
remote sensing  

Article

Impacts of Human Activities on the Variations in Terrestrial
Water Storage of the Aral Sea Basin

Xuewen Yang 1,2 , Ninglian Wang 1,2,3,*, Qian Liang 1,2, An’an Chen 1,2 and Yuwei Wu 1,2

����������
�������

Citation: Yang, X.; Wang, N.;

Liang, Q.; Chen, A.; Wu, Y. Impacts of

Human Activities on the Variations in

Terrestrial Water Storage of the Aral

Sea Basin. Remote Sens. 2021, 13, 2923.

https://doi.org/10.3390/rs13152923

Academic Editor: Chung-yen Kuo

Received: 1 June 2021

Accepted: 23 July 2021

Published: 25 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying
Capacity, College of Urban and Environmental Sciences, Northwest University, Xi’an 710127, China;
xuewenyang@stumail.nwu.edu.cn (X.Y.); liangqian1126@stumail.nwu.edu.cn (Q.L.);
aachen@nwu.edu.cn (A.C.); yuwei.wu@nwu.edu.cn (Y.W.)

2 Institute of Earth Surface System and Hazards, College of Urban and Environmental Sciences,
Northwest University, Xi’an 710127, China

3 CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China
* Correspondence: nlwang@nwu.edu.cn

Abstract: Assessing the impacts of human activities on the variations in terrestrial water storage
(TWS) is essential for water resource management, particularly in regions like the Aral Sea Basin
which suffers from severe water scarcity. In this study, the variations in TWS anomalies (TWSA)
of the Aral Sea Basin during the period of April 2002 to June 2017 were analyzed using Gravity
Recovery and Climate Experiment (GRACE) data and the Global Land Data Assimilation System
(GLDAS) Noah model outputs. The impacts of human activities on TWS variations were further
quantified through the variations in TWS components and the comparison of TWS obtained from
GRACE and GLDAS. The results indicate that TWSA of the entire Aral Sea Basin derived from
GRACE experienced a significant decreasing trend of 4.12 ± 1.79 mm/year (7.07 ± 3.07 km3/year)
from 2002 to 2017. Trends in individual TWS components indicate that the reduction in TWS of the
Aral Sea Basin was primarily attributed to surface water loss, followed by groundwater depletion,
which account for ~53.16% and 11.65 ± 45.39 to 42.48 ± 54.61% of the total loss of TWS, respectively.
Precipitation (P) and evapotranspiration (ET) both exhibited increasing trends, indicating that ET
played a dominant role in TWS depletion from the perspective of water balance. The variations in ET
and TWS induced by human activities contributed ~45.54% and ~75.24% to those in total ET and
TWS of the Aral Sea Basin, respectively.

Keywords: terrestrial water storage; GRACE; GLDAS; water balance; human activities

1. Introduction

Terrestrial water storage (TWS) is an essential component of the terrestrial and global
hydrological cycles, which mainly comprises surface water (lakes, rivers, and reservoirs),
groundwater, soil moisture, plant canopy water, snow, and glaciers [1–3]. Due to the scarcity
of water resources in arid and semi-arid regions, these components of TWS, particularly
surface water and groundwater, become of great ecological and social importance [4,5].
In recent years, global warming has exacerbated the variability of TWS in arid and semi-
arid regions, intensified further by human activities such as agricultural irrigation [6,7].
Therefore, a better understanding of the impacts of human activities on TWS variations is
of great practical significance for water resource management.

The Aral Sea Basin, an endorheic basin located in arid Central Asia, suffers from
severe water scarcity under the influence of human activities [8–10]. With the rapid
increase in water withdrawal since the 1960s, especially for damming and irrigation, the
eco-environment dominated by water in the Aral Sea Basin has been deteriorating [4,11–13].
For instance, the Aral Sea shrank sharply over the period of 1960–2018, with a reduction of
60,156.50 km2 in area and 1000.51 km3 in water volume [14]. It is thus of vital importance
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to assess the dynamics of TWS in this region and the impacts of human activities on
TWS variations.

Traditional site observations (e.g., groundwater level and soil moisture measurements)
only provide information on individual hydrological variables at point scales [15,16], and
the data transparency and accessibility are often lacking; the Aral Sea Basin is no exception.
The launch of the Gravity Recovery and Climate Experiment (GRACE) satellites in 2002 [17]
has offered an effective technique to access the spatial and temporal variations in TWS
anomalies (TWSA) [18]. The primary objective of the GRACE satellites is to monitor the
Earth’s time-variable gravitational field, which reflects the mass changes mainly caused
by the movement of water through the Earth’s water cycle [19]. GRACE can achieve
frequent, rapid, and continuous observations at the global scale without being restricted
by terrestrial conditions. GRACE satellite datasets have been widely used in numerous
studies to estimate groundwater storage changes [20], regional TWS changes [21–23], ice
sheet and glacier mass balance [24,25], and global sea level changes [26], etc.

Land surface models or hydrological models can also simulate TWS variations. Several
studies theoretically estimate TWS variations (∆TWS) by using precipitation (P), evap-
otranspiration (ET), and total runoff (R) from these models based on the water balance
equation (∆TWS = P− ET− R) [27,28], or by adding up the variations in various TWS com-
ponents [15]. However, since human impacts are difficult to parameterize, most of these
models can only simulate hydrological variables under natural climate conditions [29,30],
and they often lack processes to simulate some important TWS components (e.g., surface
water and groundwater) [6,31]. In contrast to land surface models, GRACE can detect
changes in TWS caused by both natural and anthropogenic factors [32]. Therefore, the
comparison of TWS derived from GRACE and land surface models can indirectly evaluate
the human water withdrawal in this region.

Previous studies have focused primarily on the overall trend in TWS of the Aral Sea
Basin [6,10,33,34]. However, a comprehensive and quantitative analysis of the contribution
of human activities to recent TWS variations is still lacking. Therefore, in this study, we first
assessed the annual and seasonal variations in TWS of the Aral Sea Basin over the period
of April 2002 to June 2017, by using GRACE data and the Global Land Data Assimilation
System (GLDAS) model outputs. Then, the variations in individual TWS components
were calculated to indicate the impacts of human activities on TWS variations. Moreover,
based on the water balance equation, P − ET obtained from GLDAS was compared with
TWS from GRACE, the former of which reflects changes under natural climate conditions
whereas the latter represents the total changes, to evaluate the contribution of human
activities to TWS variations.

2. Materials and Methods
2.1. Study Area

The Aral Sea Basin is a vast transboundary basin in the hinterland of the Eurasian conti-
nent [35], with a spatial range of approximately 34◦4′–48◦40′ N, 54◦56′–78◦22′ E (Figure 1).
It encompasses seven nations: Kazakhstan, Kyrgyzstan, Uzbekistan, Turkmenistan, Tajik-
istan, Afghanistan, and Iran. Topographically, the Aral Sea Basin ranges from the vast
Turan Plain with the Kyzyl Kum and Kara Kum deserts in the west to the tremendous
mountains of the Tien Shan and Pamirs in the east [36]. The main water resources in this
region are the Amu Darya and the Syr Darya, originating from glaciers and snowfields in
the Tien Shan and Pamirs, as well as the Aral Sea into which these rivers flow [9]. The Aral
Sea was the world’s fourth largest inland lake in the mid-20th century, covering an area of
~68,478 km2 in 1960. However, it shrank sharply over the past six decades, and its changes
caused a series of severe eco-environmental issues to the Aral Sea Basin [14,37].

The climate in the Aral Sea Basin is mostly dry–arid continental with low precipitation
and high evaporation in summer, and cold and dry conditions in winter [35]. The average
temperature ranges from 0 ◦C–4 ◦C in January and from 28 ◦C–32 ◦C in July. The annual
precipitation varies substantially across different regions of the basin, e.g., it ranges from
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80–200 mm in the valleys with the majority falling in spring and winter, 300–400 mm in
the foothills, and as high as 600–800 mm on the southern and southwestern sides of the
mountains. Due to the arid climate in the Aral Sea Basin, agriculture is fully dependent on
a dense irrigation and drainage network, and 90% of the total water withdrawal is used for
this purpose [35,38].

Figure 1. Land-use map of the Aral Sea Basin for the year 2002. The land-cover data were from the
MODIS MCD12Q1 product, glacier data were derived from the Randolph Glacier Inventory (RGI)
6.0, and dam data were obtained from the Global Reservoir and Dam Database (GRanD).

2.2. Data
2.2.1. GRACE Data

GRACE is a satellite mission jointly launched by the National Aeronautics and Space
Administration (NASA) and the German Aerospace Center (DLR). It consists of twin
satellites spaced ~220 km apart in a near-polar orbit at an altitude of ~450 km. The
products of GRACE are released by the Scientific Data System composed of three major
research groups: Center for Space Research (CSR), Geo-Forschungs-Zentrum (GFZ), and Jet
Propulsion Laboratory (JPL). Several studies have demonstrated that spherical harmonic
(SH) coefficients provided by the CSR can effectively reveal the variations in TWS, since
the mass variations in atmosphere and ocean have been removed [22,39–41]. Therefore, the
latest Release-06 (RL06) SH coefficients from the CSR were selected for this study. The data
covered the period of April 2002 to June 2017, for a total of 163 months, and it was missing
for 20 months (Figure 2).

2.2.2. GLDAS Data

GLDAS is a commonly used land surface modeling system, which aims to generate
optimal fields of land surface states and fluxes based on satellite and ground observations,
and has been frequently used in the estimation of TWS [3,42–44]. GLDAS derives four land
surface models including Noah, Catchment (CLSM), the Community Land Model (CLM),
and the Variable Infiltration Capacity (VIC) at a high spatial resolution of 1◦ to 0.25◦. Several
studies have confirmed that the Noah model exhibits a better correlation with GRACE TWS
than other GLDAS models [45–47]. Therefore, we selected the latest GLDAS Noah Land
Surface Model L4 monthly 0.25◦ × 0.25◦ V2.1 product (GLDAS_NOAH025_M_2.1) for the
period of 2002–2017. The GLDAS-2.1 Noah model contains 36 variables, and 9 variables of
them were selected for assessing TWS variations as well as water balance (Table 1).
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Figure 2. Time distribution and availability of the GRACE data.

Table 1. GLDAS variables used in this study.

Short Name Description Units

SoilMoi0_10cm_inst Soil moisture content (0–10 cm underground) kg m−2

SoilMoi10_40cm_inst Soil moisture content (10–40 cm underground) kg m−2

SoilMoi40_100cm_inst Soil moisture content (40–100 cm underground) kg m−2

SoilMoi100_200cm_inst Soil moisture content (100–200 cm underground) kg m−2

RootMoist_inst Root zone soil moisture kg m−2

CanopInt_inst Plant canopy surface water kg m−2

SWE_inst Snow depth water equivalent kg m−2

Rainf_f_tavg Total precipitation rate kg m−2 s−1

Evap_tavg Evapotranspiration kg m−2 s−1

2.3. Methods
2.3.1. GRACE Data Processing

The variations in TWS can be retrieved directly from GRACE SH coefficients, with the
following equation applied [48]:

∆σ(θ, ϕ) =
αρave

3

∞

∑
l=0

l

∑
m=0

2l + 1
1 + kl

Plm(cosθ)× (∆Clm cos(mϕ) + ∆Slm sin(mϕ)) (1)

where ∆σ(θ, ϕ) represents surface mass density changes, α is the equatorial radius (the
constant is 63781363.3 m), ρave is the mean density of the Earth (the constant is 5517 kg/m3),
θ and ϕ are the geocentric latitude and longitude, ∆Clm and ∆Slm are the SH coefficient
anomalies, kl is the Loew coefficient, and Plm is the normalized Legendre function, with
maximum degree l and order m expanded to 60.

The variations in TWS can also be expressed as the equivalent water height, see
Equation (2), which is converted from Equation (1):

EWT(θ, ϕ) =
αρave

3ρwater

∞

∑
l=0

l

∑
m=0

2l + 1
1 + kl

Plm(cosθ)× (∆Clm cos(mϕ) + ∆Slm sin(mϕ)) (2)

where EWT(θ, ϕ) is the equivalent water height and ρwater is the density of water (the
constant is 1000 kg/m3).

According to the above principles, the following post-processing steps were per-
formed on the SH coefficients first. The C20 terms of the SH coefficients were replaced
by estimates obtained from Satellite Laster Ranging (SLR) [49]. The first-degree terms
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of the SH coefficients were replaced by estimates from the atmosphere and ocean mod-
els [50]. Then, a Glacial Isostatic Adjustment (GIA) correction in the model proposed
by Geruo et al. [51] was applied to remove glacial rebound effects. To reduce the north–
south strip error and high-frequency noise in the original data, an effective spatial filtering
method is needed [52,53]. The effects of different filtering methods on retrieving TWS
changes were compared, as shown in Figure 3. It can be found that TWSA without any
filtering applied showed an obvious north–south strip error in space (Figure 3a), and only
when Swenson destriping or Gaussian smoothing was applied, although the stripes were
obviously reduced, the filtering effect was not obvious in the middle and low latitudes
(Figure 3b,c). The combination of Swenson destriping and Gaussian smoothing can effec-
tively remove the north–south strips and reveal the real information of TWSA, and the
larger the Gaussian filter radius, the better the noise removal effect (Figure 3d–f). However,
the real data signal will also be attenuated when the strip noise is suppressed [54], e.g., the
north–south sharpening appeared when a 500 km Gaussian filter was applied (Figure 3f).
Therefore, the Swenson destriping method combined with a 300 km Gaussian smoothing
were selected in this study.

Figure 3. The spatial pattern of global TWSA obtained from GRACE in April 2002, with no filtering
applied (a), only Swenson destriping applied (b), only 300 km Gaussian smoothing applied (c),
and a combination of Swenson destriping and 200 km (d), 300 km (e), and 500 km (f) Gaussian
smoothing applied.

After the post-processing, the SH coefficients were converted into equivalent water
height with a spatial resolution of 0.25◦ to keep consistent with the GLDAS model. The
monthly TWSA was calculated from the differences between TWS in each month and
the baseline average of TWS from January 2004 to December 2010, because there was no
missing data in this period. In order to restore the signal reduced by truncation of the
gravity coefficients and filtering, the scaling factor was then applied to GRACE TWSA over
the study area [55,56]. Based on Equation (3), the scaling factor was computed by applying
the same filtering method as applied to GRACE TWSA to GLDAS TWSA, and the result
was 1.065.

M =
t

∑
i=1

(∆ST,i − k∆SF,i)
2 (3)
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where M is the objective function that we want to minimize, ∆ST,i is the unfiltered GLDAS
TWSA for month i, ∆SF,i is the filtered GLDAS TWSA for month i processed in the same
way as the filtered GRACE data, k is the scaling factor derived through least square
regression, and t is the number of months.

In order to evaluate the uncertainty of GRACE TWSA, errors of it were calculated,
which mainly include measurement error in monthly gravity field solutions and leakage
error caused by truncation and filtering in the spectral domain. The measurement error
was estimated as the standard deviation of the residuals of coefficients when seasonal
cycles were removed [57]. The leakage error was calculated by the following equation [55]:

Le = RMS(∆ST,i − k∆SF,i)
RMSGRACE
RMSGLDAS

(4)

where ∆ST,i is the unfiltered GRACE TWSA for month i, ∆SF,i is the filtered GRACE TWSA
for month i, k is the scaling factor, and RMSGRACE and RMSGLDAS are the root mean
square of the filtered GRACE TWSA and GLDAS TWSA, respectively.

The total errors were estimated by summing up measurement and leakage errors in
quadrature, see Equation (5):

Etotal =
√

Me2 + Le2 (5)

where Etotal represents the total errors, and Me and Le are the leakage error and measure-
ment error, respectively.

2.3.2. Water Storage Equation

For an endorheic basin, the TWS changes include six major components:

∆TWS = ∆SWS + ∆GWS + ∆SMS + ∆SnWS + ∆CWS + ∆Glacier (6)

where ∆TWS represents the total TWS changes, ∆SWS is surface water storage changes,
∆GWS is groundwater storage changes, ∆SMS is soil moisture storage changes, ∆SnWS
is snow water equivalent changes, ∆CWS is plant canopy water storage changes, and
∆Glacier is glacier mass balance changes. Surface water, groundwater, and glacier mass
balance are not simulated in the GLDAS Noah model, so GLDAS TWS was calculated
by summing up snow water equivalent, soil moisture, and plant canopy water. The soil
moisture is the sum of soil moisture in all soil profiles, including soil moisture content in
0–10 cm, 10–40 cm, 40–100 cm, and 100–200 cm underground, and root zone soil moisture.
GLDAS TWSA was calculated the same way as GRACE TWSA, subtracting the average
values for the period of January 2004 to December 2010 from the original data.

2.3.3. Water Balance Equation

Precipitation (P) and evapotranspiration (ET) are key components of both atmospheric
and terrestrial water balances [58]. The precipitation minus evapotranspiration (P −
ET) describes the net water flux into the Earth’s surface, and thus provides essential
information regarding the interaction between the atmosphere and the land surface [59].
For an endorheic basin, changes in TWS (∆TWS) can be expressed as:

∆TWS = P− ET (7)

ET is influenced by both natural climate factors and anthropogenic factors such as
irrigation or groundwater pumping [30]. Since GLDAS only simulates ET under natural
climate conditions, P − ET obtained from GLDAS was compared with TWS from GRACE,
the former of which reflects TWS changes under natural climate conditions and the latter
represents the total TWS changes, to evaluate the contribution of human activities to
TWS variations.
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Moreover, to quantify the impacts of human activities on the variations in ET, ET
obtained from GLDAS was compared with the total ET estimated from GRACE. The total
ET can be estimated as:

ETGRACE = P− TWSAGRACE (8)

where ETGRACE represents total ET and TWSAGRACE is TWSA derived from GRACE.

2.3.4. Correlation Analysis

To assess the consistency and similarity of TWSA derived from GRACE and GLDAS,
Pearson’s correlation coefficient (CC) was used here, expressed as follows:

CC =
∑n

i=1
(

Ri − R
)(

Li − L
)√

∑n
i=1
(

Ri − R
)2
√

∑n
i=1
(

Li − L
)2

(9)

where R is the monthly TWSA derived from GRACE, L is the monthly TWSA or hydro-
climatic factors obtained from GLDAS, and n is the number of months.

2.3.5. Mann-Kendall Trend Test

The Mann–Kendall trend test (M–K test) is a nonparametric and robust test for ac-
cessing the significance of trends in time series data, which has been widely used in
hydrological and climatic research [60,61]. In this study, the M–K test was used to detect
trends of TWSA and other hydro-climatic factors.

3. Results
3.1. Variations in TWSA from GRACE
3.1.1. Temporal Variations in TWSA from GRACE

The monthly TWSA of the Aral Sea Basin retrieved by GRACE were averaged to
obtain the temporal variations in TWSA during the period of April 2002 to June 2017,
as shown in Figure 4a. TWSA of the Aral Sea Basin indicated a significant decreas-
ing trend (p < 0.01) during the entire study period. The change rate of TWSA reached
−4.12 ± 1.79 mm/year, equivalent to the water loss of 7.07 ± 3.07 km3/year. During the
period of 2002–2005, TWSA exhibited a huge increase at a rate of 23.54 ± 0.53 mm/year
(40.42 ± 0.91 km3/year), but it decreased continuously at a rate of 21.89 ± 0.36 mm/year
(37.59 ± 0.61 km3/year) from 2006 to 2009, and then declined in fluctuation at a rate of
2.65 ± 4.78 mm/year (4.55 ± 8.20 km3/year) from 2010 to 2017. The maximum positive
TWSA of 95.97 ± 2.07 mm appeared in May 2005, while the minimum negative TWSA of
−109.10 ± 20.41 mm was observed in September 2014. The variation trend in TWSA of
the Aral Sea Basin during the study period is similar to the results observed in previous
studies on the Aral Sea Basin and the entirety of Central Asia (Table 2).

The year-to-year variations in monthly TWSA were also analyzed, as displayed in
Figure 4b. TWSA of the Aral Sea Basin displayed dramatic seasonal variabilities, which
mainly increased in spring (March–May) and decreased in other seasons, especially in
autumn (September–November). The average TWSA of each month was positive from
February to June, and negative from July to January, indicating that water storage of the
Aral Sea Basin was surplus in the former period and deficit in the latter one. The maximum
monthly average TWSA occurred in April (30.93 ± 13.59 mm) and the minimum appeared
in October (−64.85 ± 6.27 mm).

3.1.2. Spatial Variations in TWSA from GRACE

Figure 5a presents the spatial distribution of the TWSA trend in the Aral Sea Basin
retrieved by GRACE during the period of April 2002 to June 2017. TWSA of the entire
basin generally declined during the study period, with the spatial variation trend ranging
from −12.98 to 0.66 mm/year. The variation trend in TWSA of the central Aral Sea Basin
was relatively small and even exhibited a slight increase (p > 0.05). However, the significant
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water storage loss can be found in other areas of the basin (p < 0.05), with the largest loss in
the northwest and the smallest in the southeast.

Figure 4. The variations in TWSA and precipitation (a), and year-to-year variations in monthly
TWSA (b) of the Aral Sea Basin during the period of April 2002 to June 2017. In (a), the blue bars
represent the data uncertainty. In (b), the red horizontal lines represent the month’s median TWSA,
the blue dots represent the month’s average TWSA, the boxes represent the inner-quartile range, and
the whiskers represent the full range of the data.

Table 2. Comparisons of the variation trend in TWSA of the Aral Sea Basin with the results observed
in previous studies.

Regions Time Ranges
Trends

Sources
mm/year km3/year

Aral Sea Basin 2002–2016 – −7.31 ± 1.68 Wang et al. [6]
Aral Sea Basin 2003–2017 – −5.85 ± 2.25 Tao et al. [33]
Central Asia 2003–2014 −4.74 – Hu et al. [34]
Central Asia 2003–2013 −4.44 ± 2.2 – Deng and Chen [5]

Aral Sea Basin 2002–2017 −4.12 ± 1.79 −7.07 ± 3.07 This study

Considering that the majority of water in the Aral Sea Basin comes from cryosphere
meltwater in the upstream mountains, and is consumed in the mid-downstream plains,
the upstream and mid-downstream of the basin were divided according to the extent
of the mountains (Figure 5b). TWSA of the two zones both indicated significant de-
creasing trends (p < 0.01) during the study period, with the much larger decreasing
rate of 4.24 ± 1.94 mm/year in the mid-downstream and the smaller decreasing rate of
3.40 ± 0.85 mm/year in the upstream of the Aral Sea Basin (Figure 6a,b, Table 3), and
their seasonal variation patterns were basically consistent with those of the entire basin
(Figure 6c,d). The reduction in TWS of the upstream mountains of the Aral Sea Basin
was mainly due to the melting of glaciers and snow cover. Therefore, the increase in
glacier meltwater and snow water equivalent might bring more water resources to the
mid-downstream plains. However, TWS in the mid-downstream of the Aral Sea Basin
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exhibited a tremendous decrease, especially in the downstream zone, suggesting that a
large amount of water in the mid-downstream plains was utilized by human activities.

Figure 5. The spatial variation trend in TWSA of the Aral Sea Basin retrieved by GRACE during the
period of April 2002 to June 2017 (a), and the distribution of the upstream (I) and mid-downstream
(II) of the Aral Sea Basin (b).

Figure 6. The variations in TWSA and precipitation of the upstream (a) and mid-downstream (b) of the Aral Sea Basin,
and the year-to-year variations in monthly TWSA of the upstream (c) and mid-downstream (d) of the Aral Sea Basin from
April 2002 to June 2017. In (a,b), the blue bars represent the data uncertainty. In (c,d), the red horizontal lines represent the
month’s median TWSA, the blue dots represent the month’s average TWSA, the boxes represent the inner-quartile range,
and the whiskers represent the full range of the data.
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Table 3. Trends in TWSA of the Aral Sea Basin and the typical zones derived from GRACE.

Regions
Trends

p-Value
mm/year km3/year

Aral Sea Basin −4.12 ± 1.79 −7.07 ± 3.07 0.000
Upstream of the Aral Sea Basin −3.40 ± 0.85 −0.93 ± 0.23 0.002

Mid-downstream of the Aral Sea Basin −4.24 ± 1.94 −6.12 ± 2.81 0.000

3.2. Variations in TWSA from GLDAS

TWS calculated from GLDAS includes soil moisture, snow water equivalent, and
plant canopy water, which account for about 98.37%, 1.62%, and 0.01% of the total GLDAS
TWS in the Aral Sea Basin, respectively. The variations in TWSA and year-to-year vari-
ations in monthly TWSA of the Aral Sea Basin from GLDAS over the study period are
presented in Figure 7, and trends in TWSA, soil moisture, snow water equivalent, and
plant canopy water obtained from GLDAS are listed in Table 4. The monthly GLDAS
TWSA of the Aral Sea Basin ranged from −89 to 134 mm (Figure 7a), and the annual
change rate of GLDAS TWSA was −0.81 mm/year (p > 0.05), equivalent to the water
loss of 1.38 km3/year (Table 4). Among the components of GLDAS TWS, soil moisture
anomalies increased slightly at a rate of 0.39 mm/year, snow water equivalent anomalies
decreased at a rate of 1.19 mm/year, and plant canopy water anomalies remained basically
unchanged (−0.01 mm/year) (Table 4). In addition, the average TWSA of each month ob-
tained from GLDAS was positive from January to June and negative from July to December,
and the maximum and minimum values were observed in April (71.79 mm) and September
(−62.63 mm), respectively (Figure 7b).

Figure 7. The variations in TWSA (a) and year-to-year variations in monthly TWSA (b) of the Aral
Sea Basin from GLDAS during the period of April 2002 to June 2017. In (b), the red horizontal lines
represent the month’s median TWSA, the blue dots represent the month’s average TWSA, the boxes
represent the inner-quartile range, and the whiskers represent the full range of the data.
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Table 4. Trends in TWSA, soil moisture, snow water equivalent, and plant canopy water of the Aral
Sea Basin from GLDAS.

Variables
Trends

p-Value
mm/year km3/year

GLDAS TWSA −0.81 −1.38 0.949
Soil moisture anomalies 0.39 0.68 0.956

Snow water equivalent anomalies −1.19 −2.05 0.472
Plant canopy water anomalies −0.01 −0.01 0.259

3.3. Comparisons of TWSA from GRACE and GLDAS

The comparison and correlation of TWSA in the Aral Sea Basin obtained from GRACE
and GLDAS over the period of April 2002 to June 2017 are presented in Figure 8. GLDAS
TWSA was significantly correlated to GRACE TWSA, with a high correlation coefficient
of 0.703 (p < 0.01), though the extreme values of GLDAS TWSA in some particular years
were larger than those of GRACE TWSA, particularly after 2014. Both GRACE TWSA and
GLDAS TWSA showed declining trends over the study period, while the declining rate
of GRACE TWSA (4.12 ± 1.79 mm/year) was much larger than that of GLDAS TWSA
(0.81 mm/year). Since GLDAS TWSA only reflects the variations in three elements of
GRACE TWSA, these findings suggest that the variations in soil moisture, snow water
equivalent, and plant canopy water account for a small proportion (~19.66%) of total TWS
variations, while the variations in surface water, groundwater and glacier mass balance
account for a greater one (~80.34%).

Figure 8. The comparison (a) and correlation (b) between GRACE TWSA and GLDAS TWSA in the
Aral Sea Basin. The blue bars represent the data uncertainty.

4. Discussion

In this section, the impacts of human activities on total TWS variations in the Aral
Sea Basin were systematically quantified from the perspectives of TWS components (e.g.,
surface water and groundwater) and water balance (e.g., P and ET).
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4.1. TWS Components

The excessive water consumption associated with human activities is a major compo-
nent of the total water consumption in the Aral Sea Basin [62]. Around 90% of the total
human water withdrawal is from irrigation, which mainly depends on surface water, and
only ~3–4% comes from groundwater [9,38]. Therefore, the variations in surface water
and groundwater of the Aral Sea Basin were estimated to indicate the impacts of human
activities on the variations in TWS.

Based on water volume data of the Aral Sea obtained from CAWATER-info (http://
www.cawater-info.net accessed on 1 October 2019) and previous study [14], the variations
in water volume of the Aral Sea during the periods of 1960–2018 and 2002–2017 are
presented in Figure 9a,b. Although the water volume of the Aral Sea exhibited a sharp
decline during the past six decades, the declining rate has been relatively slow from 2002
to 2017 (3.75 km3/year). Given that the Aral Sea is the major component of surface water
in the Aral Sea Basin, we roughly estimated the change rate of surface water in the basin
using the variations in the water volume of the Aral Sea. Results indicated that surface
water in the Aral Sea Basin decreased at a rate of 2.19 mm/year, accounting for ~53.16% of
the declining rate of GRACE TWSA.

Figure 9. Variations in water volume of the Aral Sea during the periods of 1960–2018 (a) and 2002–2017 (b), variations
in GRACE TWSA–GLDAS TWSA of the Aral Sea Basin during 2002–2017 (c), and the comparison of GRACE TWSA and
GRACE TWSA–GLDAS TWSA (d). The blue bars represent the data uncertainty.

Glaciers in the Tien Shan and Pamirs have exhibited an overall retreat under long-
term global warming [63,64]. The glacier area in the Aral Sea Basin reduced by approxi-
mately 500.85 ± 1174.72 km2 and the total loss of glacier mass ranged from 9.17 ± 12.76 to
43.89 ± 2.11 km3 w.e. over the period of 2000–2016 [14]. Based on the glacier mass

http://www.cawater-info.net
http://www.cawater-info.net
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loss during 2000–2016, the annual glacier mass balance of the Aral Sea Basin during
2002–2017 was estimated to be−2.74± 0.13 to−0.57± 0.80 km3 w.e./year (−1.60 ± 0.08 to
−0.33 ± 0.46 mm/year), accounting for about 8.10 ± 11.27 to 38.77 ± 1.86% of the change
rate of GRACE TWSA.

According to the water storage equation, the variations in the sum of surface water,
groundwater, and glacier mass balance were estimated by subtracting TWSA from GRACE
and GLDAS (Figure 9c). GRACE TWSA–GLDAS TWSA of the Aral Sea Basin declined in-
tensely at a rate of 4.27± 1.79 mm/year, equivalent to the water loss of 7.33 ± 3.07 km3/year.
Since surface water and glaciers decreased at the rates of 2.19 mm/year and 0.33 ± 0.46 to
1.60 ± 0.08 mm/year, respectively, the change rate of groundwater could be roughly esti-
mated to be −1.75 ± 2.25 to −0.48 ± 1.87 mm/year, accounting for about 11.65 ± 45.39 to
42.48 ± 54.61% of the change rate of GRACE TWSA.

Table 5 lists trends in all TWS components of the Aral Sea Basin as well as their
contributions to GRACE TWSA. The reduction in TWS of the Aral Sea Basin was primarily
caused by surface water loss, followed by groundwater depletion. Other TWS components
which are more affected by climate factors contributed less to TWS variations, further
confirming the dominant role of human activities on TWS depletion of the Aral Sea Basin.

Table 5. Trends in soil moisture, snow water equivalent, plant canopy water, glacier mass balance, surface water, and
groundwater, and their contributions to GRACE TWSA during 2002–2017.

Variables
Trends

Contributions (%) to TWSA
mm/year km3/year

Soil moisture anomalies 0.39 0.68 −9.47%
Snow water

equivalent anomalies −1.19 −2.05 28.88%

Plant canopy water anomalies −0.01 −0.01 0.24%
Glacier mass balance −1.60 ± 0.08~−0.33 ± 0.46 −2.74 ± 0.13~−0.57 ± 0.80 8.10 ± 11.27~38.77 ± 1.86%

Surface water −2.19 −3.75 53.16%
Groundwater −1.75 ± 2.25~−0.48 ± 1.87 −3.01 ± 3.87~−0.84 ± 3.20 11.65 ± 45.39~42.48 ± 54.61%

GRACE TWSA −4.12 ± 1.79 −7.07 ± 3.07 –

4.2. Water Balance

According to the water balance equation, TWS variations in endorheic basins are
mainly influenced by P and ET. Human activities such as agricultural irrigation, reservoir
construction, and groundwater pumping directly affect TWS through changing water loss
by ET to the atmosphere [30,65]. For example, the water diversion and irrigation schemes
in the Aral Sea Basin considerably increased ET, thereby reducing net water flux (P −
ET) from the atmosphere to the land surface [66,67]. To quantify the water loss caused by
human activities, ET and P − ET obtained from GLDAS (i.e., ETGLDAS and P − ETGLDAS)
were compared with ET and TWS from GRACE (i.e., ETGRACE and GRACE TWSA), the
former reflecting changes under natural climate conditions and the latter representing the
total changes.

Figure 10 illustrates the variations in P, ETGRACE, ETGLDAS, and P − ETGLDAS of
the Aral Sea Basin over the period of 2002–2017, and their trends are listed in Table
6. P and ETGRACE both exhibited increases at the rates of 1.36 mm/year (p > 0.01) and
4.37 ± 1.79 mm/year (p < 0.01), respectively (Figure 10a), indicating that ET was the domi-
nant cause for the reduction in TWS of the Aral Sea Basin. ETGLDAS increased at a rate of
2.38 mm/year (p > 0.01), which accounts for ~54.46% of the increasing trend in ETGRACE,
suggesting that ET induced by human activities might account for ~45.54% of the increasing
trend in total ET of the Aral Sea Basin. Moreover, the decreasing rate of P − ETGLDAS (1.02
mm/year) accounts for ~24.76% of that of GRACE TWSA (Figure 10b), further suggesting
that the drastic reduction in TWS of the Aral Sea Basin was more affected by human
activities (~75.24%).
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Figure 10. The variations in P, ETGRACE, ETGLDAS (a), P − ETGLDAS, and GRACE TWSA (b) of the
Aral Sea Basin over the period of 2002–2017. The black bars represent the data uncertainty.

Table 6. Trends in P, ETGRACE, ETGLDAS, P − ETGLDAS, and GRACE TWSA of the Aral Sea Basin
during the period of 2002–2017.

Variables
Trends

p-Value
mm/year km3/year

P 1.36 2.34 0.627
ETGRACE 4.37 ± 1.79 7.50 ± 3.07 0.000
ETGLDAS 2.38 4.09 0.137

P − ETGLDAS −1.02 −1.75 0.505
GRACE TWSA −4.12 ± 1.79 −7.07 ± 3.07 0.000

In summary, human activities have a profound impact on the variations in TWS of
the Aral Sea Basin. TWS depletion caused by human activities contributed ~75.24% to
total TWS loss of the Aral Sea Basin, which was much larger than that induced by natural
climate factors. Water scarcity driven by human activities has brought great challenges
to the sustainable development of economies and eco-environments in this region. It is
imperative to optimize water resource management, particularly the rational utilization
and protection of surface water. Otherwise, in the context of global warming, the water
crisis in the Aral Sea Basin will intensify when the cryosphere meltwater weakens.

5. Conclusions

In this study, the temporal and spatial variations in TWS of the Aral Sea Basin during
the period of April 2002 to June 2017 were investigated by using GRACE data and GLDAS
Noah model outputs. The impacts of human activities on TWS variations were further
quantified through the variations in TWS components and the comparison of TWS obtained
from GRACE and GLDAS.

The results indicate that TWSA of the Aral Sea Basin derived from GRACE experienced
a significant decreasing trend of 4.12 ± 1.79 mm/year from April 2002 to June 2017,
equivalent to the water loss of 7.07 ± 3.07 km3/year. GRACE TWSA of the Aral Sea Basin
displayed dramatic seasonal variabilities, which mainly increased in spring (March–May).
The spatial heterogeneity was also observed in TWSA of the entire Aral Sea Basin: the
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decreasing trend in the mid-downstream (4.24 ± 1.94 mm/year) was larger than that in
the upstream of the basin (3.40 ± 0.85 mm/year). GLDAS TWSA decreased at a rate of
0.81 mm/year (1.38 km3/year), which was less than that of GRACE TWSA.

The variation trends of individual TWS components indicate that the reduction in TWS
of the Aral Sea Basin was primarily due to surface water loss, followed by groundwater
depletion, which account for about 53.16% and 11.65 ± 45.39 to 42.48 ± 54.61% of the total
loss of TWS, respectively. From the perspective of water balance, ET played a dominant
role in TWS depletion of the Aral Sea Basin. The variations in ET and TWS caused by
human activities contributed ~45.54% and ~75.24% to those in total ET and TWS of the
Aral Sea Basin, respectively. To alleviate the water crisis in this region, it is imperative to
optimize water resource management, particularly the rational utilization and protection
of surface water.
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