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Abstract: Low-gradient agricultural areas prone to in-field flooding impact crop development and
yield potential, resulting in financial losses. Early identification of the potential reduction in yield
from excess water stress at the plot scale provides stakeholders with the high-throughput information
needed to assess risk and make responsive economic management decisions as well as future
investments. The objective of this study is to analyze and evaluate the application of proximal
remote sensing from unmanned aerial systems (UAS) to detect excess water stress in soybean and
predict the potential reduction in yield due to this excess water stress. A high-throughput data
processing pipeline is developed to analyze multispectral images captured at the early development
stages (R4–R5) from a low-cost UAS over two radiation use efficiency experiments in West–Central
Indiana, USA. Above-ground biomass is estimated remotely to assess the soybean development by
considering soybean genotype classes (High Yielding, High Yielding under Drought, Diversity, all
classes) and transferring estimated parameters to a replicate experiment. Digital terrain analysis
using the Topographic Wetness Index (TWI) is used to objectively compare plots more susceptible
to inundation with replicate plots less susceptible to inundation. The results of the study indicate
that proximal remote sensing estimates above-ground biomass at the R4–R5 stage using adaptable
and transferable methods, with a calculated percent bias between 0.8% and 14% and root mean
square error between 72 g/m2 and 77 g/m2 across all genetic classes. The estimated biomass is
sensitive to excess water stress with distinguishable differences identified between the R4 and R5
development stages; this translates into a reduction in the percent of expected yield corresponding
with observations of in-field flooding and high TWI. This study demonstrates transferable methods
to estimate yield loss due to excess water stress at the plot level and increased potential to provide
crop status assessments to stakeholders prior to harvest using low-cost UAS and a high-throughput
data processing pipeline.

Keywords: remote sensing; high-throughput phenotyping; soybean yield; biomass; excess water
stress; Topographic Wetness Index (TWI)

1. Introduction

Low-gradient agricultural areas in the Midwest often experience extensive ponding
of water in surface depressions, thereby damaging crops and increasing the financial
risk from yield loss. In the summer of 2015, crops were planted, but excess water from
heavy precipitation caused destruction to five percent of the corn and soybean in Indiana,
resulting in approximately USD 300 million in crop damage [1]. The Midwest was devasted
in the spring of 2019, where excessively wet conditions prevented crops from being planted
or there was a complete loss of crops after planting. The saturated conditions caused by
snowmelt and heavy rains in Nebraska and Iowa resulted in damages that exceeded USD
2 billion.
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Inundated land area (ILA) is the extent of land surface covered by water following
snowmelt, extensive rain events and saturated soil. ILA occurs after water has accumulated
within local depressions which are typically less than one meter in depth (Figure 1). After
accumulation in local depressions, the shallow water will expand through the field as
shown in Figure 1a, resulting in different levels of impact during different development
stages of soybean. In the vegetative stages, ILA can suppress the development of the soy-
bean by preventing the development of nodes and leaves (Figure 1b). In the reproductive
stages, ILA can reduce yield by restricting root growth, development of pods and filling of
seeds, as well as contributing to lodging (Figure 1c).
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Figure 1. Image of inundated land area during different development stages of soybean in an agricultural field in West–
Central Indiana: (a) extent and shallow depth of ILA after planting, (b) vegetative stage where the impacts of ILA
prevented some plants from developing leaves, and (c) reproductive stage where the impacts of ILA have caused lodging in
some plants.

Identifying and assessing crops impacted by ILA is important for agricultural stake-
holders, because it provides quantitative information that can be used to evaluate effects
and future risk needed for more responsive economic, management and insurance de-
cisions. Crop status information from early growth stages can be used to identify and
quantify areas impacted by excess water stress, as well as offer predictive yield information.
For instance, soybean can be vulnerable to ILA in the vegetative and reproductive stages
of development [2,3]. Reproductive stages when the soybean is vulnerable are the fourth
to the fifth stages (R4 to the R5 stages), where the effects of in-field flooding can have a
large impact on soybean yield [4–8]. The R4 development stage occurs once the pods are
full, approximately Mid-July in the Midwestern U.S. Seed filling begins at the R5 stage.
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The R6 stage occurs once the seed has filled the pod, in August [9]. The observed impacts
of excess water to soybean include wilting of the leaves and epinastic curvature of the
stems. Soybean may tolerate exposure to excess water stress for approximately two days,
but increased occurrence and duration of exposure to excess water stress can permanently
damage these parts of the soybean, reducing soybean biomass and yield [2,3,10]. By identi-
fying areas impacted by excess water stress early in the early growth stages, stakeholders
can assess risk and make more responsive economic and management decisions. The
information gained can also be used to evaluate yield losses at the end of the growing
season to support future investments in drainage infrastructure.

Conventional methods to measure the effects of excess water stress on crop develop-
ment include labor-intensive and site-specific field measurements. The effects of water
stress on crop development and yield have been evaluated using above-ground biomass
(g/m2) and leaf area index (LAI) (m2/m2). Stem and leaf mass have been used to develop
allometric relationships and estimate the above-ground mass of crops. The allometric
relationship assumes that as stem mass increases, the leaf mass will also increase, resulting
in an increase in above-ground biomass [11–13]. Biomass and LAI have also been used
as variables in crop models to estimate yield by representing the variability in crop pro-
duction [14–16]. Though these plot sampling techniques are commonly practiced, notable
limitations are (1) the damaging process of collecting samples, (2) the time and expense of
sample collection, and (3) the non-representativeness of samples of the total area conditions
or crop types.

High spatial resolution and development stage data are needed to analyze crop
development at the plot and field scale, because the adverse impacts of inundation also
vary in scale and development stage. Unlike drought stress, which typically affects entire
fields or counties, the effects of ILA on agricultural production may be decreases in crop
yield or total loss in crop production in a section of a field, making it more difficult to
quantify [17]. Observations during critical growth stages, such as the R4–R5 stage, when
the pods are full and seed filling has begun, are needed to monitor and analyze changes in
environmental conditions that may affect yield [5,7,18]. In addition, the inundation may
only last for a few days, and previous studies have shown that excess water stress can be
detected in crops within two days [10]. As a result, information at high spatial resolution
and critical development stage data are needed to detect excess water stress within plots
throughout the field to determine the effects on yield.

Remote sensing can be used to identify crop stress by measuring the reflected or
emitted radiation. Spectral band algorithms can be created and used by comparing parts
of the spectrum which are related to the crops’ attributes or related stress [19]. Limitations
of using remote sensing measurements to analyze crop development have been identified
in both the spatial and temporal resolution of spaceborne satellites [20]. Satellites with
moderate spatial resolution may not be able to differentiate between fields and crop
types [21,22]. Prior research has also shown that the coarse spatial resolution from satellites
such as MODIS, using optical sensors, leads to reduced sensitivity and underestimated
measurements of above-ground biomass [21,23]. In addition, high temporal resolution is
needed to capture conditions at sensitive growth stages and freely available products from
high spatial resolution platforms are limited by coarser temporal resolutions. With the
advent of unmanned aerial systems (UAS), field-scale observations can be made daily if
observation conditions permit the capture of observations during critical windows of crop
development. Proximal remote sensing is the indirect measurement of an object in close
proximity to a sensor [24]. Proximal remote sensing from UAS platforms provides high
spatial resolution at the centimeter scale and the ability to produce near-real-time updates
of the crop status in a non-destructive manner.

The Midwest is experiencing a changing climate with an increase in average annual
precipitation and temperature, with the greatest increase in annual precipitation occurring
in the critical spring months [25,26]. The United States Department of Agriculture (USDA)
uses the term “prevented planted acres” to refer to an insured crop that could not be planted
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by a predetermined planting date because a natural disaster such as flooding prevented
the sowing. In 2019, the USDA reported a record number of prevented planted acres at
19.4 million acres, where more than 73% of prevented planted acres were in 12 Midwest
states that experienced especially wet spring conditions leading to increased inundation
and fields [27]. Further research is needed to quantify the impacts of excess water stress
in the early development stages at varying spatial resolutions. The aim of the study is to
quantify the effect of excess water stress in the early growth stages of soybean based on
proximal remote sensing from a UAS. The results of the study will help to answer crop
water stress questions such as: (1) Can proximal remote sensing be used to detect excess
water stress in soybean? (2) What is the potential yield effect from ILA? By identifying
and assessing soybean yield loss due to excess water stress, stakeholders can make more
responsive economic and management decisions.

2. Methods

The following sections discuss the study site, data acquisition, developed tools and
the approach used to measure crop stress.

2.1. Site Description and Data Acquisition

The area of interest (AOI) for this study is a research farm field located in West–Central
Indiana (40.249◦N, 86.877◦W) which is approximately 7 ha (17 acres). The AOI is in a low-
gradient area with the dominant soil type being a Drummer soil, with a silty clay loam
texture [28]. The poorly drained soil has subsurface drainage with a 20 m spacing at a depth
of approximately 1 m. Figure 2 shows an aerial view of the site location along with two
experiments established to measure radiation use efficiency (RUE) within the AOI. The two
RUE experiments analyzed, hereafter called RUE-1 and RUE-2, were neighboring replicate
experiments (boundaries marked in Figure 2). RUE-1 and RUE-2 contained soybean plots,
approximately 5 m by 5 m. The gridded design contained plots with 18 crop rows and
22 crop ranges. The RUE experiments were not designed to investigate excess water stress
but, due to topographic variability and weather events in 2018, were adequate to support
this study. Each RUE experiment contained three soybean classes defined as High Yielding
(HD), Diversity (DA) or High Yielding under Drought (HYD) [29]. The number of plots
for each class in RUE-1 was 191, 144 and 48 for HY, DA and HYD, respectively, for a total
of 383 plots for all genetic classes. The number of plots for each class in RUE-2 was 190,
139 and 48 for HY, DA and HYD, respectively, with a total of 377 plots for all classes.
Each of the three classes contained a unique recombinant inbred line (RIL) with a plot
replicate in both experiments (RUE-1 and RUE-2). The difference in the total number of
plots between RUE-1 and RUE-2 was due to incomplete emergence and, as a result, they
were not harvested. Plot replicates with corresponding dates of biomass sampling and
harvesting were used in the analysis. The plot replicates enabled a comparison analysis for
differences in environment. A plot in a location that was more susceptible to inundation
could be compared with its genetic replicate in a location that was less susceptible to
inundation. Both experimental sites were approximately 1 ha in area and were managed
using an annual corn and soybean rotation.
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Figure 2. Map view of the field experiment, located in West–Central IN. Two areas of interests were analyzed, which
are outlined in black and blue. The black outline represents the area of experiment 1, RUE-1. The blue outline is the
second experiment, RUE-2. The extent of inundation was mapped using TOPCON Real Time Kinematic (RTK) surveying
equipment. Ground control points were used to define extent of experiments.

In 2018, the field was planted with soybean and imaged using a UAS at least once a
week from June to August with an RGB and multispectral camera. The UAS platform used
in this study was an eBee from senseFly. This autonomous fixed wing system was used to
acquire data over the AOI at an altitude of approximately 120 m at spatial resolution of
approximately 2.54 cm/pixel and 6.00 cm/pixel for RGB and multispectral, respectively.
The RGB camera used was a senseFly S.O.D.A. and the multispectral camera used was a
Sequoia from Parrot. The four multispectral channels captured by the Sequoia camera are
Green (530 nm–570 nm), Red (640–670 nm), Red Edge (730 nm–740 nm) and Near-Infrared
(770 nm–810 nm). Flights were configured and flown with eMotion software. The forward
and side overlap for flights were set to at least 85% and 70%, respectively. Ground control
points (GCPs) were installed at the corners of designed experiments and surveyed using
the TOPCON Real Time Kinematic (RTK) surveying equipment (Figure 2).

Reflectance panels and field spectrometers were used to measure reflectance to aid
in image calibration. The panels were laid out on the field during flight operations. The
reflectance panels reflect at a specific and consistent percentage of light across the Visible
and Near-Infrared spectrum. Five panels were used, with reflectances of 7%, 12%, 22%, 36%
and 48%. Handheld field spectrometers were used as well to measure the reflectance of the
panels as the multispectral data were being collected via the camera mounted to the UAS.
The reflectance values from the panels, along with digital number values of the panels,
extracted from the generated orthomosaics, were used to calibrate the remotely sensed
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data to surface reflectance using an empirical relationship between measured reflectance
with respect to the digital number [30]. The values generated from the empirical equation
can be used as inputs to compute spectrally based vegetation indices [31].

In addition, field measurements were collected to evaluate crop development as well
as to map the extent of inundation. Soybean biomass samples were collected July 16th
(60 days after planting) between the R4 and R5 stage. Above-ground biomass (g/m2) was
sampled throughout each experiment (RUE-1 and RUE-2), collecting 383 and 377 samples,
respectively. After collection, the soybean plants were oven-dried and weighed. The
dry weight was used in the analysis. The field was harvested with a combine, and yield
measurements were collected from a yield monitor for each plot. The TOPCON RTK was
used to map the extent of inundation following rain events by surveying the perimeter of
inundation, as shown in Figure 2. Some observed ILA was not mapped in order to reduce
the amount of foot traffic within the field.

2.2. UAS Data Processing Pipeline

During a flight, the UAS captures high-resolution imagery from RGB and multispectral
sensors over an AOI, and within the AOI may be many experiments. GCPs show the extent
of multiple experiments (Figure 2). For our study, in order to analyze and evaluate excess
water stress of soybean at the field scale from high-resolution imagery, flexible tools were
needed to: (1) map and extract soybean plots within a defined area, (2) perform atmospheric
correction, and (3) apply vegetation indices and output the data to an interpretable format
to make inferences. As a result, a high-throughput phenotyping processing pipeline was
created with two developed tools, Crop Image Extraction, version 2 (CIE), and Vegetation
Index Derivation (VID). CIE and VID are Python programs which enable users to extract,
calibrate and quantify vegetation indices of interest at the plot level [31,32]. The data
processing pipeline is highly modular and efficient. Further detail about each tool is
provided below, and a GitHub repository is available to facilitate collaboration and enhance
tool development.

CIE is the first step in the high-throughput phenotyping processing pipeline. CIE has
the ability to extract plot images from designed experiments with RGB, multispectral and
thermal imagery captured by the UAS. Plot images are extracted from user-configured
inputs that describe the AOI and generated outputs from image stitching software such as
camera parameter files. For our study, Pix4D Mapper software was used [33]. User-defined
inputs consisted of experimental metadata such as location, number of crop rows, ranges
and units as well as length and spacing between plots. Figure 3 illustrates the components
of a mapped experiment using CIE and outputted vegetation index with VID. A crop unit
is defined as a single row of a soybean plot, so if the plot is described as a four-row plot, it
is expected to see four crop units within each plot. Crop rows and ranges are the number
plots along the x direction and y direction, respectively. The crop unit centerline is used
to measure distance between crop units in both x and y direction. After the configuration
is completed for the AOI, plots are extracted by segmenting the canopy and gridding
the calculated locations of each plot (Figure 3). As the crop develops and changes color,
CIE uses multiple segmentations and crop localization functions to identify the crop unit
centerline to ensure that the correct number of crop units are identified within each crop
plot [31]. The experimental metadata information along with the dimensions of the crop
unit (crop length and spacing between crop rows) are then used to calculate the crop
plot midpoint and map the remaining crop plots. The result is accurately and precisely
identified crop plot midpoints that enable automated and rapid extraction of plot images.
Depending on the size of the experiment, the generated CIE outputs can be thousands of
plot images.
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Figure 3. Illustration of components of a defined experiment from Crop Image Extraction and Vegetation Indices Derivation.
The user has defined an experiment made of four crop rows and two crop ranges, and each crop plot contains six crop units.
The experiment is made up of four crop rows and two crop ranges. CIE extracts replicate plot images from the UAS during
a flight over an area of interest. CIE enables the user to define an experiment, and the tool then highlights the canopy, grids
the experiment and extracts the replicate plot images from each gridded plot. VID is used to calibrate images and compute
vegetation indices of interest.

The plot images from CIE were fed into VID, to calibrate images as well as create and
use functions to calculate indices of interests. VID is the second step in the data processing
pipeline. VID uses image attributes (i.e., row, range, date, image band, image replicate)
with customized functions such as band algorithms to quantify phenotypic traits from the
extracted plot images. VID can also calibrate plot images by applying empirical equations
generated by extracting reflectance and digital number values from calibration panels
positioned within the field during each flight [29]. The automated and efficient structure in
VID allows for rapid processing and the ability to output data into text and image format
for analysis, as shown in Figure 3.

2.3. Estimating Above-Ground Biomass and Percent of Expected Yield

Identifying the effect of excess water stress on soybean remotely requires a predictive
measurement that can assess the above-ground crop development, such as the leaves and
stem of the soybean, which can show signs of damage from excess water stress. LAI
(m2/m2) and above-ground biomass (g/m2), as described previously, are common in-
situ measurements that can also be used to assess crop development. Remotely sensed
observations of above-ground biomass often incorporate radiation use efficiency (RUE)
models to estimate biomass by converting the absorbed photosynthetically active radiation
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(APAR) to biomass [14,34,35]. Vegetation water content (VWC; kg/m2) is a measurement
of the total amount of water in the stems and leaves of vegetation [23,36,37]. VWC can be
estimated with both active and passive sensors [38] and is related to the above-ground
biomass [39,40]. For example, Chan et al. [41] use the normalized difference vegetation
index (NDVI) to develop an allometric relationship between the foliage and stem water
content in order to estimate the total above-ground water content remotely, as shown in
Equation (1) [39,41].

VWC
(

kg/m2
)
=

(
1.9134 × NDVI2 − 0.3215 × NDVI

)
+ stem factor × NDVImax − NDVImin

1 − NDVImin
(1)

Equation (1) consists of two terms which combined estimate the total above-ground
water content. The first term describes the foliage water and uses the NDVI values to relate
to the chlorophyll content within the foliage of the plant. The constants were calculated
by optimizing a polynomial function to evaluate the relationship between NDVI and
observed VWC [38]. The stems of the soybean support the foliage, forming an allometric
relationship. The second term makes use of a fixed stem factor (3.50 for crops) and NDVI
annual extremes (maximum and minimum) to estimate the stem water content [41]. The
stem factor is a constant used to estimate the peak amount of water residing in the stems,
which is dependent on vegetation type. VWC is estimated using NDVI because a higher
NDVI indicates a plant with more foliage that results in a higher VWC.

Previous research used Landsat Thematic Mapper (TM) images to estimate VWC at a
spatial resolution of 30 m [38]. VWC has also been used to assess agricultural production for
yield estimation and agricultural water management [42]. Therefore, in order to remotely
detect soybean plots impacted by excess water stress, a transferable and representative
model that incorporates impacts to the leaves and stems of the soybean from excess water
stress was developed by generalizing Equation (1), as follows in Equation (2)

Estimated Biomass
(

g/m2
)
=

(
a × NDVI2 + b × NDVI

)
+ψ× NDVImax − NDVImin

1 − NDVImin
+ c (2)

where a, b and c are fitted parameters based on a non-linear least squares optimization
between the plot average NDVI and in-situ measurements of biomass. The variable ψ
represents an adjustable stem factor that accounts for changes in the environment by
measuring the impact that these conditions may have on the soybean’s estimated stem
water content. Equation (3) shows the calculation of the adjustable stem factor.

ψ =
NIRref

Greenref
(3)

where NIRref is the average plot near-infrared band reflectance value and Greenref is the
average plot green reflectance value. The band ratio of the NIR and green band was used
to represent the stem factor because the bands have a similar reflectance response when
vegetation is healthy, but the band ratios behave differently under different environmental
conditions such as flooding. Incorporating the adjustable stem factor can help to monitor
and analyze changes in the development of soybean throughout the growing season, which
is influenced by environmental conditions.

The stem water content was made variable to suit UAS applications by incorporating
an adjustable stem factor and measurement of NDVI extremes measured each flight. Equa-
tion (1) was developed for regional and global scale retrievals of VWC using NDVI from
spaceborne platforms such as MODIS and Landsat [38,41]. With a spatial resolution of 30 m
to 1 km, a constant stem factor was appropriate. In reality, this value is not constant and
changes with the crop’s growth and development as well as with environmental conditions.
Multispectral imagery from a UAS is at a very high spatial resolution (1 cm–10 cm) where
thousands of vegetation index values are generated at the plot scale (~25 m2). For this
study, an algorithm was needed for the plot scale which is sensitive to an environment that
may change daily within the field, such as ILA and its impact on soybean development
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as well as variation in soybean genetics. In order to integrate these requirements for our
application, a varying stem water content was developed for each of the three soybean
classes (HY, HYD, DA).

As stated previously, each field experiment (RUE-1 and RUE-2) contained replicated
plots from three classes (HY, HYD and DA) where biomass sampling was conducted in
both field experiments in the early growth stages (R4–R5). In order to consider the variation
in soybean genetics, Equation (2) was fitted for HY, HYD, DA and all classes from data
in RUE-1 using optimized estimated parameters from non-linear least squares. RUE-1
was selected because the measured biomass (g/m2) had a larger range than RUE-2. The
percent bias (PBIAS) and root mean square error (RMSE) were metrics used to evaluate the
estimated biomass (g/m2) with measured biomass (g/m2) for each class and experiment.
The evaluated metrics were also used to determine if parameters were representative for
all classes of RUE-1, as well as assess the transferability of experiment parameters from
RUE-1 across all genetic lines in RUE-2.

The percent of expected yield (%), a measure of relative yield, was used to assess
and identify areas that may experience yield impact from excess water stress at the R4–R5
growth stage. The percent of expected yield, rather than yield, was used to measure the
yield impact from excess water stress relative to the site yield potential to make the model
more transferable. This assessment was made by developing a predictive model using the
relationship between the percent of expected yield and relative biomass for plot replicates
located in areas of different wetness conditions. The Topographic Wetness Index (TWI) was
used to identify plot replicates in different wetness conditions, where plots located in an
area of low TWI represented the yield potential for the given environment in the absence of
excess water stress. Conversely, plots located in areas of high TWI represented plots more
susceptible to inundation. Further discussion of TWI is detailed Section 2.4. The percent of
expected yield is the calculated ratio of the difference in yield between plots of high and
low TWI divided by the yield in low TWI. The relative biomass (fraction) is the calculated
ratio of the estimated biomass (g/m2) with respect to the field average biomass from RUE-1
and RUE-2 (g/m2) using Equation (2). The relative biomass was used as opposed to the
estimated biomass directly, to increase transferability and reduce the bias of the biomass
model for different remote sensing platforms such as UASs and satellites that may have
different spectral ranges or sensitivities and spatial resolutions. Equation (4) is the result
of a least squares fit between the data of the relative biomass and the percent of expected
yield for 28 replicate pairs. This equation was used to quantify and identify yield impact
from excess water stress at the R4–R5 growth stage. The plot estimates of relative biomass
were used with Equation (4) to estimate the percent of expected yield and identify areas
within each experiment that may experience yield decline from excess water stress.

Percent of expected yield (%) = 0.32(x) + 72 (4)

2.4. Identifying Areas of Water Accumulation Using Topographic Wetness Index

Digital terrain analysis is an effective method used in hydrology applications to ex-
plore potential variation in water flow and accumulation based on topographic information.
Topographic indices reflect the ratio of contributing area to surface slope and so have been
used to predict areas of water accumulation [43,44]. The Topographic Wetness Index (TWI)
is a function of the natural log of the contributing drainage area per contour length α over
the surface slope tan β, as listed in Equation (5) [45].

TWI = ln
(

α

tanβ

)
(5)

The TWI is calculated from a digital elevation model (DEM). The DEM pixels are used
to measure α and tan β. The TWI is used to identify hydrologically similar areas, and in
our study to identify areas susceptible to ILA, with TWI calculated from a high-resolution
DEM (1.5 m). In the AOI, TWI values range from 2 to 23, where regions of lower values are
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less susceptible to in-field flooding (Figure 4). As TWI values increase, the susceptibility to
soil saturation and in-field flooding increases. The observed extent of inundation measured
with the RTK as compared to the TWI is also shown in Figure 4, with an average TWI of
13.5 in the surveyed region. TWI was incorporated into the plot scale analysis by using CIE
outputs to extract TWI values for each plot within the defined experiments. Plots extracted
with CIE in experiments RUE-1 and RUE-2 are shown as black circles in Figure 4.
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Figure 4. Map of Topographic Wetness Index (TWI) calculated from a 1.5 m resolution DEM at the study location. Lower
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susceptibility of in-field flooding. Mapped inundated land area (ILA) shows agreement with the calculated TWI. Crop
Image Extraction (CIE) can be used to extract TWI from plots within a defined experiment. The black circles represent the
extracted plots from RUE-1 and RUE-2.

In this study, TWI was used to analyze the variation in soybean yield between repli-
cates to explore the potential impact of excess water stress. To analyze the differences,
TWI thresholds were applied to identify plots less likely to experience ILA with those that
were more likely to experience ILA. Thresholds were determined using spatial analyst in
ArcMap 10.5 to calculate average TWI in regions observed to experience inundation, and
those observed to be consistently dry. The low TWI threshold was set to 7.4 and the high
TWI threshold was set to 13.5. Figure 5 shows a scatter plot comparing soybean yield for all
plots under analysis, labeled by class and the plot’s associated TWI value. The red vertical
lines indicate the location of the applied thresholds for low and high TWI values. The
figure shows that plots with a low TWI value have large range in yield from approximately
2000 kg/ha to 5700 kg/ha, with a median value of 3970 kg/ha. Meanwhile, plots with a
high TWI value have less variation in yield, ranging from approximately 2500 kg/ha to



Remote Sens. 2021, 13, 2911 11 of 23

4800 kg ha, and a lower median yield of 3770 kg/ha. Plots located in areas of high TWI
were predominantly of the HY and DA classes, while only three plots of the HYD were
located in an area of high TWI.
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In order to isolate the potential impact of differing wetness conditions, 28 replicate
pairs were extracted from the RUE-1 and RUE-2 experiments, in which one plot experienced
low TWI (<7.4) and the other experienced high TWI (>13.5). This filtering process allows
analysis to focus on replicates that have the potential for different wetness conditions.
The replicate plots create opportunities to analyze and compare the soybean development
and impact of excess water stress between replicate plots with similar traits. In addition,
planting of plots did not take into account TWI, which means that all plots were equally
likely to be planted in areas that may or may not experience excess water stress.
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3. Results
3.1. Above-Ground Biomass Prediction

Results of the optimization process for each class and expanding all genetic lines are
listed in Table 1, which includes the parameter estimates (a, b and c), percent bias (PBIAS)
and root mean square error (RMSE). The estimated parameters used to estimate biomass
for each class and all classes were similar, with the HYD having the most contrast from
accompanying classes listed in Table 1, highlighting the subtle differences in estimated
parameters for different genetics. HYD has the lowest PBIAS and RMSE amongst all
classes at <0.1% and 64 g/m2, respectively. The constant stem factor (3.50) was also
evaluated versus the adjustable stem factor. Overall, the constant stem factor results are
very similar to the adjustable stem factor, with a PBIAS and RMSE ranging from −0.5%
to −0.6% and 63 g/m2 to 75 g/m2, respectively. Figure 6 compares estimated biomass
(g/m2) with respect to measured biomass (g/m2) for classes HY, HYD, DA and all classes
from RUE-1. The red line is a 1:1 reference for each comparison to show overestimation
or underestimation of estimated biomass with measured biomass. For each class and
all classes in RUE-1, RMSE and PBIAS ranged from 64 g/m2 to 73 g/m2 and <0.1% to
0.8%, respectively. The low PBIAS and RMSE for all classes in RUE-1 confirmed that the
parameters were representative for all classes under analysis, and it is not necessary to
develop equations for each class separately. Figure 6a,d compare the estimated biomass
and measured biomass for the HY class and all classes. The equation for all classes was
able to accurately represent the range of estimated biomass similar to the dominant class
that had 191 plots.

Table 1. Estimated parameters for High Yielding (HY), High Yielding under Drought (HYD), Diversity (DA) and all classes
for RUE-1 and RUE-2 with calculated percent bias (PIBAS) and root mean square error (RMSE). Parameters from RUE-1
were transferred to RUE-2. The constant stem factor was also analyzed to compare with the adjustable stem factor.

Type and Number of Plots Parameter a Parameter b Parameter c PBIAS (%) RMSE (g/m2)

RUE-1

HY
191 plots 1817.06 −1022.2 226.9 0.8 73

HYD
48 plots 2382.77 −1863.25 497.97 <0.1 64

DA
144 plots 1993.46 −1267.85 308.15 <0.1 70

All classes
383 plots 1955.75 −1217.37 290.23 0.8 72

HY—constant stem factor
191 plots 464.06 761.75 −372.22 −0.6 75

HYD—constant stem factor
48 plots 2379.15 −1856.73 493 −0.5 63

DA—constant stem factor
144 plots 1993.16 −1264.52 305 −0.5 70

All classes—constant stem
factor

383 plots
1955.75 −1217.37 286.73 −0.5 71

RUE-2

HY
190 plots 1817.06 −1022.2 226.9 16.6 82

HYD
48 plots 2382.77 −1863.25 497.97 10.2 65

DA
139 plots 1993.46 −1267.85 308.15 11.5 72

All classes
377 plots 1955.75 −1217.37 290.23 14.4 77
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Figure 6. Scatter plots comparing estimated biomass with measured biomass at the R4–R5 development stage for each class
and all classes in RUE-1 shown as triangles. (a) High Yielding, (b) High Yielding under Drought, (c) Diversity and (d) all
classes. Parameters were estimated for each class to consider varying soybean genetics and for all classes to determine if
one set of parameters could be representative for all classes.

The parameters for each class and for all classes developed from RUE-1 were trans-
ferred to RUE-2. Table 1 also lists the PBIAS and RMSE for RUE-2, which ranges from
10.2% to 16.6% and 65 g/m2 to 82 g/m2, respectively. Figure 7 shows subplots comparing
estimated biomass (g/m2) with respect to measured biomass (g/m2) for classes HY, HYD,
DA and all classes from RUE-2. Overall, the transferred parameters were sufficient at rep-
resenting the range of estimated biomass for varying genetic classes as well as all classes,
as shown in Figure 7. The transferred equation shows slight overestimation of estimated
biomass for HY, DA and all classes for RUE-2 displayed in Figure 7a,c,d, respectively.
The calculated PBIAS is satisfactory, with all types under analysis below 20% and RMSE



Remote Sens. 2021, 13, 2911 14 of 23

comparable to values calculated in RUE-1. The transferred equation shows the ability to
accurately estimate biomass for a varying number of plots, such as in the HYD (contains 48
plots) and all classes (contains 377 plots in RUE-2), where the PBIAS is 10.2% and 14.4%,
respectively.
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Using the representative equation for all classes, above-ground biomass was estimated
to analyze the impacts of excess water stress on soybean development. Figure 8 is a spatial
map displaying the estimated biomass from a flight date on 17 July 2018 at the R4–R5
stage. In Figure 8, the estimated biomass ranges from 102 g/m2 to 476 g/m2. In RUE-2, the
cluster of low biomass values indicated by the red circles correspond with the high TWI
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values and mapped ILA using the RTK. Additionally, the northeast corner of RUE-1 has
low estimated biomass. This section of the field experienced ILA between the R1 and R2
stages of the growing season and corresponds to high TWI values and observed ILA.
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RUE-2. Outputs generated using CIE and VID. Plots of low estimated biomass values are shown in red and the transition to
green represents an increase in estimated biomass. Plots with low estimated biomass correspond with mapped inundated
land area.

3.2. Sensitivity of Above-Ground Biomass to Water Stress

To explore if the estimated above-ground biomass is sensitive to water stress, biomass
from plots with observed occurrences of ILA in RUE-2 was compared with biomass from
the plot replicate in RUE-1. In-field flooding occurred predominantly in RUE-2, but there
was one observation of in-field flooding in RUE-1. In 2018, ILA was observed on June
25th, July 6th and July 12th in RUE-2. The ILA observed on June 25th was also observed in
RUE-1 at the R1–R2 stage, from a large rainfall event (32 mm) on June 23rd, demonstrating
that ILA can persist for at least two days even with subsurface drains. In addition, heavy
cumulative precipitation of 29 mm occurred during critical periods of the reproductive
stages (R4–R6). This comparison analysis used the measured and estimated biomass
collected on July 16th and 17th, respectively, at the R4–R5 stage and harvested yield from
the plot replicates to calculate the percent difference in yield. Figure 9 displays the increase
occurrence of inundation for each plot in RUE-2, compared to plots in RUE-1, resulting in a
decrease in biomass for each plot in RUE-2. The figure shows that the plots in RUE-2 have
lower biomass, on average, than plots in RUE-1, with an average measured and estimated
biomass of 140 g/m2 and 160 g/m2, respectively. Conversely, the average measured and
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estimated biomass for plots in RUE-1 are both 320 g/m2. Figure 9 also highlights that
measured and estimated biomass show agreement, with an RMSE of 20 g/m2 and 30 g/m2

for plots analyzed in RUE-1 and RUE-2, respectively. This analysis was completed using
plots where ILA had been observed. The comparison of replicate plots revealed noticeable
differences from the impacts of excess water stress on measured and estimated biomass at
the early growth stages (R4–R5) of soybean and demonstrates that Equation (2) is sensitive
to the impacts of excess water stress.
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Figure 9. Four pairs of replicate plots in RUE-1 and RUE-2 analyzing the effects of excess water
stress on the percent difference in yield with respect to the measured and estimated biomass (g/m2)
at the R4–R5 stage. Increasing biomass estimate for RUE-1 is plotted to the left, for RUE-2 to the
right, with zero biomass in the center of the plot. Decline in yield, reported as a percent difference
between RUE-2 and RUE-1, is indicated by vertical position of the bar relative to the RUE-1 replicate.
Black circles indicate each observed occurrence of inundated land area for the plot. The biomass was
sampled on 16 July 2018 and remotely sensed estimates of biomass were made on 17 July.

To assess the effects of excess water stress on biomass, an objective approach is needed
to distinguish between plots that are more susceptible to ILA and plots that are less
susceptible to ILA and recognize that soybean can be impacted by excess soil moisture
conditions even before surface ponding is visible. The TWI can be used to distinguish plots
using TWI thresholds with the estimated biomass. Replicate plots in areas of high TWI
were analyzed and compared with plots in low TWI to quantify the effects of excess water
stress on biomass. TWI thresholds of 7.4 and 13.5 were used for low and high areas of
TWI, respectively. The change in TWI (∆TWI) between replicate plots was also evaluated
by taking the difference between plots in areas of high TWI minus low TWI. Biomass
was estimated using Equation (2) with parameters representing all classes in RUE-1 and
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RUE-2. A total of 28 replicate plots were identified that were located in areas of high
susceptibly to excess water stress with a reference replicate in an area less susceptible to
excess water stress.

The relationship between estimated biomass and TWI for the replicate plots in areas
of high TWI at early growth stages (R4–R5) is analyzed in Figure 10. Estimated biomass
and TWI range from approximately 120 g/m2 to 360 g/m2 and 13.5 to 18.5, respectively. In
general, plots located in areas of increasing TWI (>15) are more susceptible to excess water
stress and have a decrease in estimated biomass. Figure 10 also shows that as the ∆TWI
between high and low TWI replicates increases more than 9, plots with a reduced biomass
are located in areas more susceptible to excess water stress.
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3.3. Quantifying the Impacts of Excess Water Stress on Yield

It has been established that biomass from the R4–R5 stage is sensitive to differences
in wetness conditions, and that the fitted model is able to capture these differences. The
next step is to translate these early season differences into differences in yield due to excess
water stress alone. Figure 9 shows that the decreased biomass at the R4–R5 stage from plots
experiencing ILA in RUE-2 also resulted in a decrease in yield ranging from approximately
5% to 18%, relative to the RUE-1 replicate. In most cases, the change in yield correlates
with the change in biomass. Interestingly, the exception to this relationship is for a pair of
replicate plots that both experienced occurrences of ILA, where in-field flooding had been
observed once in RUE-1 and three times in RUE-2 (Figure 9). The measured and estimated
biomass for the plots is relatively low compared to other plots, where the biomass is no
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more than 130 g/m2 at the R4–R5 stage. The decline in yield for RUE-2 relative to RUE-1,
however, is approximately 15%. This implies that the RUE-1 plot actually recovered better
from exposure to a single ILA occurrence, relative to the RUE-2 plot, which had three
occurrences of ILA.

The percent of expected yield was estimated based on observations from the early
growth stages (R4–R5), using Equation (4), to quantify and identify yield impacts from
excess water stress for stakeholders. Figure 11 demonstrates the relationship between the
percent of expected yield and relative biomass at R4–R5 for plots in areas of high TWI.
The range of percent of expected yield is from 52% to 151%, while the range of relative
biomass is 0.41 to 1.25. Figure 11 demonstrates the linear model (Equation (4)), which
shows a positive linear correlation. The correlation across all plots is not significant, with a
correlation coefficient (r) of 0.32. The F-statistic of the regression is not significant at 0.05
but is significant at 0.1. In general, as relative biomass increased, ∆estimated biomass also
increased, which transitioned to a positive increase in percent of expected yield.
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Figure 12 demonstrates how this model can be used to map potential yield loss due
specifically to excess water stress across a field or experiment. The range of percent of
expected yield is from 83% to 125%. The average percent of expected yield is 103%. The
lowest values of percent of expected yield between 83% and 90% occur predominately
in areas susceptible to inundation. For RUE-1, plots with the lowest percent of expected
yield occur in the northeast corner, which corresponds to the high TWI and mapped ILA.
In RUE-2, plots with the lowest percent of expected yield occur towards the center of
the field and also correspond with high TWI and mapped ILA. In RUE-1, the percent of
expected yield generally increases in the direction from east to west. In RUE-2, the percent
of expected yield generally increases from west to east.
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4. Discussion
4.1. UAS Data Processing Pipeline

A data processing pipeline was developed for high-throughput phenotyping at the
plot level with CIE and VID [31]. The developed tools enabled calibration and plant
phenotyping at the plot scale for multiple flight dates to estimate potential yield loss
by excess water stress. This form of data processing can be time- and data-intensive, as
indicated by Shi et al. [45]. In their study, 38,000 plots were manually extracted from
orthomosaics [46]. Creating automated tools to extract plot images, calibrate images and
apply band algorithms can be additional challenges that limit the time needed to answer
primary objective science questions. CIE and VID are Python tools that were developed to
reduce the aforementioned burden and place more time and focus on the science questions.
Shi et al. [46] and Maimaitijiang et al. [7] have used orthomosaics for plant phenotyping
of soybean generated from stitched images with RGB, multispectral and thermal sensors
on UAS platforms. In this study, orthomosaics were also used for estimating biomass
from multispectral stitched images. CIE now has the capability to extract plots from the
original images from RGB, multispectral and thermal imagery, which can generate multiple
replicate plot images within an experiment. Future research should analyze the original
images and test data fusion and/or deep learning to predict yield.
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4.2. Predicting Above-Ground Biomass

Expanding the methodology developed from Jackson et al. [37] and Chan et al. [40]
for estimation of VWC to estimate above-ground biomass for different soybean classes
(HY, HYD and DA) and across all classes proved to be representative and transferable. The
incorporated adjustable stem water content variable provided only minor improvements
when compared to the constant stem factor. This finding provides insight that the estimated
biomass was not significantly influenced by the adjustable stem factor. Parameters used to
estimate biomass representing all genetic classes within RUE-1 had low PBIAS and satisfac-
tory RMSE. The equation used for all classes in RUE-1 was transferred to RUE-2 to estimate
biomass for all plots. Estimated biomass in RUE-2 had satisfactory PBIAS and RMSE but
was generally overestimated when compared with in-situ data. The overestimation in RUE-
2 is attributed to biomass values (and associated parameters) from RUE-1 being generally
higher than biomass in RUE-2, which caused estimated values in RUE-2 to have a positive
bias. The soybean plots in RUE-1 had less occurrences of inundation, with an average
biomass and yield of 278 g/m2 and 4150 kg/ha, respectively. Comparatively, RUE-2 had
more occurrences of ILA and lower average biomass and yield of approximately 263 g/m2

and 3680 kg/ha, respectively. The positive bias suggests that the biomass algorithm is
potentially less sensitive to excess water stress and may reduce the significance of Equation
(4). Representative variability in estimated biomass was observed in RUE-1 and RUE-2,
where low values corresponded with mapped ILA. The transferability demonstrates the po-
tential use in future research to develop models within a defined experiment and scale-up
the model across multiple fields for plant phenotyping.

In our study, models were generated to estimate above-ground biomass at the R4–
R5 stage using a flight one day after sampling. Zhang et al. [47] used UASs to analyze
soybean yield prediction models that incorporated measurements from one or two growth
stages. They found that the R5 stage was the best growth stage for the single-stage model,
and the R4 and R5 stages were the best combination of stages for the two-growth-stage
model. The close interval between in-situ sampling and remotely sensed observation was
an important factor for estimating adequate parameters to estimate biomass. Using the
developed models for different development stages does introduce uncertainty. This could
not be tested since in-situ biomass data were only collected at the R4–R5 stage to protect
the integrity of the experiment. To build and validate representative models to predict
biomass, dense in-situ sampling to capture variability at important development stages
with corresponding flight dates should be considered. Previous studies have shown the
blooming to seed filling stages (R2–R5) to be critical for soybean yield prediction [5,7,18].

4.3. Quantifying Impacts of Excess Water Stress on Yield

Proximal remote sensing with digital terrain analysis was used to detect and estimate
potential gross yield loss from excess water stress at the plot scale. The calculated and
mapped TWI agreed with in-situ observations of ILA. TWI alone was not strongly cor-
related with percent difference in yield. TWI was measured at 1.5 m resolution, which
highlighted the in-field variability of TWI. The TWI thresholds were used to provide an
objective approach to distinguish inundation susceptibility between replicate plots. How-
ever, some plots that did experience flooding did not meet the threshold criteria and as a
result were not used in the comparison analysis. This study also showed that plots located
in areas of high TWI (>13.5) can have higher yields than plots located in areas of low TWI
(<7.4) if the occurrence of ILA is limited and providing optimal soil moisture conditions
for the soybean to thrive. For instance, plots in RUE-1 had less observed occurrences
of ILA than plots in RUE-2, and as a result, some plots developed in areas of high TWI
had a higher yield than plots in RUE-2 located in areas of low TWI. For future studies,
soil moisture and inundation duration should be considered when mapping regions that
experienced inundation. Previous work used remotely sensed observations of soil moisture
to identify flooded areas in croplands from Soil Moisture Active Passive (SMAP). Though
SMAP observations are at a coarser resolution than what is needed for this study, the results
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demonstrated the potential of soil moisture to identify areas susceptible to inundation
in cropland areas [48]. Paul et al. [49] used remotely sensed observations to measure the
duration of inundation in corn and soybean. Observations of duration and intensity of
inundation could provide better insight into the effects of excess water stress on crop yield.

Using TWI to identify plots with contrasting wetness potential improved the detection
and estimation of yield loss caused by excess water stress. By comparing and evaluating
plots impacted by ILA with replicate plots not impacted by ILA, distinguishable differ-
ences in estimated biomass were identified in the early growth stages (R4–R5), which
correspond to the results of previous studies. In-situ experiments from Desmond et al. [4]
and Scott et al. [50] calculated crop susceptibility factors for flood duration effects on inde-
terminate and determinate soybean, respectively. Results of their studies found agreement
that the indeterminate and determinate soybean were most susceptible to flooding during
early growth stages.

Mapping the percent of expected yield with CIE provided the ability to evaluate the
soybeans spatially at the R4–R5 stage. By integrating mapped ILA observations with digital
terrain analysis from TWI, inferences relating to potential yield reduction due to excess
water stress could be made with supportive data. Similar data fusion frameworks would be
useful for stakeholders and provide the information needed to make management decisions.

5. Conclusions

Low-gradient agricultural areas often experience ILA in the Midwest, resulting in
damaged crops and increased financial risk from yield loss. By identifying areas impacted
by excess water stress early in the reproductive stages, stakeholders can assess risk and
make investment plans for responsive management decisions. The potential of low-cost
UASs to measure impacts of excess water stress on soybean development were analyzed
and evaluated along with new tools, CIE and VID, designed to help with the extraction of
plots within breeding experiments. The aims of this study were to address the questions
(1) Can proximal remote sensing be used to detect excess water stress in soybean? and (2)
What is the potential yield effect from ILA? The main conclusions of the investigation are:

1. Proximal remote sensing from UASs is a representative predictor of biomass at the
R4–R5 stage at the plot scale. Expanding the methodology developed from Jack-
son et al. [37] and Chan et al. [40] for the estimation of VWC to estimate biomass
proved to be representative and transferable. Soybean of varying classes (HY, HYD
and DA) was analyzed and a representative estimate of biomass for all genetic lines
was generated.

2. Estimated biomass at early growth stages (R4–R5) proved to be sensitive to excess
water stress, though it was less sensitive than the in-situ biomass. The sensitivity of
estimated biomass to excess water stress was analyzed and evaluated at the plot and
field scale. The sensitivity of estimated biomass sensitivity to excess water stress was
distinguishable in the early growth stages. Concentrated areas of low estimates of
biomass showed agreement with mapped ILA and areas of high TWI.

3. Low estimates of the percent of expected yield corresponded with observations of
in-field flooding and areas with high TWI, whereas high estimates of the percent of
expected yield corresponded with areas less susceptible to inundation. Estimates of
potential yield reduction mapped with developed tools provide a useful crop status
assessment at the R4–R5 stage.

The results of this study demonstrate transferable methods to estimate early-season
biomass at the plot scale and potential yield loss due to excess water stress, which provide
crop status assessments to stakeholders prior to harvest. Future improvements of the
current method should aim to better directly incorporate measurements of the intensity and
duration of excess water stress. To improve the quantification of inundation, future studies
should incorporate observations of soil moisture and use geospatial models as necessary to
determine the spatial distribution of saturation. In addition, the duration of inundation
can be estimated using observed water table data or remotely sensed observations from
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the UAS. Future work will aim to (1) leverage high-resolution satellite data to fill data gaps
and analyze the effect of excess water stress on estimated biomass at larger scales and (2)
incorporate land surface model simulations to estimate the potential yield reduction from
excess water stress at varying scales.
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