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Abstract: In bearings-only target tracking, the pseudo-linear Kalman filter (PLKF) attracts much
attention because of its stability and its low computational burden. However, the PLKF’s measure-
ment vector and the pseudo-linear noise are correlated, which makes it suffer from bias problems.
Although the bias-compensated PLKF (BC–PLKF) and the instrumental variable-based PLKF (IV–
PLKF) can eliminate the bias, they only work well when the target behaves with non-manoeuvring
movement. To extend the PLKF to the manoeuvring target tracking scenario, an unbiased PLKF
(UB–PLKF) algorithm, which splits the noise away from the measurement vector directly, is proposed.
Based on the results of the UB–PLKF, we also propose its velocity-constrained version (VC–PLKF) to
further improve the performance. Simulations show that the UB–PLKF and VC–PLKF outperform
the BC–PLKF and IV–PLKF both in non-manoeuvring and manoeuvring scenarios.

Keywords: bearings-only tracking; pseudo-linear Kalman filter; norm-constrained Kalman filter

1. Introduction

Bearings-only tracking (BOT) comprises estimating a target’s state from bearing mea-
surements received by an observer [1]. It plays an important role in both military and civil
applications, for example, underwater surveillance [2,3], 3-D passive target tracking [4–7]
and UAV (unmanned aerial vehicle) path planning [8–11]. However, the nonlinear relation-
ship between the bearing measurements and the target state vector makes BOT a typical
nonlinear filtering problem [12].

There are two common ways to deal with the nonlinearity in the BOT problem. The
first way is to choose the nonlinear Bayesian filtering algorithms. Early approaches are
based on the extended Kalman filter and its improved versions [1,13,14]. However, the
extended Kalman filter uses the first-order Taylor expansion to replace the corresponding
nonlinear function, which will certainly lead to truncation errors. Other more sophisticated
Kalman filters, such as the unscented Kalman filter [15] and the cubature Kalman filter [16],
applied to the BOT problem, can be found in [17,18]. Another important approach is
based upon particle filtering (see, for instance, [19,20]). However, the high computational
requirements of the particle filter would involve high-performance expensive hardware
that discourages its implementation in BOT applications. It is important to also mention
here the non-Bayesian-based shadowing filter that, recently, has been applied to the BOT
problem [21]. However, such a filter is a kind of gradient descent algorithm, hence, it is
highly sensitive to the step size as well as the computation of the Jacobian matrix [22].

Another way to cope with the nonlinearlity in BOT is to convert it into linear form,
and the most common method used is the pseudo-linear Kalman filter (PLKF) [23]. It has
lower computational complexity and is more robust compared with the nonlinear Bayesian
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filtering algorithms introduced above [24], and no other prior parameters are required
compared with the shadowing filter. These advantages make the PLKF an attractive method
for engineering. However, unlike the traditional Kalman filter, the PLKF measurement
vector contains the bearing noise, which makes it correlated with the pseudo-linear noise.
This correlation leads to bias problems for the PLKF. To improve the PLKF performance,
the instantaneous bias of PLKF is analysed in [25], and two improved PLKF algorithms, the
bias-compensated PLKF (BC–PLKF) and the instrumental variable-based PLKF (IV–PLKF),
are proposed. The BC–PLKF subtracts the approximated bias from the estimate of the PLKF
to reduce the bias. The IV–PLKF utilizes the results of the BC–PLKF to construct a noise-free
measurement vector, and its asymptotic unbiasedness has been proved in [25,26]. Although
BC–PLKF and IV–PLKF effectiveness has been verified in [25] when the target moves
without manoeuvring, their performance in the manoeuvring target tracking scenario may
be unsatisfactory. It is not surprising because the measurement vector and the noise are
still correlated in BC–PLKF, and its performance cannot be guaranteed by only subtracting
the bias when the target manoeuvres. IV–PLKF also suffers from this problem because it
uses the results of the BC–PLKF as its input parameters.

To extend the PLKF algorithm to the case of the BOT problem with a manoeuvring
target and at the same time make an excellent compromise between computational load
and accuracy, we first propose an unbiased PLKF (UB–PLKF) algorithm which splits the
bearing noise away from the measurement vector directly to eliminate their correlation, thus
avoiding the bias compensation operation in BC–PLKF. The unbiasedness makes the UB–
PLKF more adaptable to the abrupt changes in the target state and ensures the UB–PLKF’s
convergence when the target manoeuvres. Then, for further improving its performance, the
target velocity range information is incorporated into the UB–PLKF to construct the velocity-
constrained PLKF (VC–PLKF) based on [27]. Incorporating some prior information about
the target state into the Kalman filter to construct the state-constrained Kalman filter [28] is
common; however, this method is rarely seen in PLKF. Although [29–31] have introduced
the constraints into BOT, they are all based on the batch algorithms which can hardly
handle the manoeuvring target tracking problem. To the best of the authors’ knowledge,
this is the first time that a velocity-constrained PLKF has been proposed. Simulations
will verify the effectiveness of the UB–PLKF and VC–PLKF both in non-manoeuvring and
manoeuvring target tracking scenarios.

This paper is organised as follows: In Section 2, we first formulate the BOT problem
to be solved and generally review the PLKF, BC–PLKF, and IV–PLKF, then we propose the
UB–PLKF and VC–PLKF. Section 3 presents the simulation results to verify the effectiveness
of the proposed algorithms.

Notations

Throughout the paper, vectors and matrices are denoted by boldface lower-case and
upper-case letters, respectively. E{·} and tr{·} denote the expectation operator and trace
operator, respectively; In×n denotes the n× n identity matrix; 0n×m denotes the n×m zero
matrix; the superscript “BC”, “IV”, “UB” and “VC” denote, respectively, the vector or
matrix in BC–PLKF, IV–PLKF, UB–PLKF and VC–PLKF, and any vector or matrix with this
kind of superscript has the same dimension as its original form in PLKF; the superscript
“T” denotes the transpose operation of a vector or matrix; the superscript “−1” denotes the
inverse operation of a matrix; the superscript “+” means that the vector or matrix belongs
to the posterior estimate, and “−” means that the vector or matrix belongs to the predictive
estimate; y = x(i : j) means that y consists of the ith through the jth element of x, and ‖ · ‖
denotes the l-2 norm of a vector.

2. Materials and Methods

In this section, we first formulate the 2D BOT problem, then we provide brief re-
views of the PLKF and its two improved versions—the BC–PLKF and the IV–PLKF. After
these, we propose the UB–PLKF to cope with the biased estimate problem in PLKF. Then,
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we incorporate the velocity constraint information into the UB–PLKF to construct the
VC–PLKF.

2.1. Problem Formulation

We focus on the BOT problem in 2D-plane with the bearing measurements received by
a moving observer, which is shown in Figure 1. We denote by pk = [px,k, py,k]

T ∈ R2×1 and
vk = [vx,k, vy,k]

T ∈ R2×1 the position and velocity of the target at the discrete time index
k = 1, · · · , N, respectively. We then have target state vector xk = [pT

k , vT
k ]

T ∈ R4×1. The
observer position is represented by the vector sk = [sx,k, sy,k]

T ∈ R2×1, which is assumed to
be known.

bk

pk
vk

target

sk

observer

Y

X

Figure 1. Geometry for 2-D BOT problem.

In the following, we assume that the target is moving under the constant velocity
model as discussed in [32], then the target dynamic model is:

xk = Fxk−1 + wk−1, (1)

where F ∈ R4×4 is the transition matrix, and wk−1 ∈ R4×1 is the process noise, which is
assumed to be a Gaussian random vector with mean 04×1 and covariance matrix Q ∈ R4×4.
The matrices F and Q are given by [32]

F =


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

, (2)

Q =


qx

T3

3 0 qx
T2

2 0
0 qy

T3

3 0 qy
T2

2
qx

T2

2 0 qxT 0
0 qy

T2

2 0 qyT,

 (3)

where T is the sample interval, which is assumed to be equal to 1 s throughout the paper.
qx and qy are respectively the power spectral densities of wk in two coordinates.

We adopt β̃k to denote the bearing collected by the observer at k. It can be written as

β̃k = βk + nk, (4)

βk = tan−1 ∆yk
∆xk

, (5)



Remote Sens. 2021, 13, 2915 4 of 19

where ∆xk = px,k − sx,k, ∆yk = py,k − sy,k, tan−1 is the four-quadrant inverse tangent
function, and nk is the bearing noise, which is assumed to be Gaussian with zero mean
and variance σ2

k . σk is assumed to be known, and nk is independent of the process noise wk
throughout the paper.

2.2. Overview of the PLKF, BC–PLKF, and IV–PLKF

This subsection first discusses the PLKF algorithm and then analyses its bias. After-
wards, the improved PLKF algorithms–BC–PLKF and IV–PLKF in [25] are introduced.

2.2.1. PLKF

Obviously, we have the following equation:

sin nk = sin(β̃k − βk)

= sin β̃k cos βk − cos β̃k sin βk, (6)

multiplying dk =
√

∆x2
k + ∆y2

k to both sides of (6), and notice that dk × cos βk = ∆xk,
dk × sin βk = ∆yk, we have

dk sin nk = sin β̃k∆xk − cos β̃k∆yk

= sin β̃k(px,k − sx,k)− cos β̃k(py,k − sy,k)

= [sin β̃k,− cos β̃k]pk − [sin β̃k,− cos β̃k]sk

= [sin β̃k,− cos β̃k, 0, 0]xk − [sin β̃k,− cos β̃k]sk. (7)

Then we have the following pseudo-linear measurement equation:

zk = Hkxk + ηk, (8)

where zk = [sin β̃k,− cos β̃k]sk, Hk = [sin β̃k,− cos β̃k, 0, 0], and ηk = −dk sin nk is the
pseudo-linear noise. The variance of ηk is denoted by Rk = E{η2

k} = d2
k ·E{sin2 nk} ≈ d2

kσ2
k

for small bearing noise nk.
Combining (1) and (8), the PLKF is given by

step 1 Predicting the state:
x̂k|k−1 = Fx̂k−1|k−1; (9)

step 2 Predicting the covariance matrix:

Pk|k−1 = FPk−1|k−1FT + Q; (10)

step 3 Calculating the gain matrix:

Kk = Pk|k−1HT
k

(
Rk + HkPk|k−1HT

k

)−1
; (11)

step 4 Updating the state:
x̂k|k = x̂k|k−1 + Kk(zk −Hkx̂k|k−1); (12)

step 5 Updating the covariance matrix:

Pk|k = (I4×4 −KkHk)Pk|k−1, (13)

where x̂k|k−1 ∈ R4×1 and Pk|k−1 ∈ R4×4 denote, respectively, the one-step predic-
tion and the corresponding prediction error covariance matrix, and Kk ∈ R4×1

denotes the Kalman gain, and x̂k|k ∈ R4×1 and Pk|k ∈ R4×4 are, respectively, the
posterior state estimate and corresponding estimation error covariance matrix. Since
the true values of dk and Rk are not available, the approximated values are used,
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d̂k =
∥∥x̂k|k−1(1 : 2)− sk

∥∥, (14)

R̂k = d̂2
kσ2

k . (15)

2.2.2. BC–PLKF

According to [25], the posterior bias ek = x̂k|k − xk of the PLKF can be written as:

ek = Ak + Bk + Ck (16)

where

Ak =
(

P−1
k|k−1 + HT

k R̂−1
k Hk

)−1
P−1

k|k−1F
(

x̂k−1|k−1 − xk−1

)
, (17)

Bk = −
(

P−1
k|k−1 + HT

k R̂−1
k Hk

)−1
P−1

k|k−1wk−1, (18)

Ck =
(

P−1
k|k−1 + HT

k R̂−1
k Hk

)−1
P−1

k|k−1HT
k R̂−1

k ηk. (19)

The first term Ak propagates the error from the last time k− 1, and it is not the cause
that leads to the biased estimate in PLKF. The second term Bk propagates the bias from the
correlation between Hk and wk−1. If we assume the process noise wk is relatively small,
then Bk can be ignored. When it comes to the third term Ck, it propagates the bias from the
correlation between Hk and ηk, which cannot be ignored since they all contain the bearing
noise nk. Thus, we can have the conclusion that it is the correlation between the Hk and ηk
that leads to the biased estimate, and if we can compensate the bias from Ck, the bias in
x̂k|k can be reduced.

So the bias compensation can be achieved by

x̂k|k −
(

P−1
k|k−1 + HT

k R̂−1
k Hk

)−1
P−1

k|k−1HT
k R̂−1

k ηk. (20)

However, the true value of Ck cannot be obtained; we are supposed to replace it with
its conditional expectation based on x̂k|k, which can be formulated as: [25]

Ĉk =
(

P−1
k|k−1 + HT

k R̂−1
k Hk

)−1
P−1

k|k−1E
{

HT
k R̂−1

k ηk|x̂k|k

}
(21)

= −Pk|kR̂−1
k σ2

k MT(Mx̂k|k − sk),

where M = [I2×2, 02×2], and we use the formula Pk|k =
(

P−1
k|k−1 + HT

k R̂−1
k Hk

)−1
.

Finally, the BC–PLKF is summarized below [25]:

step 1 Predicting the state:
x̂k|k−1 = Fx̂BC

k−1|k−1; (22)

step 2 Predicting the covariance matrix:

Pk|k−1 = FPBC
k−1|k−1FT + Q; (23)

step 3 Calculating the gain matrix:

KBC
k = Pk|k−1HT

k

(
R̂k + HkPk|k−1HT

k

)−1
; (24)

step 4 Updating the state:

x̂k|k = x̂k|k−1 + KBC
k (zk −Hkx̂k|k−1); (25)
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step 5 Updating the covariance matrix:

PBC
k|k = (I4×4 −KBC

k Hk)Pk|k−1; (26)

step 6 Bias compensation:

x̂BC
k|k = x̂k|k + PBC

k|k R̂−1
k σ2

k MT(Mx̂k|k − sk). (27)

2.2.3. IV–PLKF

Unlike the BC–PLKF, the IV–PLKF tries to construct a vector Gk, which is chosen to be
independent of ηk, and at the same time is strongly correlated with Hk. The optimal form
of Gk is the noise-free version of Hk [25]:

Gopt
k = [sin βk,− cos βk]M. (28)

Since the true bearing measurement βk is unavailable, a suboptimal vector based upon
the estimate β̂BC

k from BC–PLKF is chosen:

β̂BC
k = tan−1

x̂BC
k|k(2)− sy,k

x̂BC
k|k(1)− sx,k

, (29)

Gk =
[

sin β̂BC
k ,− cos β̂BC

k

]
M. (30)

The complete IV–PLKF algorithm is [25]:

step 1 Predicting the state:
x̂k|k−1 = Fx̂IV

k−1|k−1; (31)

step 2 Predicting the covariance matrix:

Pk|k−1 = FPIV
k−1|k−1FT + Q; (32)

step 3 Calculating the gain matrix:

Kk = Pk|k−1HT
k

(
R̂k + HkPk|k−1HT

k

)−1
; (33)

step 4 Updating the state:

x̂k|k = x̂k|k−1 + Kk(zk −Hkx̂k|k−1); (34)

step 5 Updating the covariance matrix:

Pk|k = (I4×4 −KkHk)Pk|k−1; (35)

step 6 Bias compensation:

x̂BC
k|k = x̂k|k + Pk|kR̂−1

k σ2
k MT(Mx̂k|k − sk); (36)

step 7 IV estimation:

Gk = [sin β̂BC
k ,− cos β̂BC

k ]M (37)

KIV
k = Pk|k−1GT

k

(
R̂k + HkPk|k−1GT

k

)−1
(38)

x̂IV
k|k = x̂k|k−1 + KIV

k (zk −Hkx̂k|k−1) (39)

PIV
k|k = Pk|k−1 −KIV

k HkPk|k−1. (40)
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We shall notice that, although the asymptotic convergence of the IV based method
is verified in [26], the performance of the IV–PLKF is still limited by the BC–PLKF due to
the usage of x̂BC

k|k in calculating β̂BC
k . When the BC–PLKF performance deteriorates in the

manoeuvring scenario, the IV–PLKF will also suffer.

2.3. The Proposed UB–PLKF and VC–PLKF

We first propose the UB–PLKF to cope with the biased estimate problem in PLKF.
Then we incorporate the velocity constraint information into the UB–PLKF to construct
the VC–PLKF.

2.3.1. UB–PLKF

Revisiting the matrix Hk in (8), we can rewrite it as follows:

Hk =[sin β̃k,− cos β̃k, 0, 0]

=[sin βk cos nk,− cos βk cos nk, 0, 0]

+ [cos βk sin nk, sin βk sin nk, 0, 0]

≈[sin βk,− cos βk, 0, 0] + nk[cos βk, sin βk, 0, 0], (41)

where we assume cos nk ≈ 1 and sin nk ≈ nk for small bearing noise.
Substituting (41) into (8), we get:

zk ≈ [sin βk,− cos βk, 0, 0]xk + nk
(
[cos βk, sin βk, 0, 0]xk − dk

)
; (42)

here we also assume that ηk = −dk sin nk ≈ −dknk. Let mk = [cos βk, sin βk, 0, 0]xk − dk,
and multiplying 1/mk to both sides of (42), we have:

z̄k = H̄kxk + nk, (43)

where z̄k = zk/mk, H̄k = [sin βk,− cos βk, 0, 0]/mk. Notice that in (43), the measurement
vector is independent of the noise, and the noise here is the bearing noise nk, not the
pseudo-linear noise ηk.

Based on (43), the expectation of Ck is

E{Ck} = E
{(

P−1
k|k−1 + H̄T

k σ−2
k H̄k

)−1
}
E
{

H̄T
k σ−2

k nk

}
. (44)

It is clear that (44) equals 0 because H̄k is no longer correlated with nk. Then, an
unbiased PLKF algorithm is obtained as follows:

step 1 Predicting the state:
x̂k|k−1 = Fx̂UB

k−1|k−1; (45)

step 2 Predicting the covariance matrix:

Pk|k−1 = FPUB
k−1|k−1FT + Q; (46)

step 3 Calculating the gain matrix:

KUB
k = Pk|k−1H̄T

k

(
σ2

k + H̄kPk|k−1H̄T
k

)−1
; (47)

step 4 Updating the state:

x̂UB
k|k = x̂k|k−1 + KUB

k (z̄k − H̄kx̂k|k−1); (48)
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step 5 Updating the covariance matrix:

PUB
k|k = (I4×4 −KUB

k H̄k)Pk|k−1. (49)

Obviously, the true values of the bearing βk and mk in (43) cannot be obtained, we
replace them with corresponding approximated versions β̂UB

k and m̂k, which are defined
as follows:

β̂UB
k = tan−1 x̂k|k−1(2)− sy,k

x̂k|k−1(1)− sx,k
, (50)

m̂k =
[

cos β̂UB
k , sin β̂UB

k , 0, 0
]
x̂k|k−1 − d̂UB

k , (51)

d̂UB
k =

∥∥x̂k|k−1(1 : 2)− sk
∥∥. (52)

We emphasise here that the main idea behind the IV–PLKF and the UB–PLKF is
similar. They both try to construct a noise-free measurement vector. However, the IV–PLKF
performance is limited by the BC–PLKF, while the UB–PLKF does not suffer from this. The
advantages of the UB–PLKF will be verified in the simulation part.

2.3.2. VC–PLKF

Based on the UB–PLKF, we develop its velocity constrained version in this part. First,
we shall handle an optimisation problem with an equality constraint. Let vk|k = x̂UB

k|k (3:4)
and ev,k = vk − vk|k, we have:

min
Kv,k

E{eT
v,kev,k}

s·t· ‖vk|k‖ = v,
(53)

where KUB
k =

[
KT

p,k, KT
v,k
]T, and Kv,k ∈ R2×1. v is the velocity constraint, which is a positive

constant. Note that E{eT
v,kev,k} = tr{P+

vv,k}, and PUB
k|k =

[
P+

pp,k P+
pv,k

P+
vp,k P+

vv,k

]
. Then (53) can be

rewritten as

min
Kv,k

tr{P+
vv,k}

s·t· ‖vk|k‖ = v.
(54)

Let vk|k−1 = x̂k|k−1(3:4) in (45), and according to the Kalman formula, we have:

vk|k = vk|k−1 + Kv,kεk, (55)

where εk = z̄k − H̄kx̂UB
k|k−1. Substituting (55) into the velocity constraint in (54), we have:

ε2
kKT

v,kKv,k + 2vT
k|k−1Kv,kεk + vT

k|k−1vk|k−1 − v2 = 0. (56)

According to the Joseph formula [33], the update formula of the partitioned posterior
covariance matrix can be written as:

P+
vv,k = P−vv,k −Kv,kH̄kP2,k − PT

2,kH̄T
k KT

v,k + Kv,kWkKT
v,k, (57)
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where

Pk|k−1 =[P1,k, P2,k]

=

[
P−pp,k P−pv,k
P−vp,k P−vv,k

]
(58)

and
Wk = H̄kPk|k−1H̄T

k + σ2
k . (59)

Utilising (56) and (57) and the Lagrange multiplier method, we can construct the
performance index k as follows:

k =tr
{

P−vv,k −Kv,kH̄kP2,k − PT
2,kH̄T

k KT
v,k + Kv,kWkKT

v,k

}
+ λk

[
ε2

kKT
v,kKv,k + 2vT

k|k−1Kv,kεk + vT
k|k−1vk|k−1 − v2

]
.

(60)

Taking the first derivative of k with respect to Kv,k and setting it to zero yields:

− PT
2,kH̄T

k + Kv,kWk + λk(vk|k−1εk + Kv,kε2
k) = 0. (61)

Then we have the first-order condition:

Kv,k =
PT

2,kH̄T
k − λkvk|k−1εk

Wk + λkε2
k

. (62)

Substituting (62) into (56), and according to [27], the scalar equation with λk can be
obtained as:

−λ2
k ε̃2

kv2 − 2λk ε̃kv2 +
( ε2

kH̄kP2,kPT
2,kH̄T

k

W2
k

+
2vT

k|k−1PT
2,kH̄T

k εk

Wk
+ vT

k|k−1vk|k−1 − v2
)
= 0, (63)

where ε̃k = ε2
k/Wk.

Then, λk can be written as

λk =
−b−

√
b2 − 4ac

2a
, (64)

where

a = −v2ε̃2
k , (65)

b = −2ε̃kv2, (66)

c = ε2
kH̄kP2,kPT

2,kH̄T
k /W2

k + 2vT
k|k−1PT

2,kH̄T
k εk/Wk + vT

k|k−1vk|k−1 − v2. (67)

Notice that we use −b−
√

b2 − 4ac, not −b±
√

b2 − 4ac, because the minimum per-
formance index k occurs when the minus sign is chosen according to [27].

Substituting (64)–(67) into (62) we get:

K∗v,k = Kv,k +
( v
‖vk|k‖

− 1
)vk|k

εk
, (68)

where the asterisk was added to distinguish from the unconstrained form Kv,k. (see
Appendix A).
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Now we have the VC–PLKF with an equality constraint as follows:

step 1 Predicting the state:
x̂k|k−1 = Fx̂VC

k−1|k−1; (69)

step 2 Predicting the covariance matrix:

Pk|k−1 = FPVC
k−1|k−1FT + Q; (70)

step 3 Calculating the gain matrix for UB–PLKF:

KUB
k = Pk|k−1H̄T

k /
(

σ2
k + H̄kPk|k−1H̄T

k

)
; (71)

step 4 Calculating the innovation:

εk = z̄k − H̄kx̂k|k−1; (72)

step 5 Updating the state:

x̂UB
k|k = x̂k|k−1 + KUB

k εk; (73)

step 6 Updating the covariance for UB–PLKF:

PUB
k|k = (I4×4 −KUB

k H̄k)Pk|k−1; (74)

step 7 Constructing the VC–PLKF:

vk|k = x̂UB
k|k (3 : 4) (75)

K∗v,k = KUB
k (3 : 4) +

( v
‖vk|k‖

− 1
)vk|k

εk
(76)

KVC
k =

[
KUB

k (1 : 2); K∗v,k

]
(77)

x̂VC
k|k = x̂k|k−1 + KVC

k εk (78)

PVC
k|k = (I4×4 −KVC

k H̄k)Pk|k−1. (79)

In most cases, however, what we know is the target velocity range, and this means we
should handle a problem with inequality constraints. To translate the inequality constraint
into the equality constraint, we adopt the rule in [29], that is,

x̂VC
k|k =


x̂VC

k|k |v=vmax if ‖vk|k‖ > vmax,

x̂VC
k|k |v=vmin if ‖vk|k‖ < vmin,

x̂VC
k|k = x̂UB

k|k if vmin ≤ ‖vk|k‖ ≤ vmax.

(80)

Here, vmin and vmax denote the lower and upper bounds of the velocity, respectively.
Equation (80) means that if ‖vk|k‖ ∈ [vmin, vmax], the steps after (75) are avoided, and
we just output x̂VC

k|k = x̂UB
k|k and PVC

k|k = PUB
k|k . Otherwise, if ‖vk|k‖ is less than vmin or

greater than vmax, we do the VC–PLKF with the equality constraint with v = vmin or
v = vmax, respectively.

We shall emphasise that, although the VC–PLKF and the algorithms in [29] all make
use of the velocity constraints, the VC–PLKF constructs a norm-constrained Kalman filter,
which is an iterative algorithm; however, algorithms in [29] are all based on the batch
algorithms, which are computationally expensive and can hardly handle the manoeuvring
target tracking problem.
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3. Results

In this section, the proposed UB–PLKF and VC–PLKF are compared with the BC–
PLKF and the IV–PLKF via Monte Carlo (MC) simulations. We adopt the root mean square
error (RMSE) and the time-averaged RMSE as the performance metrics.

Assuming that x̂i
k|k is the state vector that we estimate at k via i th MC simulation. We

can define the RMSEs obtained from M = 300 MC simulations as follows:

RMSEpos
k =

(
1
M

M

∑
i=1

∥∥p̂i
k|k − pk

∥∥2
)1/2

(81)

RMSEvel
k =

(
1
M

M

∑
i=1

∥∥v̂i
k|k − vk

∥∥2
)1/2

(82)

where p̂i
k|k = x̂i

k|k(1 : 2), v̂i
k|k = x̂i

k|k(3:4).
The time-averaged RMSEs are also adopted and are computed as [25]:

RMSEpos
avg =

(
1

MU

M

∑
i=1

N

∑
k=P

∥∥p̂i
k|k − pk

∥∥2
)1/2

(83)

RMSEvel
avg =

(
1

MU

M

∑
i=1

N

∑
k=P

∥∥v̂i
k|k − vk

∥∥2
)1/2

, (84)

where U = N − P + 1 is the effective time that takes into account the computation of
time-averaged RMSEs, N = 350 is the total number of time index k, and P = 60 is chosen
to eliminate the influence of the initial error according to [25].

3.1. Scenario 1: Non-Manoeuvring Target Tracking

We first test the filters’ performance against poor initialisation and poor target sen-
sor geometry with a non-manoeuvring scenario, which is given in Figure 2. The initial
state vector of the target is x0 = [400, 400, 3, 0]T, and to test the performance against
poor initialisation, we set the initial state of the estimate x̂0|−1 Gaussian, and its mean is
[500, 300, 2,−1]T and the covariance matrix is P0|−1 = diag(625, 625, 4, 4). The observer
starts at [−500,−500]T m and follows a linear path with a constant speed of [0, 3]T m/s
for the first 180 scans. Then, it executes a coordinated turn for 50 scans with a turn
rate of 1.8 ◦/s followed by 120 scans, where it moves in a straight line with velocity
[3, 0]T m/s. Notice that at the last 120 scans, the bearing rate between the target and the
observer is 0, which constructs the case of poor target sensor geometry. qx and qy in (3) are
qx = qy = 0.2 m2/s3. The standard deviation σk = 5◦ is assumed to be time invariant. The
upper bound of the velocity is vmax = 6 m/s, while the lower bound is vmin = 1 m/s.

Figure 3 shows the RMSEs for different algorithms. The IV–PLKF and BC–PLKF show
similar performances in RMSEs of both the position and velocity, and so do the UB–PLKF
and VC–PLKF. However, the biases of the UB–PLKF and VC–PLKF are much smaller than
the BC–PLKF and IV–PLKFs, and this suggests that splitting the noise nk away from the
Hk is more effective than subtracting the bias from PLKF. Divergence problems have not
been present in RMSEs of UB–PLKF and VC–PLKF, and this suggests that the proposed
UB–PLKF and VC–PLKF can work well in conditions of poor initialisation and poor target
sensor geometry.
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Figure 2. Geometry for scenario 1. The red curve represents the target trajectory while the observer
trajectory is given by the blue curve.
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Figure 3. RMSEs for different algorithms in non-manoeuvring target tracking: (a) RMSEs for position;
(b) RMSEs for velocity.

3.2. Scenario 2: Manoeuvring Target Tracking

Figure 4 represents the geometry of scenario 2. The initial state of the target is
x0 = [1000, 1000, 10, 10]T, and it moves in a straight line for the first 100 scans. Then it
performs a constant acceleration movement [32] with acceleration [−0.05,−0.15]T m/s2 in
the following 100 scans. In the final 150 scans, it moves along a straight line at a constant
speed [5,−5]T m/s. The initial state of the estimate x̂0|−1 is a Gaussian random vector
with mean [1000, 1000, 10, 10]T, and the rest of the settings are the same as those of scenario
1, except that vmin = 5 m/s and vmax = 16 m/s. The observer begins at [−500,−500]T m
with velocity [0, 9.45]T m/s, and executes a coordinated turn for the whole 350 scans with
a turn rate of −1.8 ◦/s, where “−” means the anticlockwise direction. We also adopt
the Cramer–Rao lower bound (CRLB) [34] and the constrained Cramer–Rao lower bound
(CCRLB) [35] in this scenario to evaluate the performance of the four algorithms (the
derivation of CRLB and CCRLB can be found in Appendix B).
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Figure 4. Geometry for scenario 2. The red curve represents the target trajectory while the observer
trajectory is given by the blue curve.

Figure 5 plots the RMSEs and CRLB for the four algorithms. The RMSEs of the VC–
PLKF are closest to the CRLB and CCRLB, followed by UB–PLKF. We also find that the
velocity RMSEs of UB–PLKF and VC–PLKF decrease after the manoeuvring, which means
that the proposed algorithms are more adaptable to abrupt changes in the velocity. Figure 6
shows the time-averaged RMSEs for σk ∈ {1◦, · · · , 10◦}; it also verifies that the VC–PLKF
and UB–PLKF outperform the BC–PLKF and IV–PLKF. The time-averaged RMSEs of the
four algorithms are also flat, which proves that the four algorithms all have good robustness
to the different levels of the bearing noise.

0 50 100 150 200 250 300 350

k

(a)

0

1000

2000

3000

4000

5000

R
M

S
E

p
o
s

k
(m

)

BC-PLKF

IV-PLKF

UB-PLKF

VC-PLKF

CRLB

CCRLB

0 50 100 150 200 250 300 350

k

(b)

0

5

10

15

20

25

R
M

S
E

v
el

k
(m

/s
)

BC-PLKF

IV-PLKF

UB-PLKF

VC-PLKF

CRLB

CCRLB

Figure 5. RMSEs for different algorithms in manoeuvring target tracking: (a) RMSEs for position;
(b) RMSEs for velocity.
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Figure 6. Time-averaged RMSEs for different algorithms in manoeuvring target tracking: (a) Time-
averaged RMSEs for position; (b) Time-averaged RMSEs for velocity.
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Figure 7. RMSEs for different algorithms in manoeuvring target tracking when there presents the
noise statistics mismatch: (a) RMSEs for position; (b) RMSEs for velocity.
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To test the performance of the proposed algorithms in the case in which there exists a
noise statistics mismatch, we again assume that the deviation σk is time-varying. When
k < 51 or k > 201, σk = 3◦, whereas σk = 7◦ at the other times. The other settings remain
unchanged. Figure 7 shows the RMSEs of different algorithms. It is clear that the position
RMSEs of the BC–PLKF and IV–PLKF get worse when the mismatch begins, and retain
high levels the rest of the time. However, the mismatch has little influence on the proposed
UB–PLKF and VC–PLKF. The shapes of their positions and velocity RMSE curves are
basically the same as those in Figure 5. This verifies that the UB–PLKF and VC–PLKF are
more robust to the noise statistics mismatch. When it comes to the velocity RMSEs, some
differences may occur. We can find that, although the velocity RMSEs of the IV–PLKF gets
worse after the mismatch begins, it becomes smaller after the 100th scan. The possible
reason is that at the 100th scan, the target starts to manoeuvre, and at this time, large
measurement errors occur. So the large variance may more adaptable to this case. However,
after the 201st scan, the velocity RMSEs of the BC–PLKF and IV–PLKF get worse again and
finally exceed the RMSEs of UB–PLKF and VC–PLKF.
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Figure 8. Time-averaged RMSEs for 4 cases of VC–PLKF in Table 1: (a) Time-averaged RMSEs for
position; (b) Time-averaged RMSEs for velocity.

Table 1 lists four different cases of velocity constraints to compare the influence of
different constraints in VC–PLKF. The time-averaged RMSEs are given by Figure 8. The
closer the constraint is to the true speed, the smaller the RMSE of the VC–PLKF is. However,
this improvement is at the cost of reducing the application scope of the algorithm. Thus,
the choices of the upper and lower bounds depend on our prior knowledge of the target,
otherwise it is suggested to choose a large range of constraints.
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Table 1. Settings for 4 different cases in VC–PLKF.

Case 1 Case 2 Case 3 Case 4

vmax(m/s) 21 19 17 16
vmin(m/s) 1 3 5 7

4. Discussion

Section 3 compares the algorithms’ performances in terms of RMSE and time-averaged
RMSE. Figures 3 and 5 show that the proposed algorithms outperform the BC–PLKF and IV–
PLKF in [25] both in non-manoeuvring and manoeuvring scenarios. This is not surprising
since the BC–PLKF just subtracts the approximated bias and does not split the noise away
from the Hk. When the target manoeuvres or the target sensor geometry becomes poor,
the approximated bias may not be accurate, which leads to huge biases in BC–PLKF. The
IV–PLKF also suffers from this, since it utilizes the results of the BC–PLKF to calculate
the approximated bearings. However, the proposed algorithms are unbiased and can be
rapidly adapted to the changes in the scenarios.

Table 2 records the runtimes of the four algorithms, which are normalised by the UB–
PLKF runtime. It shows that the UB–PLKF costs the least time among the four improved
algorithms because it avoids the bias compensation step in BC–PLKF. The VC–PLKF
and BC–PLKF have similar complexity, while the IV–PLKF takes the longest time to run.
Considering the RMSEs, the time-averaged RMSEs and the runtimes, we can draw the
conclusion that the proposed UB–PLKF and VC–PLKF outperform the BC–PLKF and
IV–PLKF, both in terms of tracking accuracy and real-time application.

Table 2. Normalised runtimes for the 4 algorithms.

Algorithm BC–PLKF IV–PLKF UB–PLKF VC–PLKF

Runtime 1.35 2.12 1 1.21

In this paper, we assume that the statistical characteristics of noise are known a priori;
however, this is not true in practical application. So, future research may contain the
construction of the UB–PLKF in terms of the unknown statistical characteristics of noise by
variational inference [36].

5. Conclusions

To handle the bias problem in the traditional PLKF algorithm, we propose the UB–
PLKF algorithm. Unlike the existing BC–PLKF and IV–PLKF, the UB–PLKF splits the noise
away from the measurement vector directly, which can lead to an unbiased estimate. We
then develop the VC–PLKF by solving a partial norm-constrained optimisation problem
with an inequality relation to improve the performance of UB–PLKF. Simulation results
show that the UB–PLKF and VC–PLKF outperform the BC–PLKF and IV–PLKF according
to the RMSE, the time-averaged RMSE, and the computational complexity. The results also
verify that the proposed algorithms can adapt to the abrupt changes of the target velocity,
and thus are more suitable for the manoeuvring target tracking scenario.
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Appendix A

Substituting (65)–(67) into (64), the polynomial b2 − 4ac can be written as

b2 − 4ac = 4ε̃2
kv4 + 4v2ε̃2

kε2
kH̄kP2,kPT

2,kH̄T
k /W2

k − 4v4ε̃2
k

+ 8v2ε̃2
kvT

k|k−1PT
2,kH̄T

k εk/Wk + 4v2ε̃2
kvT

k|k−1vk|k−1

= 4v2ε̃2
k‖εkPT

2,kH̄T
k /Wk + vk|k−1‖2

= 4v2ε̃2
k‖vk|k‖2.

(A1)

Thus λk in (64) can be written as

λk =
−1
ε̃k

+
‖vk|k‖

ε̃kv
. (A2)

Substituting (A2) into (62), we have

K∗v,k =
[
PT

2,kH̄T
k +

v− ‖vk|k‖
vε̃k

vk|k−1εk

](
Wk + λkε2

k
)−1

=
[
PT

2,kH̄T
k +

v− ‖vk|k‖
vε̃k

vk|k−1εk

] v
‖vk|k‖Wk

=
vPT

2,kH̄T
k

Wk‖vk|k‖︸ ︷︷ ︸
I

+
vεkvk|k−1

ε̃k‖vk|k‖Wk︸ ︷︷ ︸
II

−
εkvk|k−1

ε̃kWk︸ ︷︷ ︸
III

.

(A3)

Note that in part I: PT
2,kH̄T

k /Wk = Kv,k, and in part II and III: εk/(ε̃kWk) = 1/εk, (A3)
can be further written as

K∗v,k =
v

‖vk|k‖
Kv,k +

vk|k−1v
εk‖vk|k‖

−
vk|k−1

εk

=
v

‖vk|k‖
Kv,k +

( v
‖vk|k‖

− 1
)vk|k−1

εk

=
v

‖vk|k‖
Kv,k +

( v
‖vk|k‖

− 1
)(vk|k −Kv,kεk

εk

)
= Kv,k +

( v
‖vk|k‖

− 1
)vk|k

εk
.

(A4)

Appendix B

According to [34], an elegant way to calculate the Fisher information matrix (FIM) Jk
recursively can be written as

Jk+1 = D22
k −D21

k

(
Jk + D11

k

)−1
D12

k (A5)

where

D11
k = E

{
− ∆xk

xk lg p
(
xk+1|xk

)}
(A6)

D12
k = E

{
− ∆xk+1

xk lg p
(
xk+1|xk

)}
(A7)

D21
k =

[
D12

k
]T, (A8)
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and

D22
k =E

{
− ∆xk+1

xk+1 lg p
(
xk+1|xk

)}
+E

{
− ∆xk+1

xk+1 lg p
(
z̄k+1|xk+1

)}
.

(A9)

Here p
(
xk+1|xk

)
and p

(
z̄k+1|xk+1

)
are the transition and measurement probability

density functions, and ∆Ψ
Φ is the second-order partial derivative operators.

Based on (1) and (43), we have D11
k = FTQ−1F, D12

k = −FTQ−1, D21
k = −Q−1F, and

D22
k = Q−1 + H̄T

k+1H̄k+1/σ2
k+1. The initial state of J0 is chosen to be P0|−1.

When it comes to the constrained Cramer-Rao lower bound, its FIM JC,k can be
calculated as [35]

J−1
C,k = J−1

k − J−1
k UT

k

(
UkJ−1

k UT
k

)−1
UkJ−1

k (A10)

where Uk is the gradient matrix which is defined by

Uk =
∂‖Axk‖2

∂xT
k

= 2xT
k ATA

(A11)

where A = [02×2, I2×2].
Finally, according to the relationship between the FIM and Cramer-Rao lower bound

J−1
k , CRLB, we can calculate the CRLB and CCRLB recursively.
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4. Xu, S.; Doğançay, K.; Hmam, H. 3D AOA target tracking using distributed sensors with multi-hop information sharing. Signal

Process. 2018, 144, 192–200. [CrossRef]
5. Su, J.; Li, Y.A.; Ali, W. Underwater angle-only tracking with propagation delay and time-offset between observers. Signal Process.

2020, 176, 107581. [CrossRef]
6. Modalavalasa, N.; Rao, G.S.B.; Prasad, K.S.; Ganesh, L.; Kumar, M.N.V.S.S. A new method of target tracking by EKF using

bearing and elevation measurements for underwater environment. Robot. Auton. Syst. 2015, 74, 221–228. [CrossRef]
7. Liu, B.; Tang, X.; Tharmarasa, R.; Kirubarajan, T.; Jassemi, R.; Halle, S. Underwater Target Tracking in Uncertain Multipath Ocean

Environments. IEEE Trans. Aerosp. Electron. Syst. 2020, 56, 4899–4915. [CrossRef]
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