropriate threshold.

Step4: For the targets that cannot be identified correctly after the rough identification
process of the KLD module, their feature vectors perform t-SNE nonlinear dimensionality
reduction, thereby mapping the 128-dimensional high dimensional space to the two-
dimensional space.

Step5: The RPA is calculated to obtain the relative position angle between the new
target and its nearest feature center. By setting an appropriate threshold value, the new
target feature is reanalyzed to discriminate its category. If the discriminated result is an
unknown target, the target is marked to alert relevant technical staff for further processing
and judging. Otherwise, if it is a known target in the library, it is sent to the support vector
machine (SVM) classifier to recognize the specific category information.

This section is a summary description of our Fea-DA. For a more detailed introduction,
the subsequent, Sections 3 and 4, will explain the principles and content.
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3. Feature Extraction Network

An unknown SAR target identification method relies on a large number of stable
and effective SAR target features, and the quality of target features directly affects the
recognition performance of SAR targets [9,25,34]. Figure 2 displays the general architecture
of FEN, and the network configuration of FEN is listed in Table 1. The backbone network
is a seven-layer DCNN, including one input layer, five convolutional layers, and one
full connection layer. In particular, each convolution layer consists of convolution, batch
normalization (BN), ReLU activation, and maximum pooling (Max-Pooling) operations. For
example, in the first convolutional layer, the original SAR target image, with an input size
of 128 × 128, is computed by a 20 − 5 × 5 convolution kernel to obtain a 20 − 124 × 124
feature map, and no zero-padding operations. Next, the feature map is converted into a
20 − 62 × 62 feature map through BN, ReLU activation and 2 × 2 Max-Pooling operations
in sequence. Note that except for minor changes in the size of the convolution kernel, the
subsequent calculation process of the convolution layer is consistent with the above steps.
During training, FEN uses cross entropy loss function (CEL) and the Adam optimization
algorithm to update the parameters. The CEL is defined as:

fCEL(y) = −
N

∑
i=1

yi · log
(

^
yi

)
(1)

where y = [y1, y2, . . . , yN ]
T , N is the number of all training samples, yi is the true value of

the i-th sample and
^
yi represents the output of the model.
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Table 1. The network configuration of FEN.

Pathway Layer Composition Size

Input Layer - 1 − 128 × 128

Conv Layer1

Conv-20-5 × 5
BN

ReLU
Max-Pooling-2

20 − 62 × 62

Conv Layer2

Conv-40-5 × 5
BN

ReLU
Max-Pooling-2

40 − 29 × 29

Conv Layer3

Conv-60-6 × 6
BN

ReLU
Max-Pooling-2

60 − 12 × 12

Conv Layer4

Conv-120-5 × 5
BN

ReLU
Max-Pooling-2

120 − 4 × 4

Conv Layer5
Conv-128-4 × 4

BN
ReLU

128 − 1 × 1

FC Layer - 10 × 1

3.1. Multiscale Features

In the FEN training process, there is a wealth of multiscale information between the
target features of different convolutional layers. Making full use of this feature information
can effectively improve the learning ability on the SAR targets. In order to enhance the
use of multiscale features by FEN, an effective method is to add skip connection units
(SCU) between different convolutional layers [35–37]. As shown in Figure 2, after the
output of the third convolutional layer of FEN, a 3 × 3 Max-Pooling operation is employed
to down sample the 60 − 12 × 12 feature map to a 60 − 4 × 4 feature map. Then, the
60 − 4 × 4 feature map is directly merged with the output of the fourth convolutional layer,
the 120 − 4 × 4 feature map, into a 180 − 4 × 4 feature map. Finally, the feature map is
transformed into a 128 × 1 feature vector by a 128 − 4 × 4 convolution kernel calculation,
and input into the full connection layer.

The SCU mainly has the following two advantages: on the one hand, the SCU can
effectively utilize the feature map information of different convolutional layers, and pre-
serve more multiscale features. On the other hand, SCU can alleviate the problems of slow
parameter update and vanishing gradient, making the training of FEN smoother. The
reason for this is that in the process of parameter backpropagation, the parameter gradient
of the lower layer decreases dramatically with the increase in network layers, which will
result in the network parameters updating slower. In the worst case, even vanishing
gradients may occur, causing the inability of the network model to properly train.

3.2. SVM Classifier

The conventional deep learning model uses the full connection layer + softmax as the
classifier. However, this type of structure may fall into a local optimal solution during the
parameter update process, and superabundant fully connected layers may also cause over
fitting problems and poor generalization performance. Therefore, in FEN, a fully connected
layer + softmax feature classifier firstly pretrains the target sample. Then, the feature
vector (128 × 1) output by the last convolutional layer is input to the SVM for nonlinear
classification when the training is completed. In order to achieve nonlinear classification,
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the SVM of the nonlinear kernel method is used to map the nonlinear features of the SAR
target to a high dimensional space and find a hyperplane in the space that can distinguish
the target features. In Fea-DA, the SVM classifier adopts an RBF nonlinear kernel and
mainly has the following two functions: a) Participating in the construction of FEN as
a nonlinear feature classifier during training. b) In the phase of unknown SAR targets
identification, SVM serves as the known target classifier in the library to further finely
classify the test target and determine its category when a test target is predicted to be the
known target.

4. KLD-RPA Joint Discrimination

In the procedure of identifying an unknown SAR target, traditional feature subspace
mapping discrimination methods have low recognition accuracy due to the absence of
analysis and processing of the target features. Therefore, this section proposes a KLD–RPA
unknown SAR target identification algorithm based on target feature analysis and joint
discriminant to achieve the accurate identification of unknown targets. The proposed
algorithm principle is shown in Figure 3. First of all, the SAR target image is converted into
a 128 × 1 dimensional feature vector by FEN. Subsequently, all the targets of each category
in the training set are individually calculated by the K-Means clustering algorithm to obtain
a stable and reliable target category center, and the above steps are repeated to acquire all
known target category centers. In the testing phase, the KLD between the feature vector of
the test target and the category feature center of the known target is calculated to obtain the
similarity between the test target and the known target. Afterwards, the test target category
is roughly identified by setting an appropriate threshold. For the targets that cannot be
distinguished by KLD, firstly, t-SNE nonlinear dimensionality reduction is performed, and
the target features are mapped from high dimensional space to two-dimensional plane
space. Then, the RPA between the test target and the nearest known target category center
is estimated. Finally, the test target is finely identified through RPA. If the test target is a
known target, it is input into the SVM classifier for further classification, otherwise it is
marked as an unknown target.
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4.1. KL Divergence Discrimination

KLD, also known as relative entropy, information divergence, etc., is a measurement
method to evaluate the matching degree between two random distributions, p and q [38,39].
While the two random distributions are similar, the KLD tends to zero. Otherwise, their
KLD will also increase as the difference between the two random distributions becomes
larger. Therefore, KLD is a non-negative function:

DKL(p ‖ q) ≥ 0 (2)

where p is the target distribution, and q is the real distribution. In addition, KLD is an
asymmetric similarity measurement function, that is

DKL(p ‖ q) 6= DKL(q ‖ p) (3)

where p represents the feature distribution of the category center of the known target in the
library, q denotes the feature distribution of the test target, and their feature distributions
are both 128 × 1 dimensional vector. Hence, the KLD between q and p is defined as:

DKL(p ‖ q) =
128

∑
i=1

pi · log
pi
qi

(4)

where pi and qi represent the value of the i-th element in the feature distributions p and q,
respectively. Therefore, the KLD value distribution between the test target and the known
target in the library can be obtained according to Equation (4). At this point, the rough
identification of the test target is achieved by setting an appropriate threshold, that is, the
test target belongs to a known target or an unknown target. For the known targets, it is
fed into the SVM classifier to determine the specific target category. Otherwise, the RPA
module is adopted for further fine identification.

4.2. t-SNE Dimensionality Reduction and Visualization Technology

Before performing RPA identification, it is necessary to reduce the dimensionality of
the high dimensional target feature vector for the aim of facilitating angle calculation and
visualization. The technique of t-SNE is an unsupervised dimensionality reduction method
with stable mapping space. The target features after t-SNE dimensionality reduction have
the advantages of lower computational cost, excellent visualization, and easy understand-
ing, etc. [40,41]. The main idea of t-SNE is to convert the distance among data points in
a high dimensional space into a conditional probability that characterizes similarity, that
is, data points with identical distances in high dimensional space are supposed to have
similar distances in low dimensional space after dimensionality reduction. Thus, t-SNE
can well preserve local similarity between the SAR target. In t-SNE, the distance between
the target features is mapped to the probability distribution through affine transformation:
a) For target features in high dimensional space, t-SNE converts the distance between
target features into Gaussian distribution probability. If the distance between two target
features in the high dimensional space is closer, the probability that they will be nearest
neighbors after transformation is larger. Conversely, the farther the distance between the
target features, the lower the probability that they will be nearest neighbors. b) For low
dimensional target features after dimensionality reduction, the t-distribution is selected as
the probability distribution model to transform the distance. Finally, feature dimensionality
reduction is achieved by optimizing the similarity between the two distributions. The
specific optimization process is as follows:

Assume that a given SAR target feature dataset X={x1, x2, . . . , xN} in a high-dimensional
space, where xi is a 128 × 1 feature vector. If xi and xj are two target feature vectors in a
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high dimensional space, xi is the center point, and the conditional probability of xj as its
nearest neighbor is:

pj|i =
exp

(
−‖xi − xj‖2/

(
2σi

2))
∑k 6=i exp

(
−‖xi − xk‖2/(2σi

2)
) , pi|i = 0. (5)

where σi is the covariance of Gaussian distribution. For different center points, the cor-
responding covariance σi is various. Regarding the setting of σi, this paper performs the
binary search method in [40] to determine. In order to speed up the optimization process
and reduce the computational cost, joint probability pi,j is introduced to replace conditional
probability pj|i. However, the joint probability is susceptible to outliers, causing a decrease
in the dimensionality reduction performance. To solve the problem of outliers, symmetrical
conditional probability is used as the equivalent joint probability [40]. Define the equivalent
joint probability distribution of target feature vectors xi and xj in high dimensional space:

pi,j =
pj|i + pi|j

2N
, pi,i = 0. (6)

obviously pi,j = pj,i. The equivalent joint probability is used to guarantee ∑j pi,j > 1/2N,
so that each target feature has a certain degree of contribution to the overall optimization
process, and it will neither be infinite, nor tend to zero. Therefore, the low dimensional
space data points, zi and zj, corresponding to xi and xj obey the t-distribution, and its
equivalent joint probability distribution is:

qi,j =

(
1 + ‖zi − zj‖2

)−1

∑k 6=l

(
1 + ‖zk − zl‖2

)−1 , qi,i = 0. (7)

where qi,j = qj,i. Theoretically, if the dimensionality reduction result is effective and the
local features remain intact, then the target feature distribution before and after the dimen-
sionality reduction should be consistent, pi,j = qi,j. Then, KLD is employed to optimize the
deviation between the two distributions, and the objective function is written as:

Lcost = DKL(P ‖ Q) = ∑
i

∑
j

pi,j log
pi,j

qi,j
(8)

where P represents the joint probability distribution of the target feature in the high
dimensional space, and Q is the joint probability distribution of the target feature in the low-
dimensional space. By optimizing the objective function, the target feature distribution after
dimensionality reduction can be obtained. If the Lcost is smaller, the feature distribution
after dimensionality reduction is closer to the feature distribution in the original high
dimensional space, which indicates that the reduced data effectively retains the local
feature information between the target features. Conversely, if the Lcost is larger, it shows
that more local feature information is lost and the dimensionality reduction effect is worse.
Finally, the gradient descent (GD) method is used to update the objective function and its
partial derivative is calculated by:

∂Lcost

∂zi
= 4∑

j

(
pi,j − qi,j

)(
zi − zj

)(
1 + ‖zi − zj‖2

)−1
(9)

In order to speed up the iterative process and avoid falling into the local optimal
solution, the momentum term update is added to the gradient. The final error update
formula is:

Zt+1 = Zt + η
∂Lcost

∂Z
+ α(t + 1)

(
Zt − Zt−1

)
(10)
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where Zt indicates the solution at iteration t, η the learning rate, and α(t + 1) the momen-
tum at iteration t + 1.

With the above optimization solution, t-SNE can map the SAR target feature vector
in the high dimensional space to the low dimensional space, especially the two and three
dimensionality visualization space. In addition, it can effectively alleviate the “crowding”
problem in the feature space, since t-SNE uses Gaussian distribution to convert distance
into probability distribution for target features in high dimensional space and utilizes a
more heavy tailed t-distribution for target features in low dimensional space, respectively.
For target features that are far away, t-SNE will enlarge the distance; for target features that
are close to neighbors, t-SNE will shorten the distance. Therefore, t-SNE can effectively
preserve the local feature information between neighboring SAR target features.

4.3. Reletive Position Angle Identification

The targets that failed to be identified after rough identification through the KLD
module mainly include the following two situations: (1) The test target is a known target,
and the KLD value of the target feature diverges due to the inherent difference between the
training data and the test data. (2) The test target is an unknown target, which is similar to
a certain type or multiple types of targets in the library, leading to a reduction in the KLD
value. The above two situations will cause the problem of the KLD numerical aliasing in
the target feature space, resulting in a decrease in the unknown SAR target discrimination
capability. For example, in the KLD module in Figure 3, the KLD values between the
known targets 1, 2; the unknown target 3; and the category centers A, B, C are KL1, KL2,
and KL3, respectively. It can be seen that the KLD values of the known target 1 and the
unknown target 3 are close. At this time, using a single KLD discrimination will cause
serious target misjudgment. Therefore, on the basis of KLD similarity discrimination,
Fea-DA adopts RPA [42–44] containing target feature angle information to finely identify
misjudged targets.

Suppose that the new target is x, and C = {C1, C2, . . . , CM} represents the collection
of known target categories in the library. The category Ci closest to the new target x is
obtained by KLD similarity calculation:

Ci ← minDi
KL(pi ‖ x) (11)

where pi denotes the feature center of the known target category Ci.
Assuming a new target feature vector, x, and its nearest feature center of the known

target, pi, are mapped to a two-dimensional plane space by t-SNE, and the coordinates

after dimensionality reduction are
^
x = (a, b) and

^
pi = (ai, bi), respectively. At this point,

the RPA of the new target x relative to the category Ci is:

θ(x) = cos−1

 (a− ai)√
(a− ai)

2 + (b− bi)
2

 (12)

The RPA identification process is shown in the RPA module in Figure 3. After the
KLD module is roughly identified, the target feature vector is fed into the RPA module to
calculate the RPA between the test target and the nearest category according to Equation
(12). In Figure 3, the RPAs of the three test targets are θ1, θ2, and θ3. The problem that the
known target 1 and the unknown target 3 cannot be distinguished under the KLD mea-
surement, but they can be easily and quickly distinguished under the RPA measurement.
From a physical point of view, KLD computes the overall similarity between targets and
categories, while RPA characterizes the similarity and differences in similarity between
target features in different dimensions. Specifically, KLD calculates the distance between
the target feature and the category center, and RPA provides the angle information between
them. Eventually, we adopt the joint discrimination of Range–Azimuth to achieve the
accurate identification of the unknown target.
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In addition, the KLD–RPA unknown SAR target identification algorithm can not
only solve the target misjudgment problem in a single KLD similarity measure, but also
effectively settle the SCA problem of multiple types of targets that occurs in the traditional
absolute angle based similarity measurement method. The traditional absolute cosine angle
(ACA) similarity measurement method reflects the correlation of features by calculating
the vector angle between the target point and the category center to the origin point.
However, when multiple types of targets appear in a certain direction simultaneously, the
ACA methods will judge them as the same type of targets, and they cannot be completely
distinguished. Different from the traditional methods, the RPA measurement method
computes the angle between the new target and the closest known target category center
in the library, to obtain the positional relationship of the target. Even if there are multiple
types of targets in a certain direction, due to the diverse relative positions between targets
and their nearest corresponding categories, the RPA is different. Therefore, the target can
be accurately distinguished by calculating the RPA between the targets.

4.4. Threshold Setting

In the KLD–RPA application, the setting of the threshold is extremely crucial for the
identification of unknown SAR targets. Here, the prerequisites and basic assumptions for
threshold setting are introduced.

4.4.1. KLD Threshold

For the setting of the KLD threshold, the KLD value from the known target in the
training set to the center of the corresponding category is first calculated and the maximum
KLD value is adopted as the initial threshold. Then, the KLD threshold is controlled by
adjusting the threshold coefficient. Assuming that xj

i denotes the feature vector of the i-th
target in the j-th category of the training set, and the feature center for this type of target is
Ci, then the maximum KLD from all targets in the j-th category to the feature center is:

KLj = max
i

Di
KL

(
Cj ‖ xj

i

)
(13)

The maximum KLD from the target sample to the center of the corresponding cate-
gory is:

KLmax = max
j

KLj, j = 1, 2, . . . , M. (14)

where M is the target type of the training set. In summary, the KLD threshold is defined as:

ThKL = λ · KLmax (15)

where λ represents the threshold coefficient. The KLD threshold is controlled by changing
the threshold coefficient.

4.4.2. RPA Threshold

Unknown Target Threshold Decision Strategy (UTTDS): Assume that the accepted
domain of the whole targets is U, if the known target accepted domain is S, then the
accepted domain of the unknown target is the complementary set of S.

{US = {x|x ∈ U, x /∈ S} = U − S (16)

For the setting of the RPA threshold, we employ UTTDS to determine the range of
the accepted domain of the unknown target. The specific steps are as follows: First, the
target that fails to be successfully distinguished by KLD rough identification is manually
identified to determine the specific category of the known target. Then, the RPA of the
known targets that have completed the category identification is calculated, and the range
of the accepted domain of the known target is determined by analyzing the RPA distribution
of the test target. Finally, UTTDS is applied to set the RPA threshold.
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Suppose that there is only one type of known targets and unknown targets among the
targets that input the RPA identification module, as shown in Figure 4, the overall target
accepted domain is U = [−π,+π], and the known target accepted domain is S1 = [θ1, θ2].
Thus, the unknown target accepted domain is:

Su = U − S1 (17)

Therefore, the RPA threshold is:

ThRPA = [−π, θ1] ∪ [θ2,+π] (18)

When there are multiple types of known targets in the target space, assuming that the
known target accepted domains are S1, S2, . . . , Si, the corrected RPA threshold is:

ThRPA = Su = U − {S1 ∪ S2 ∪ . . . ∪ Si} (19)
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5. Experimental Results and Analysis

The dataset used in this article is the measured SAR ground stationary target data
published by the Moving and Static Target Acquisition and Recognition (MSTAR) program
supported by the Defense Advanced Research Projects Agency (DARPA), abbreviated
as MSTAR dataset [9,15,19,30]. The dataset employs spotlight high resolution synthetic
aperture radar, 0.3 m×0.3 m resolution, X-band, and HH polarization. The MSTAR dataset
contains a recommended dataset—MSTAR Public Targets Chips, MPTC, and another mixed
target dataset: MSTAR-Public Mixed Targets, MPMT. Among them, the MPTC dataset
mainly includes Armored Personnel Carrier–BTR70, Infantry Fighting Vehicle–BMP2,
Tank– T72 three types of targets, referred to as 3-type dataset. MPMT dataset contains Self-
propelled Artillery–2S1, Amphibious Armored Scout Car–BRDM2, Armored Personnel
Carrier–BTR60, Bulldozer–D7, Tank–T62, Truck–ZIL131, Self-propelled Anti-aircraft Gun–
ZSU234 seven types of targets. In this experiment, the MPTC and MPMT datasets are
combined to form a mixed dataset containing 10 types of targets, named 10 types of dataset.
The depression angle of the training set of the 10 types of dataset is 17◦, 2747 target samples.
And the test set is 15◦ depression angle, 2425 target samples. Each type of specific sample
number allocation and other information on the MSTAR 10 types of dataset are listed in
Table 2, and the optical-SAR image comparison is shown in Figure 5.



Remote Sens. 2021, 13, 2901 13 of 24

Table 2. MSTAR 10 types of dataset.

Categories Training Set
(Depression Angle: 17◦)

Testing Set
(Depression Angle: 15◦)

1-2S1 299 274
2-BMP2 233 195

3-BRDM2 298 274
4-BTR60 256 195
5-BTR70 233 196

6-D7 299 274
7-T62 299 273
8-T72 232 196

9-ZIL131 299 274
10-ZSU234 299 274

Total 2747 2425
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The experimental hardware configuration is Intel Core i7-7700 CPU, Nvidia 1080Ti
GPU; System and software environment: Win10 (Windows System 10, Microsoft, Redmond,
WA, USA), Python 3.7 (Python Software Foundation, Wilmington, DE, USA), CUDA 10.1
(Nvidia-USA, Santa Clara, CA, USA), PyTorch 1.6. The experimental results and analysis
mainly include FEN performance test and Fea-DA (Facebook-USA, Menlo Park, CA, USA)
unknown SAR target identification performance test. The dataset allocation used in the
experiment is listed in Table 3.
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Table 3. Experimental datasets configuration.

Datasets Known
Categories

Unknown
Categories Training Set Testing Set

3-type 2, 5, 8 - 698 587

10-type 1, 2, 3, 4, 5, 6, 7,
8, 9, 10 - 2747 2425

1-type unknown 1, 2, 3, 4, 5, 6, 7,
9, 10 8 2515 2229

3-type unknown 1, 2, 3, 4, 6, 7, 9 5, 8, 10 1983 1759

5.1. The Learning Ability of FEN
5.1.1. Test Error

This experiment mainly analyzes and tests the learning ability of the FEN model.
Figure 6a shows the train–test error curve of FEN on the 10-type dataset. It can be seen
that the training error and the testing error rapidly converge and decrease, and eventually
approach to zero with the increase of epoch. Meanwhile, the accuracy of the training set
and the testing set also rise speedily and reach to a peak, as illustrated in Figure 6b. This
indicates that FEN has a strong learning ability and can effectively approximate the data
characteristics of the target sample in the training set. In addition, through the learning of
universal features in the target samples of the training set, the target samples of the testing
set can be accurately recognized.
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5.1.2. Test Accuracy

This experiment mainly conducts statistical and comparative analysis on the test
accuracy of FEN. To more intuitively reflect the performance superiority of the proposed
FEN model, five classical and state of the art SAR target recognition models are adopted
for comparison: A-ConvNets [9], TL-SD [45], KLSF [46], M-PMC [47] and L1-2-CCNN [48].
Table 4 lists the test accuracy of FEN and the other five comparison models on the MSTAR
3-type dataset and 10-type dataset. As the Table shows, in the 3-type datasets the six
models have achieved FEN-100%, A-ConvNets-99.49%, TL-SD-99.66%, L1-2-CCNN-99.33%,
and M-PMC-98.83%, KLSF-89.1% on recognition accuracy. In addition, in the 10-type
datasets, the test accuracy from high to low is L1-2-CCNN-99.86%, TL-SD-99.64%, FEN-
99.63%, A-ConvNets-99.13%, M-PMC-98.81%, KLSF-96.1%. It can be obtained from the
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experimental results that the proposed FEN has achieved competitive recognition accuracy
compared to the other approaches. This demonstrates that FEN can effectively learn the
implicit feature representation of an SAR target from the training set, and build a stable
and reliable feature space by extracting the universal target features from the original SAR
image. Furthermore, FEN’s high efficiency feature extraction capabilities also provide
guarantee for the subsequent accurate identification of unknown SAR targets.

Table 4. The test accuracy of FEN, A-ConvNets, TL-SD, L1-2-CCNN, M-PMC and KLSF.

Datasets Models ACC

3-type

FEN 100%
A-ConvNets 99.49%

TL-SD 99.66%
L1-2-CCNN 99.33%

M-PMC 98.83%
KLSF 89.1%

10-type

FEN 99.63%
A-ConvNets 99.13%

TL-SD 99.64%
L1-2-CCNN 99.86%

M-PMC 98.81%
KLSF 96.1%

5.2. Unknown SAR Target Identification
5.2.1. The 1-Type Unknown Target Test

This section tests and analyzes the performance of the Fea-DA unknown SAR target
identification method. In order to test the performance of Fea-DA more comprehensively,
this paper conducts two sets of experimental test analysis, namely, a 1-type unknown target
experiment and 3-type unknown target experiment. Specifically, the 1-type unknown target
experiment means that one category of known target is selected as the unknown target
from 10 categories of known targets. During training, unknown targets do not participate
in the training at all, and only appear in the test phase after the model training has been
completed. Furthermore, in order to compare with the existing optimal method, this
experiment selects the 8-T72 as the unknown target, and the remaining nine types of targets
as the known target. The experimental results are listed in Table 5: The proposed Fea-DA
unknown SAR target identification method has a significant improvement in test accuracy
compared to the current optimal EM simulation-ZSL [31], VGG+PCA-ZSL [29] and VGG-
ZSL [29] models. Particularly, the known target accuracy, unknown target accuracy, and
overall target accuracy of Fea-DA reached 97.58%, 84.69%, and 96.53%, respectively. This
is about 6% higher than the EM simulation method in the metric of target recognition
accuracy on average.

Table 5. Results of 1-type unknown target test.

Models Known Target
Accuracy

Unknown Target
Accuracy

Overall Target
Accuracy

Fea-DA 97.58% 84.69% 96.53%
EM simulation-ZSL 91.93% 79.08% 88.01%

VGG+PCA-ZSL 84.07% 71.42% 83.05%
VGG-ZSL 67.83% 57.14% 66.97%

Table 6 displays the classification confusion matrix of Fea-DA among all test target
samples on the 1-type unknown dataset. It can be seen that the Fea-DA unknown SAR
target identification method has achieved good results in multiple categories of targets.
Only in certain categories did the NA problem caused by the similarity between the targets
leads to a decrease in the identification accuracy, for example, BMP2 and BTR60. However,
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in general, to the best of our knowledge, the proposed Fea-DA method can achieve state of
the art accurate identification of unknown targets while maintaining a high recognition
accuracy of known targets.

Table 6. T72 confusion matrix.

Category 2S1 BMP2 BRDM2 BTR60 BTR70 D7 T62 ZIL131 ZSU234 T72

2S1 270 0 0 0 0 0 1 2 1 0
BMP2 0 154 0 0 0 0 0 0 0 41
BRDM2 0 0 274 0 0 0 0 0 0 0
BTR60 0 0 0 195 0 0 0 0 0 0
BTR70 0 0 0 0 186 0 0 0 0 10

D7 0 0 2 0 0 272 0 0 0 0
T62 0 0 0 0 0 0 271 0 2 0

ZIL131 0 0 0 0 0 0 0 273 1 0
ZSU234 0 0 0 0 0 0 0 0 272 2

T72 0 23 0 7 0 0 0 0 0 166

5.2.2. The 3-Type Unknown Target Test

In actual application, the appearance of multiple types of unknown targets simulta-
neously is often faced. For this, the hybrid identification problem of multiple unknown
targets, the model needs to accurately distinguish all unknown targets from known targets
among multiple targets. Therefore, this section conducts a 3-type unknown target test to
investigate the discrimination performance of Fea-DA in the case of multiple unknown
targets. The experiment uses a 3-type unknown target dataset for training and testing,
namely, select category 5-BTR70, category 8-T72, and category 10-ZSU234 as unknown tar-
gets, and the remaining seven categories of targets as known targets for training modeling.
In the test phase, the three types of unknown targets are tested separately, and then the
three types of targets are merged together for comprehensive testing. In particular, before
the comprehensive test of three types of unknown targets, 100 unknown SAR targets are
randomly sampled from each category and combined into a test dataset with a quantity of
300. The test results of the three types of unknown targets are shown in Table 7.

Table 7. Results of 3-type unknown target test.

Model Unknown
Category

Known Target
Accuracy

Unknown
Target

Accuracy

Overall Target
Accuracy

Fea-DA

5 95.62% 86.73% 94.73%
8 95.05% 88.78% 94.42%
10 97.56% 97.44% 97.54%

5, 8, 10 91.43% 86.33% 90.72%

Experimental results indicate that Fea-DA can realize the precise identification of
the multiple types of unknown targets. When multiple unknown targets appear, Fea-DA
accurately distinguishes the unknown target from the known target through the KLD–
RPA joint discriminant algorithm. In the single category unknown target test, Fea-DA
achieves excellent recognition results (take the lowest accuracy). Specifically, the known
target accuracy is 95.05%, the unknown target accuracy 86.73%, and the overall target
accuracy 94.42%. In the comprehensive test of the three types of unknown targets, all
three metrics of accuracy have declined to some extent, but still maintained a high target
recognition accuracy. The test results are as follows: the known target accuracy is 91.43%,
the unknown target accuracy 86.33%, and the overall target accuracy 90.72%. Particularly,
the identification performance of unknown targets is only decreased by 0.4%, which
demonstrates that Fea-DA’s identification performance for unknown SAR targets is more
stable and robust.
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6. Discussion
6.1. Feature Subspace Mapping

This section mainly analyzes and discusses the feature subspace mapping, and intu-
itively understands the core principle of the proposed KLD–RPA unknown SAR target joint
discriminant algorithm from the perspective of visualization. Figure 7 shows the subspace
distribution of the target feature map after the high dimensional feature vector processed
by t-SNE dimensionality reduction and visualization. The experiment uses the 1-type
unknown target dataset in Table 3. The blue cross represents the feature distribution of the
nine types of training target samples, the green triangle symbolizes the corresponding nine
types of test known targets, and the red five pointed star indicates the unknown target-T72.
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From the experimental results, it is clear that for most categories of targets, the target
features of the training set are similar to those of the testing set, and the Euclidean distance
between the features is close. In this case, the unknown target can be distinguished from
the known target by the rough identification of the KLD module, such as ZSU234, BTR60,
BTR70, BRDM2, etc. However, for some categories, the target features of the training set
and the testing set are far apart and the similarity decreases. Moreover, due to the similarity
between the unknown target and the known target in the library, the Euclidean distance
between the unknown target and the known target is reduced. Consequently, the KLD
value of the unknown target and the known target are aliased, that is the KLD numerical
aliasing problem, which leads to the serious misjudgment of the model. For example, 2S1,
BMP2 and T72, their KLD values KL1 and KL2 are cross aliased. At this time, using a single
KLD discrimination cannot distinguish various types of targets at all. Therefore, RPA is
introduced to perform fine identification on the targets that the KLD module failed to
discriminate successfully, so as to realize the accurate identification of unknown targets and
known targets. As shown in Figure 7, the RPA accepted domain of the known target 2S1
and the unknown target T72 are [θ1, θ2] and [θ3, θ4] respectively. It can be inferred that the
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T72 and 2S1 targets can be easily and effectively distinguished by setting an appropriate
RPA threshold according to UTTDS.

Therefore, RPA can not only effectively solve the problem of KLD numerical aliasing
between target features, but also be used to alleviate the SCA problem of multiple types of
targets existing in traditional absolute angle similarity measurement methods. Moreover,
we believe that in other types of data processing, RPA based measurement methods also
have significant application prospects. In addition, through the visualized target feature
mapping subspace, the position and direction information between different target features
can also be easily and intuitively obtained. For example, the unknown target T72 is similar
to BMP2 and is located on the right side of BRDM2 and other spatial information. In
addition, this spatial information can increase our understanding and further processing of
unknown targets.

6.2. The t-SNE Nonlinear Dimensionality Reduction

The KLD–RPA joint discrimination algorithm proposed in this paper needs to calculate
the relative position angle of the target feature, and then combine with KLD to realize
the precise positioning and discrimination of unknown SAR targets. Therefore, it can be
inferred that the calculation of RPA directly affects the recognition performance of Fea-DA.
In order to facilitate the calculation of the RPA of a target feature, the distribution of targets
in the feature space is required to be as compact and scattered as possible, that is, for the
same type of targets, the intraclass distance should be as small as possible; for different
types of targets, the interclass distance should be as large as possible. Fortunately, t-SNE
nonlinear dimensionality reduction technology fits the above characteristics well. The
t-SNE transforms the distance between target features in high dimensional space into condi-
tional probability through Gaussian distribution, and employs t-distribution to convert the
distance into conditional probability for the target features after dimensionality reduction.
For neighboring points, t-SNE will compress the distance; for non-neighboring points,
t-SNE will amplify the distance. Therefore, t-SNE can well retain the local characteristics
between target features through nonlinear mapping. In order to better reflect the perfor-
mance of the t-SNE nonlinear dimensionality reduction technology, this section compares
and analyzes the six, current mainstream dimensionality reduction methods: random
projection (RP), principal component analysis (PCA), linear discriminant analysis (LDA),
isometric mapping (ISOMAP), multidimensional scaling (MDS), and totally random trees
embedding (TRTE). The experimental results are shown in Figures 8 and 9, respectively.

It can be seen from the experimental results that the dimensionality reduction per-
formance of t-SNE is significantly better than the other six methods. Specifically, results
in Figure 8a–c show that the three dimensionality reduction methods of RP, PCA and
TRTE have relatively scattered data distribution and a serious overlap problem exists. As
indicated in Figure 9a–c, the target feature distribution after LDA, ISOMAP, and MDS di-
mensionality reduction technology is more compact than the PR, PCA and TRTE methods,
but there is still the problem of local target category aliasing. On the contrary, as shown in
Figure 8a, the distribution of target features after t-SNE dimensionality reduction is more
scattered among different categories, but relatively compact in the same category, and the
features are all tightly clustered together. This is because t-SNE is a nonlinear dimensional-
ity reduction technology that converts the distance between data points into conditional
probability for the feature distribution, and enables the local feature information of the
targets to be well preserved. Namely, t-SNE is capable of compressing the distance between
the same type of targets, and enlarging the distance between different categories, which
is very conducive to the RPA calculation of target features and also provides a guarantee
for the subsequent identification of unknown SAR targets. Therefore, it can be concluded
that t-SNE is a nonlinear dimensionality reduction technology with superior performance.
However, this does not mean that it is completed once and for all. For example, large
amount of calculation, long iteration time, and loss of part of the overall target information
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still exist. For the use of t-SNE, it needs to be considered according to specific application
scenarios and task requirements.
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after the t-SNE dimensionality reduction in the high dimensional feature space.
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6.3. Ablation Experiments

Fea-DA uses the KLD–RPA joint discrimination algorithm to accurately calculate the
range–azimuth of an unknown target. In order to more intuitively reflect the principle
and performance of the proposed Fea-DA unknown SAR target identification method, this
section conducts ablation experiments on the Fea-DA model. The specific test experiments
are as follows: (a) use KLD discrimination alone; (b) the traditional absolute cosine an-
gle (ACA) is adopted to consider the target position information, called the KLD–ACA
discrimination; (c) the proposed RPA measurement method is introduced to overcome
the problem of multitarget collinear aliasing, called the KLD–RPA joint discrimination. A
1-type unknown target test and 3-type unknown target test were performed on the above
three models. The experimental results are shown in Tables 8 and 9.
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Table 8. Results of 1-type unknown target test on Fea-DA, KLD-ACA and KLD models.

Models Known Target
Accuracy

Unknown Target
Accuracy

Overall Target
Accuracy

Fea-DA 97.58% 84.69% 96.53%
KLD-ACA 82.05% 81.63% 82.02%

KLD 80.04% 81.12% 80.12%

From Tables 7–9, it can be seen that the recognition accuracy of SAR targets is not
much different between KLD discrimination and KLD–ACA discrimination, and the latter
is slightly higher. However, both the KLD model and the KLD–ACA model have relatively
low recognition accuracy and poor performance for SAR targets. This is because the above
KLD and KLD–ACA methods cannot solve the multitarget aliasing problem existing in
the target feature space, which limits its recognition performance. On the contrary, the
KLD–RPA joint discrimination algorithm used in Fea-DA adopts the RPA measurement to
effectively solve the aliasing problem in the target feature space. Specifically, KLD–RPA
utilizes the overall similarity of the target and the similarity difference between different
dimensions to construct the range–azimuth information between the targets, and realize
the accurate identification of unknown targets. The experimental results can also reflect the
effectiveness of the KLD–RPA joint discrimination algorithm. It has achieved a significant
improvement in recognition performance compared to the other two methods in the 1-type
unknown target test and the 3-type unknown target test. The test results are as follows:
known target accuracy of 97.58%, unknown target accuracy of 84.69%, overall target
accuracy of 96.53% in the 1-type unknown target test and known target accuracy of 91.43%,
unknown target accuracy of 86.33%, and overall target accuracy of 90.72% in the 3-type
unknown target test (comprehensive test).

Table 9. Results of 3-type unknown target test on KLD-ACA and KLD models.

Model Unknown
Category

Known Target
Accuracy

Unknown
Target

Accuracy

Overall Target
Accuracy

KLD-ACA

5 90.79% 83.67% 90.08%
8 75.50% 73.47% 75.29%
10 94.26% 93.80% 94.20%

5, 8, 10 86.36% 82.00% 85.72%

KLD

5 92.44% 82.14% 91.41%
8 75.67% 73.98% 75.50%
10 93.63% 94.89% 93.80%

5, 8, 10 85.96% 81.67% 85.33%

7. Conclusions

This paper proposes an unknown SAR target identification method based on fea-
ture extraction network, Kullback–Leibler Divergence and relative position angle joint
discrimination, named Fea-DA. Firstly, the SAR target utilizes FEN trained on the limited
dataset to extract reliable and effective target features. Then the target features are roughly
identified by KLD to realize the simple classification of SAR targets. Next, for the SAR
targets that failed to be classified by the KLD rough identification, the t-SNE nonlinear
dimensionality reduction is performed to convert the high dimensional target feature into
the two-dimensional plane space. After that, the target features are processed to calculate
the RPA. Finally, the KLD–RPA joint discriminant algorithm is used to accurately identify
unknown SAR targets. For the known targets, a trained SVM classifier is employed to
finely recognize its category. Experimental results on the MSTAR dataset show that the
Fea-DA unknown SAR target identification method can achieve state of the art unknown
target identification accuracy. Specifically, the experimental results of 1-type unknown
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targets are: the known target accuracy of 97.58%, the unknown target accuracy of 84.69%,
the overall target accuracy of 96.53%; and the 3-type unknown target comprehensive test
results are: the known target accuracy of 91.43%, the unknown target accuracy of 86.33%,
and the overall target accuracy of 90.72%. In general, it can be concluded that the proposed
Fea-DA unknown SAR target joint discriminant method can achieve the high precision
recognition of the unknown target and the known target simultaneously, and possess a
satisfactory comprehensive recognition performance. The future research work includes
but is not limited to: (1) a more intelligent, prior knowledge driven automatic threshold
setting method to improve Fea-DA’s recognition performance for SAR targets, (2) rapid
and accurate identification algorithms under the condition of multiple types of unknown
targets, (3) calculation method of SAR target RPA measurement in high-dimensional space.
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