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Abstract: With the improvement of various space-satellite shooting methods, the sources, scenes,
and quantities of remote sensing data are also increasing. An effective and fast remote sensing image
retrieval method is necessary, and many researchers have conducted a lot of work in this direction.
Nevertheless, a fast retrieval method called hashing retrieval is proposed to improve retrieval speed,
while maintaining retrieval accuracy and greatly reducing memory space consumption. At the same
time, proxy-based metric learning losses can reduce convergence time. Naturally, we present a
proxy-based hash retrieval method, called DHPL (Deep Hashing using Proxy Loss), which combines
hash code learning with proxy-based metric learning in a convolutional neural network. Specifically,
we designed a novel proxy metric learning network, and we used one hash loss function to reduce
the quantified losses. For the University of California Merced (UCMD) dataset, DHPL resulted in a
mean average precision (mAP) of up to 98.53% on 16 hash bits, 98.83% on 32 hash bits, 99.01% on
48 hash bits, and 99.21% on 64 hash bits. For the aerial image dataset (AID), DHPL achieved an mAP
of up to 93.53% on 16 hash bits, 97.36% on 32 hash bits, 98.28% on 48 hash bits, and 98.54% on 64 bits.
Our experimental results on UCMD and AID datasets illustrate that DHPL could generate great
results compared with other state-of-the-art hash approaches.

Keywords: hash; remote sensing; image retrieval; deep metric learning

1. Introduction

The number of remote sensing images is increasing due to increases in observation
and storage capacity [1]. At the same time, remote sensing images have a lot of difficulty
being processed because they contain a large number of geographical regions and regional
semantic examples [2-6]. Therefore, many image processing studies focus on remote
sensing images. Among them, the most common technologies are image recognition, target
detection, image classification, retrieval, and so on. In this paper, we explore image retrieval
on remote sensing images. The image retrieval task is to return all images similar to the
given one. Image retrieval on remote sensing images [7-9] mainly focuses on research
content. At present, most researchers in image retrieval focus on improving retrieval
efficiency and accuracy. This is also the biggest difficulty in the retrieval direction of remote
sensing images, because these images include a large range of geographical landmarks and
fine-grained content differentiation.

Remote sensing image retrieval (RSIR) [2-6] can improve retrieval effectiveness
through deep metric learning (DML). DML uses labeled images as the input for end-to-end
network training. Some excellent trained networks can extract representative features from
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input images so that similar pairs are close to each other on feature space and dissimilar
pairs are far from each other on feature space [10,11]. This feature addresses image re-
trieval’s need to distinguish the different categories of samples. Generally speaking, the
cardinal category of DML losses contain two classes: pair-based losses and proxy-based
losses. Pair-based losses explore pair-to-pair relationship between samples in the feature
space [12-17]. Through training, they can maintain the original spatial relationship be-
tween samples, so as to achieve a better retrieval effect. However, the retention of this
information usually depends heavily on the construction of input sample pairs, and more
training samples will consume more training time, resulting in better training effects. The
time complexity of this loss is O(Q?) or O(Q?), where Q represents the number of training
samples, thus its convergence is slow during training. At the same time, because the
information contained in different samples plays different roles in training, pairwise loss
will also involve sampling technology [2,17-20]. Proxy-based losses use some proxies
to make all samples close to their proxy, which define the same class [21-24]. Each of
the proxies is the representation of some input samples which would be updated by the
network training. Usually, it pulls input data to be close to the same class proxies, and
pulls it to be far from different class proxies. This could solve the problem of the slow
convergence of pair-based loss. In this work, we attempt to use the proxy-based loss to
resolve the complexity of the training network.

Retrieval tasks involving a large number of RS images will lead to intolerable retrieval
times and the consumption of a large amount of physical storage space. It is necessary to
solve this problem to obtain high-speed and precise retrieval tasks. Hash technology is a
dimension reduction technique: by encoding, it can significantly reduce retrieval speed
and memory consumption. Due to its excellent retrieval results, it is being adopted more
and more for large data retrieval tasks. The hashing method is to train some nonlinear
functions to encode long features into short features. Then low dimensional features will
be calculated as binary code. At present, there are two main categories of hash methods:
unsupervised hash and supervised hash. An unsupervised hash method is suitable for
learning hash functions with no label information, such as spectral hashing (SH) [25],
iterative quantization (ITQ) [26], and discrete graph hashing (DGH) [27]. A supervised
hash method is suitable for learning hash functions with label information, as it would
produce better dimension reduction effects because of the label information. Some classical
supervised hash methods include binary reconstruction embedding (BRE) [28], minimal
loss hashing (MLH) [29], sparse embedding, least variance encoding (SELVE) [30], and
supervised hashing with kernels (KSH) [31]. By using supervisory information, the bi-
nary codes of similar images have great similarity, while those of different images have
little similarity.

Ordinarily, from the point of view of feature acquisition, there are two hash methods
that are available: traditional hashing methods using manual features, and deep hashing
methods using deep features. Traditional hashing techniques contain scale invariant feature
transformation (SIFT) [32], GIST [33] and so on. These kind of features focus primarily on
the sample content, and traditional methods cannot make adjustments for specific tasks
flexibility. The feature expression ability of manual feature is limited, and at the same time,
they cannot dynamically adjust the features, so it is difficult to meet the common precision
requirements of retrieval tasks. In contrast, deep hashing [34-39] uses high-dimensional
deep features to learn hash code. These methods use deep neural networks to obtain
deep features which do not have human interference, and are thus more discriminative
and robust. The deep hashing method commits to learn low-dimensional hash code,
and the hash code could represent the sample information very well, while at the same
time it can complete the retrieval task with a small in-class distance and a large out-class
distance. From the perspective of category differentiation, this is consistent with the goal
of DML. In general, deep hashing first inputs the samples into a deep neural network to
obtain deep embedding features, and then changes the deep embedding features with
high dimensional features into low dimensional hash codes in an end-to-end approach.
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In particular, the training process consists of two parts. First, we need to train the network
with one appropriate loss function to obtain more representative features. The second part
uses the hash network to learn the low-dimensional features, while using one appropriate
quantization loss to reduce the distance between the hash code and the “hash-like codes”.
Among them, “hash-like codes” are our shorthand for low-dimensional features that
existed before quantification.

Based on the previous analysis, we choose to use the deep metric learning method
to learn deep features, and the deep hashing method to learn hash code. In general,
we present a new deep metric learning loss: when the proxy-based loss is used, the
relationship between sample pairs is also considered. First, we generate a few proxies to
be representatives of the different categories of samples. Second, we use these proxies
to build our proxy-based losses while taking into account the optimal state information.
Then, we use the novel loss named DHPL (deep hashing using proxy loss) and quantitative
losses to train our deep neural network and hash network. In the end, we have a network
well-trained to perform fast and high-precision hash retrieval operations.

We list the main innovations and results of this paper as follows:

1. We devised a novel proxy-based loss to learn more about informative deep features.
It not only considers pairwise information to learn more representative embedding
sphere distributions, but also considers the difference between the current state and
the optimal state.

2. We used one full connection layer to construct our deep hash network in order to
learn valid hash functions. It used deep embedding features to fully train the network
weights, and used hash losses to reduce the resulting damage from quantification.

3. Results are verified by experiments on remote sensing datasets UCMD and AID. The
experimental data also show that our DHPL method is more effective than other
state-of-the-art methods, which verifies the effectiveness of our method.

Next, our article introduces four parts respectively. Section 2 illustrates the relevant
work related to deep metric learning and hashing methods. Section 3 describes the imple-
mentation ways of our DHPL method, and Section 4 gives the comparative results of the
experiment and analyzes the results. Section 5 summarizes the conclusions of our method.

2. Related Work

Deep metric learning is used in embedding spaces with high degrees of learning
differentiation, so that the learned features can be distinguished well between different
categories. Deep metric learning losses contain two categories: pair-based losses and proxy-
based losses. Pair-bases losses study embedding features by exploring the relationships
between samples. Contrastive losses [12] explore the distance between the two samples so
that pairs from the same class are closer and pairs from different classes are farther away.
Triplet losses [13] explore the distance between three samples, made of anchor data, positive
data, and negative data. It can keep the measurements between positive and negative
sample pairs within the margins. Finally, the distance among samples of the same class is
small, and the distance among samples of the different class is large. N-pair loss [15] assigns
one positive sample and several negative samples (one from each different category) to each
anchor, so as to explore the information between the samples in a more comprehensive way.
Lifted structured loss [14] takes into account one similar pair and multiple dissimilar pairs.
This structure can better maintain the sample distribution information, allowing for better
trained networks. These pair-to-pair losses can take advantage of more comprehensive
sample information by using as many samples as possible in the batch. However, choosing
too many samples for network training will lead to a large amount of time consumption,
and the limited improvement in accuracy cannot offset the time cost. At the same time,
choosing too few samples consumes little time, but may mean dropping informative
examples during training.

Pair-based losses use fine-grained and rich relations between samples when checking
tuples during training. However, as the training samples gradually increase, there are more
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and more tuples that the training needs to build, and a large number of tuples can also lead
to a large time complexity of the training network, slowing down the convergence rate of
the network. Furthermore, training with lots of tuples is inefficient and even affects the
quality of learned features [2,19]. In order to solve the problem of time consumption caused
by excessive sampling, many pair-to-pair losses utilize sampling techniques [2,17-20] to
select a small number of tuples that contain more information conducive to training. Yet,
the hyper-parameters involved in sampling need to be carefully adjusted, and can also
involve overfitting issues. In addition, weighting methods can be used to solve the problem
of high time complexity in pair-to-pair losses. Specifically, greater weight is assigned to
more important sample pairs, such as in multi-similarity loss [17], which also incorporates
a sampling technique.

Proxy-based metric learning [21-24] is an approach used in recent years. It can solve
the training time complexity problem of the pair-to-pair methods. A proxy is initialized
with the network parameters and optimized as the network parameters are optimized. It
can represent part of the samples. The common idea of such methods is to exploit a group
of proxies that maintain the global structure of the embedded feature space and associate
each data point to the proxy, rather than another sample during training. Since the quantity
of proxies is greatly reduced relative to the number of training samples, time consumption
can be greatly reduced. Proxy-NCA [21] is the first proxy-based loss. Proxy-NCA loss
assigned one proxy to each category, and the number of proxies is the same as the number
of category labels. It then associates each data point with all the proxies. Finally, it can make
similar samples close together and dissimilar samples far apart. SoftTriple loss [23] assigns
more than one proxy to each category to maintain greater intra-class distribution. Although
these methods are able to greatly reduce the slow convergence, they are still very restrictive
in maintaining the relationship between data-to-data relations. Proxy anchor loss [24] aims
to overcome Proxy-NCA'’s limitation, namely that it fails to maintain information between
the pairs of samples. Proxy anchor loss uses proxies as anchors, and uses all the samples to
associate with an anchor to consider the relationship between samples during training. It
combines the benefits of proxy-based loss and pair-based loss. We constructed our tuples
based on this. However, it still has the problem of fuzzy convergence states. We define the
convergence state clearly and derive our loss from it. Our proposed DHPL defines explicit
convergence states and constantly adjusts the training direction and intensity through the
current state. Figure 1 shows the tuple structure of the different methods.

The hashing method is widely used in large data retrieval because of its small space
requirements and fast retrieval speed. The goal of the hashing method is to train several
nonlinear functions to encode high-dimensional float features to low-dimensional binariza-
tion features. Ordinarily, there are two hashing methods: unsupervised hashing methods
and supervised hashing methods. Unsupervised hashing methods train networks with
samples without label information. For example, spectral hashing (SH) [40] is an unsu-
pervised hashing method. It utilizes recent results on the convergence of graph Laplacian
eigenvectors to the Laplace-Beltrami eigenfunctions of the manifolds. Iterative quantization
(ITQ) [26] is first applied to the original spatial datasets using PCA dimension reduction
processing, then the problem can be converted into a dataset of data points mapped to
binary super cube vertices, making corresponding quantitative error minimal, resulting in
an excellent binary code for the data set.

Supervised hashing methods using label information can thus obtain higher retrieval
accuracy. The kernel-based supervised hashing (KSH) method [25] utilizes Hamming
distance and the coding of inner product equivalence, allowing a very efficient and easily
optimized objective function to be obtained. Density sensitive hashing (DSH) [41] explores
the geometric information of the samples and uses projection functions that best fit the
data distribution. Nevertheless, the manual features used by traditional hashing methods
are not flexible enough for the learning of hash features. Due to the learning ability of deep
neural networks, more hash methods researchers have begun to use deep hash methods.
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Figure 1. The structure diagram of the pair-based loss and the proxy-based loss is given in the figure. The graphs with

different colors and shapes represent samples of different categories, among which the slightly smaller ones are actual

sample points, and the slightly larger ones represent proxies of corresponding categories. Lines connecting different shapes

represent pairs of samples that need to be constructed for training. The thicker lines represent greater optimization degree.

The arrows point to the optimization direction, and the dotted circles represents the threshold ranges. The arc of the real

lines represents the location of the optimal value Oy, optimized for dissimilar samples. (a) Contrast loss [12] uses two

samples to construct a sample pair. (b) Triplet loss [13] using a sample as the anchor, and a triplet is constructed by selecting

both the same kind of positive sample and a different negative sample. (c) N-pair loss [15] and (d) lifted structure loss [14]

construct tuples with more samples, but do not make use of all samples in the batch. (e) Proxy-NCA loss [21] associates

each sample with proxies, but it does not explore the relationships between samples. (f) Proxy anchor loss [24] selects a

proxy as an anchor and associates it with other samples. (g) Our DHPL loss is based on the proxy anchor and different

optimization conditions are considered in DHPL loss.

The deep hashing method can make full use of the learning characteristics of deep
neural networks, which can improve retrieval accuracy and ensure retrieval speed. For
instance, a deep hashing neural network (DHNN) [37] uses neural networks to learn
high-dimensional embedding features and deep hashing learning networks to learn low-
dimensional features. It can be optimized end-to-end. Deep hashing convolutional neural
networks (DHCNN) [39] use the deep hashing method to perform retrieval and classifica-
tion operations simultaneously, and achieve good hashing retrieval effects. In this paper,
we introduce a new hashing method, which implements the efficient learning of features
using a proxy-based loss.

3. Our Deep Hashing Using Proxy Loss Approach

In Section 3, we introduce four parts altogether. Section 3.1 elaborates on the metric
learning loss function. Section 3.2 explicates quantization loss function. The architecture of
the total network is showed in Section 3.3.

3.1. Proxy-Based Loss

Currently, pair-based loss has achieved excellent retrieval results by digging into
the relationship between samples in depth. However, this method also has a great time
complexity, due to the traversal collection of sample teams. Proxy-based losses can solve
this problem. Proxies are generated as sample representatives, which greatly reduce
the time cost of sample team collection. Moreover, the proxy-based method [21-24] has
achieved good retrieval results. The biggest disadvantage of the proxy-based loss is that
it cannot explore the information between samples well. Based on the above ideas, we
present a method to explore the information between samples, and while using proxies to
reduce the training time and maintain the global structure. At the same time, considering
that most of the current losses cannot define the final optimization state, we also define the
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final optimization state of our losses in order to achieve effective training. First, we give
the form of the loss function:

|P* | |P|

lioss = \P+| Zlog 1+ ) e p(Sp=0p) |P|Zlog 1+ Y emnlSuon) (1)

xeXy xeXp

P represents the set of positive proxies of the data, and P represents all proxies in the
batch. For each proxy, the sample set similar to it is represented as X3, and the sample set
different from it is represented as X, . « is used to adjust the optimization direction of
the positive sample, which can make the positive sample optimize in the direction, and
towards the degree of, the optimal solution. «;, is used to adjust the optimization direction
and the degree of the negative sample, which can make the negative sample optimize in
the direction of the optimal solution. J, is the threshold value that constrains the positive
sample pair, which can ensure that the similarity between the positive sample pairs is
greater than the specified value. J; is the margin used to make the similarity of all negative
pairs smaller than it. In general, similarity can be measured using either Euclidean distance
or cosine distance. They use distance and angle, respectively, to measure similarity. In
our experiment, cosine similarity is used to measure distance in the training stage, and
Hamming distance is used in the test stage. S; denotes the cosine similarity between
hash codes and proxies defined in the corresponding category, and S, denotes the cosine
similarity between hash codes and proxies defined in different categories. We give the
formula for calculating the cosine similarity,

Y (hixpé)
\/Z (hi) \/Zl 1 Pz

where K represents hash code length, h’i represents the i-th dimension of hash code /1, and
p5 represents the i-th dimension of proxy p,. However, the measurement learning loss
function is mainly used to learn representative features, while the hash code will lose some
information. Moreover, discrete values make it difficult to calculate derivatives. Therefore,
we use the hash-like features before quantization to calculate the similarity.

@)

Y (di X ph)
\/E dl \/Zl 1 Pz

where K represents hash-like code length, and it is the same as the hash code. da represents
the i-th dimension of hash-like feature dj.

Multi-similarity loss [17] makes a detailed analysis of the weights of positive and
negative sample pairs. It proposes self-similarity and two relative similarities, and the
analysis of existing losses. Then construct their losses by all three similarities. We also
analyze our losses in terms of the weights and give meaningful parameter values. If the
similarity between two samples of the same kind is 1, then this is the best result between
the positive sample pairs. Similarly, if the similarity between two samples of different
categories is —1, then this is also the best result between the two negative sample pairs.
These are two cases where no further optimization is required. The optimization purpose
of our network is to bring the similarity between positive samples close to 1. Hence, we set
dp to 1 — m in the expectation that it will clarify the final result of the network optimization.
Network optimization refers to gradually optimizing network parameters through gradient
calculation and back propagation during training, so that the trained network is more
suitable for the current data situation. The optimization purpose of our network is also to
bring the similarity between negative samples close to —1. Hence, we set J,, to —1 + m in
the expectation that it will clarify the final result of the network optimization. Be aware
that m is a positive number greater than 0.

®)
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Usually, ap and «;, can determine the way and speed of our optimization. Ideally,
for samples that have been correctly classified as having the optimal similarity, we would
prefer not to optimize them. For samples of correct classification close to optimal similarity,
we would like to perform a weak optimization operation. For misclassified samples far
from the optimal similarity, we would like to strongly optimize them. Based on the above
analysis, we give the formula for the a) and a;,.

ap = max(0, Op —sp) @)
Ky = maX(O, Sn — Oﬂ) ’

where O, is the result with the best similarity we expect between the positive sample pairs,
and we set it to be a little bit bigger than 1 as 1 + m. Oy, is the result we expect with the
optimal similarity value of the negative sample pairs, and we set it a little smaller than —1
as —1 — m. We use Figure 2 to represent the optimization of the sample.

Op

On

Figure 2. The dotted line represents the boundary of §, and 4, and the colored areas inside represent the areas that

need to be optimized. The darker the color, the greater the optimization degree, and the lighter the color, the smaller the

optimization degree. The circle with “+” is a positive sample, which is optimized toward the optimal O, direction, while

“_r

the circle wit

is a negative sample, which is optimized toward the optimal O, direction. At the same time, the direction

of the arrow denotes the optimization direction, and the thickness indicates the optimization degree.

3.2. Hashing Method

In order to reduce the high-dimensional features, we adopt the deep hash method to
automatically learn the hash code. Specifically, we use a full connection layer for dimension
reduction operations while being able to effectively learn the network parameters. We use
Figure 3 to specifically show the architecture of our hashing method.

We first utilize deep CNN to obtain deep embedding features. Then, a full-connection
layer is connected to shorten the length of the deep embedding features, and we get
low-dimensional features. The dimension reduction function is:

dgxk =W xdp+b (5)

W denotes the parameters of the full connection layer. dp is the deep embedding
features before dimensionality reduction. b is the bias. di are the hash-like features. K are
the dimensions of the hash code. For convenience, we call the low-dimensional features
before quantization hash-like features. We use hx = sgn(dk) to obtain the hash code which
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we need to binarize the hash-like features. sgn(-) is a step function, and it returns a variant
(integer) indicating the positive or negative sign of the parameter. For positive numbers,
we get 1, and for negative numbers we get —1.

Training phase =~ —>
Back propagation phase = <---

Hash-like
features

| |

T T |
|

Quantization |

)

el L o

==

retrieval

Hash code
l::I I Hamming I o
S — I distance |_>I -

Binarization

Figure 3. Image retrieval framework based on deep hashing using Proxy Loss.

Intuitively, the binarization process causes an information loss, so a quantitative loss
is necessary.
N

lb—loss = Z

i=1

dic — |3 (6)

where di is the i-th deep embedding feature of K bits, and / is the i-th hash code of K bits.

N is the batch size. |- ||§ denotes an I;-norm vector used to reduce the distance between
hash code and hash-like code.

3.3. Time Complexity Analysis

In order to study the efficiency of deep hashing proxy loss, this section analyzes and
compares the training complexity of different loss functions and the time consumption in
the test retrieval stage. Assume that Q, M, and N represent the number of data samples
in a batch, the number of sample categories, and the number of proxies of each class,
respectively. In general, the magnitude of M is much less than Q. The comparison situations
are listed in Table 1.

Table 1. Comparison of training complexity of different loss functions.

Loss Type Loss Training Complexity
Contrastive loss 0(Q?)
. Triplet loss 0(Q%)
Pair-based N-pair loss o ( QS)
Lift Structure loss 0(Q?)
Proxy-NCA loss o(QM)
Proxy-NCA++ loss o(QM)

Proxy-based SoftTriple Loss O(QMN?)

Proxy-Anchor loss o(QM)

DHPL(Ours) o(QMm)
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With the exception of SoftTriple loss, which allocates multiple proxies for each category,
all the other types of proxy-based losses assign one proxy for each category, i.e., N = 1.
For pair-based loss functions, contrastive loss takes sample pairs as input, and its time
complexity is O(Q?). Triplet loss takes triples into account, and its time complexity is
O(Q?), the same as N-pair loss and lifted structure loss. Of course, if a certain sampling
technology is adopted to screen the data of the input network, the time complexity will
be reduced to a certain extent. The training time consumption of the proxy-based loss is
generally less than that of the pair-to-pair loss. Proxy-NCA loss and proxy-NCA++ loss
in each data sample are related to a positive proxy and (M — 1) negative proxies, and
therefore the training complexity is O(QM). In the SoftTriple loss, each class is represented
by multiple proxies, and each data sample includes N positively correlated proxies and
N(M — 1) negatively correlated proxies, and the total training complexity is O(QMN?).
The DHPL method mentioned in this chapter allocates a proxy for each category, and
dynamically optimizes its training according to the similarity between the proxy and the
data, and the similarity between the optimal value. The computational complexity of its
training is O(QM), the same as that of the proxy-NCA.

As for the complexity of the test phase, we focus on the retrieval phase. In the retrieval
stage, since we use the low latitude features of binary codes, compared with the high
latitude features of floating-point values, we can greatly reduce the space requirements
of retrieval features. At the same time, the calculation time cost of Hamming distance is
much less than that of Euclidean distance and cosine distance.

Retrieval time is reduced, mainly because the calculation time of the Hamming dis-
tance is far less than that of the calculation time of the floating-point characteristic distance,
while the very short hash code length can also reduce the retrieval time consumption.

The reduction in the physical storage space is, on the one hand, due to the length of
the hash code, which is very short. On the other hand, binary code can also greatly reduce
the space required compared to floating-point eigenvalues, and when the amount of data
is increased, this saves considerable physical.

Reduction in retrieval time and reduced storage space are the root reasons for the
application of the hash method.

4. Experiments

Section 4 introduces four parts. Section 4.1 first explains two popular RS datasets, and
we show our formula for evaluation criteria. Section 4.2 lists the steps of our experimental
implementation, and Section 4.3 shows the results of our experiment, and we analyze the
results with a state-of-art method. In Section 4.4, we discuss our findings.

4.1. Dataset and Protocols

We mainly use two kinds of remote sensing images as the experimental data set: they are
the UCMD and the AID. The UCMD [42] (University of California Merced, CA, USA dataset)
is a public free remote sensing data set. The UCMD has 21 different categories of surface
images, each of which contains 100 images, some of which include a large number of
surface structures. The pixel size of the images is 256 x 256, and the spatial resolution is
0.3 m. Figure 4 shows pictures from the UCMD.

The AID [43] (Aerial Image Dataset) was obtained from Google Earth, and the pixel
size of each image is equal to 600 x 600. The AID has 10,000 images in 30 categories. For
both of these two data sets, images from the same category are treated as the ground-truth
neighbors. Figure 5 shows pictures from the AID.
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Figure 4. Sample images of UCMD dataset.
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To compare the effects of different retrieval methods, we need to use the evaluation
criteria common to other retrieval methods. We used mAP (mean average precision) as
the evaluation criteria, which is consistent with that used in the DHCNN [39] method.
Specifically, the value of mAP can be calculated by

mAP = |Q| Z Z precision (R]) 7)

where R; is the retrieval data set obtained from the i-th test sample, including a total of #;
images. Rf is the j-th image in R; dataset. | Q| is the number of the testing set.



Remote Sens. 2021, 13, 2924

11 of 16

4.2. Implementation Details

We use a VGG-F network [44] pre-trained on ImageNet [45] as our basic network.
Then the network parameters were fine-tuned using the remote sensing data set and the loss
function we designed, in the hope that it can adapt more to the hash retrieval requirements
of our remote sensing images. We set the output length of the last layer according to the
length of the hash code, and L2-normalized the final output.

We used the AdamW optimizer [46] in each experiment, which has the same update
step as Adam [47], but can attenuate weights separately. Our DHPL network is trained
using an initial learning rate of 0.0001 on the UCMD and the AID datasets. To accelerate the
proxy convergence, its learning rate is equal to 0.01. Input training batches are randomly
selected during training.

Our training batch size was set to 90. We divided our training and test sets by 8:2 for
the UCMD dataset, and by 5:5 for the AID dataset. One proxy was assigned for each class,
and we initialized proxies using normal distributions to make sure that they were evenly
distributed over the unit hyper sphere. The value of the m was set to 0.25.

4.3. Experimental Results

In this part, we give the experimental results on the UCMD and the AID, respectively,
and analyze the obtained results so as to explain the effect of the DHPL method.

4.3.1. Results on UCMD

First, we compare the methods on a remote sensing data set, the UCMD. It consists of
20 species of remote sensing landmarks and 2000 images. According to the most common
practice, we divided the data set such that the first 80 images in one class were utilized
for training and the rest of the 20 images for testing. In order to estimate the effectiveness
of our DHPL method, we listed some state-of-the-art methods, including DHCNN [39],
DHNN-L2 [37], DPSH [4], KSH [31], ITQ [26], SELVE [30], DSH [41], and SH [25].

Table 2 shows the mAP results of the above methods and our method, with Hamming
distance. Our experiment gives the results of four different hash code bits, varying from
16 bits to 64 bits. Notably, for the traditional methods KSH, ITQ, SELVE, DSH, and SH,
we present results using CNN and using GIST features, respectively, which they represent
using -CNN and -GIST.

Table 2. mAP retrieval results on the UCMD dataset, and we give separate hash retrieval results for
16, 32, 48, 64 bits. The testing set has 420 images (each category randomly takes 20% of the images).
We have thickened the best results.

Hash Code Length
Method 16 bits 32 bits 48 bits 64 bits
DHPL (ours) 98.53 98.83 99.01 99.21
DHCNN [39] 96.52 96.98 97.46 98.02
DHNN-L2 [37] 67.73 78.23 82.43 85.59
DPSH [4] 53.64 59.33 62.17 65.21
KSH-CNN [30] 75.50 83.62 86.55 87.22
ITQ-CNN [26] 42.65 45.63 4721 47.64
SELVE-CNN [30] 36.12 40.36 40.38 38.58
DSH-CNN [41] 28.82 33.07 33.15 34.59
SH-CNN [25] 29.52 30.08 30.37 29.31
KSH-GIST [30] 38.75 43.27 44 .44 46.38
ITQ-GIST [26] 19.85 20.44 20.67 20.96
SELVE-GIST [30] 17.24 18.18 18.08 18.17
DSH-GIST [41] 16.57 17.79 19.21 19.18

SH-GIST [25] 13.76 14.46 14.24 14.17
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The data in Table 2 shows that DHPL has the best results on all four hash bits on the
UCMD dataset. When the length of the hash codes are 16 bits, our result is 2.01 (from
96.52 to 98.53) higher than the DHCNN method. When the hash code is 32 bits, our result
is 1.85 (from 96.98 to 98.83) higher than the DHCNN method. When the hash code is 48 bits,
our result is 1.55 (from 97.46 to 99.01) higher than the DHCNN method. When the hash
code is 64 bits, our result is 1.19 (from 98.02 to 99.21) higher than the DHCNN method.
Compared with other methods, we have a significant improvement in retrieval accuracy.
We can also see that for traditional methods, the CNN methods can achieve better results
than the GIST methods, which shows that the network can achieve a better learning effect
because of its self-optimization ability. From the results, we find that when the hash code is
shorter, the results obtained by our network are slightly worse. The reason is fore this is
that a significant information loss occurs when the hash code length continues to decrease
to a certain dimension.

4.3.2. Results on AID

We conduct the experiments on the AID data set, which contains 30 kinds of aerial
photography landscapes and 10,000 images. We use the first 50% of images in one class
for training, and the remaining images for testing. We also compared different kinds
of state-of-the-art hashing methods, including DHCNN [39], DHNN-L2 [37], DPSH [4],
KSH [30], ITQ [26], SELVE [30], DSH [41], and SH [25]. Table 3 shows the mAP results of
14 kinds of hashing methods with Hamming distance. Our experiment gives the results of
four kind of hash code, with bits varying from 16 bits to 64 bits.

Table 3. mAP retrieval results on the AID dataset, and we give separate hash retrieval results for 16,
32, 48, 64 bits. The test set has 5000 images (each category randomly takes 50% of the images). We
have thickened the best results.

Hash Code Length
Method 16 bits 32 bits 48 bits 64 bits
DHPL(Ours) 93.53 97.36 98.28 98.54
DHCNN [39] 89.05 92.97 94.21 94.27
DHNN-L2 [37] 57.87 70.36 73.98 77.20
DPSH [4] 28.92 35.30 37.84 40.78
KSH-CNN [30] 4826 58.15 61.59 63.26
ITQ-CNN [26] 2335 27.31 28.79 29.99
SELVE-CNN [30] 34,58 37.87 39.09 36.81
DSH-CNN [41] 16.05 18.08 19.36 19.72
SH-CNN [25] 12.69 16.99 16.16 16.21
KSH-GIST [30] 18.96 22.64 24.76 26.32
ITQ-GIST [26] 9.99 10.63 11.04 11.30
SELVE-GIST [30] 10.37 10.62 10.62 10.40
DSH-GIST [41] 9.35 9.35 9.74 10.05
SH-GIST [25] 6.71 7.02 6.97 6.95

The data in Table 3 illustrates that our DHPL method has the best results on all four
hash bits on the UCMD dataset. When the length of the hash code is 16 bits, our result is
4.48 (from 89.05 to 93.53) higher than the DHCNN method. When the hash code is 32 bits,
our result is 4.39 (from 92.97 to 97.36) higher than the DHCNN method. When the hash
code is 48 bits, our result is 4.07 (from 94.21 to 98.28) higher than the DHCNN method.
When hash code is 64 bits, our result is 4.27 (from 94.27 to 98.54) higher than the DHCNN
method. Compared with other methods, we have a significant retrieval effect. We can also
see that, for traditional methods, the CNN methods can achieve better results than the
GIST methods. On the AID datasets, the 16-bit hash codes also lose much more retrieval
accuracy than the high-dimensional hash codes.

In order to show the retrieval effect under different hyper-parameter m, we enumerate
the results of ablation experiments on the remote sensing dataset UCMD. We list the results
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of different hash bits. The experimental results are given in the form of a line chart. We
adjusted the m value gradually. It was varied from 0.5 to 1.0. Figure 6 shows the result.
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Figure 6. mAP results of different hash bits under different m on UCMD dataset.

As can be seen from Figure 6, the greater the length of the hash code, the greater the
retrieval accuracy. At the same time, when the value of m changes from small to large,
the accuracy also changes. Therefore, we set the m value to 0.25, where the accuracy
is maximized.

4.4. Disscussion

In light of the above experimental results, we discovered that our DHPL method has
the best results on the UCMD and AID datasets. Our DHPL not only has the superior
retrieval speed of the hash method, but also has the advantage of the fast training speed of
the proxy-based method. Furthermore, longer hash bits all receive better retrieval results
because they save more information, while shorter hash bits all receive worse retrieval
results because they lose a lot of information due to dimension reduction. However, we
expect to use the hash method to reduce the memory space and retrieval time. Through the
above experiments, we also find that there are hash lengths with both moderate length and
well-preserved accuracy, allowing the most appropriate hash lengths in specific scenarios
to be selected according to the experiment. In remote sensing image scenarios, 32 bits can
be selected as the length of the hash code to ensure specific performance costs. As for the
selection of network, we chose it based on our experience from previous work, and the
initial parameters of the network were obtained through pre-training. Finally, it is worth
mentioning that our DHPL can acquire excellent results with proxy-based metric learning
loss and binarization loss.

5. Conclusions

In this paper, we use one proxy-based hash retrieval method, called Deep Hashing
using Proxy Loss (DHPL), which combines hash code learning with proxy-based metric
learning in a convolutional neural network. Specifically, we designed a novel proxy metric
learning loss which can learn the network by constantly adjusting the relationship between
the current state and the optimal state. We used one hash loss formula to reduce the
quantified losses. Our experimental results on two widely used datasets demonstrate that
DHPL could generate better results than other state-of-the-art hashing methods.
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This work focused on remote sensing data sets, and we did not make many changes
in the network structure. Next, we will apply hashing in more directions and make
improvements in the network structure.
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