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Abstract: In aircraft detection from synthetic aperture radar (SAR) images, there are several major
challenges: the shattered features of the aircraft, the size heterogeneity and the interference of
a complex background. To address these problems, an Efficient Bidirectional Path Aggregation
Attention Network (EBPA2N) is proposed. In EBPA2N, YOLOv5s is used as the base network
and then the Involution Enhanced Path Aggregation (IEPA) module and Effective Residual Shuffle
Attention (ERSA) module are proposed and systematically integrated to improve the detection
accuracy of the aircraft. The IEPA module aims to effectively extract advanced semantic and spatial
information to better capture multi-scale scattering features of aircraft. Then, the lightweight ERSA
module further enhances the extracted features to overcome the interference of complex background
and speckle noise, so as to reduce false alarms. To verify the effectiveness of the proposed network,
Gaofen-3 airports SAR data with 1 m resolution are utilized in the experiment. The detection rate and
false alarm rate of our EBPA2N algorithm are 93.05% and 4.49%, respectively, which is superior to
the latest networks of EfficientDet-D0 and YOLOv5s, and it also has an advantage of detection speed.

Keywords: synthetic aperture radar; aircraft detection; deep learning; involution; residual attention

1. Introduction

Synthetic aperture radar (SAR) can provide continuous and stable observation all day
and all night, which has been widely used in various fields [1]. With the fast development of
SAR techniques, a large number of high-resolution spaceborne and airborne data have been
acquired, which provides new opportunities for SAR targets detection. Nowadays, timely
aircraft detection plays a pivotal role in airport management and military activities [2].
This is because the scheduling and placement of aircraft are sensitive spatio-temporally.

Currently, there are three major challenges in aircraft detection: the shattered image
features of aircraft, their size heterogeneity, and the interference of complex background.
In SAR imaging, features of the aircraft are composed of a series of discrete scattering
points, unlike the obvious fuselage and wing information of the aircraft in optical images,
which are not easy for visual interpretation. In addition, the size heterogeneity between
aircraft cannot be ignored, which could be different significantly among small and big
aircraft. Small aircraft are more likely to be missed, resulting in a lower detection rate of
the algorithm. Moreover, facilities around the aircraft could be recorded as features similar
to those of the aircraft due to scattering [3], which further increases the difficulty of aircraft
detection in SAR images. Therefore, it is essential for detection algorithms to recognize
effective features of the aircraft.
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In recent years, with the rapid development of deep learning technologies, more
advanced deep learning models have been widely applied in the field of object detection.
Convolutional neural networks (CNNs) have strong feature extraction ability with end-
to-end structures, which makes them the mainstream deep learning algorithms for target
detection [4]. The You Only Look Once (YOLO) series is a typical one-stage algorithm,
which is famous for its fast detection speed. In 2015, Redmon et al. proposed the YOLO [5]
algorithm to predict the targets by directly performing classification regression on the input
image. The average accuracy of the YOLO algorithm on Pascal VOC 2007 testing dataset
was 63.4%, sacrificing about 10% of detection accuracy compared with Fast R-CNN [6],
but the detection speed was much higher than Fast R-CNN. In 2017, The YOLOv2 [7] with
Darknet-19 as the backbone network was proposed, in which the anchor mechanism based
on k-means clustering calculation was used to improve the detection accuracy. In 2018,
Redmon et al. [8] utilized multi-scale prediction to obtain detection results, which greatly
improved the accuracy of small targets detection. However, with continuous improvement
of YOLO network performance, the number and complexity of parameters were sky-
scrapping, and the detection speed of the network was also decreasing. In 2019, Cross
Stage Partial Network (CSPNet) [9] was proposed, which effectively solved the gradient
information repetition problem in the optimization of large convolutional neural networks,
and ensured the speed and accuracy of training. In 2020, YOLOv4 [10] was proposed to
further improve the speed of detection. CSPDarknet53 was used as the backbone network
of feature extraction, as a typical lightweight framework. Subsequently, the appearance
of Scaled-YOLOv4 [11] and YOLOv5 [12] attracted more attention of researchers and the
industry for its advantages of the fast speed and satisfying accuracy.

Inspired by these advanced methods, many remote-sensing experts tried to introduce
deep learning into the field of SAR target detection. In the large-view SAR image, the
aircraft belongs to the category of small target, which occupies less pixels and is very
easily affected by background factors. However, due to the unique imaging mechanism
of SAR, the complexity of the background region of SAR image has been much larger
than that of optical images, which needed higher requirements for the robustness of the
detection network. To solve the above problems, some researchers have firstly detected the
airport and then detected aircraft in the airport area to reduce unnecessary background
information. This method can effectively improve the efficiency of aircraft detection.
Furthermore, combined with the runway-mask method, false alarms have been further
reduced [13–16]. However, the mask method would possibly miss aircraft located outside
the airport runway areas, and the extraction precision of the runway might undermine
the detection performance of the aircraft. In addition, some experts proposed to combine
saliency information to guide convolutional neural networks to highlight information
region of the target, and then extract robust features. Du et al. [17] proposed a saliency-
guided single shot multi-box detector (S-SSD) for target detection in SAR images. In
their experiments, the performance of the S-SSD network has been significantly improved.
However, compared with the original SSD, S-SSD network adds 18.7 M extra parameters,
which makes the detection speed slower than SSD, and there is still room for optimization
in the detection speed.

The attention mechanism is similar to the visual pattern of human brains, which
adaptively extracts the region of interest and then focuses more on capturing effective in-
formation of small targets. Due to the small number of parameters carried by attention, the
addition of an attention mechanism will not significantly prolong the detection efficiency of
the network. Many scholars have explored and applied attention mechanisms to improve
the performance of deep neural networks. Combined with the characteristics of different
SAR image interpretation tasks, Chen et al. [18] proposed a multi-level and densely dual
attention (MDDA) network to realize the high-precision automatic extraction of airport
runway from high-resolution SAR images. Zhang et al. [19] carefully designed a network
based on attention mechanism, and achieved good results in water detection from SAR
image. For aircraft detection, Zhao et al. [20] designed a pyramid attention dilated network



Remote Sens. 2021, 13, 2940 3 of 16

(PADN) to enhance the learning of aircraft scattering characteristics, and the detection rate
of the network was 85.68% on the data of Gaofen-3 airport. Subsequently, Guo et al. [21]
have proposed scattering information enhancement module to preprocess the input data to
highlight scattering characteristics of the target; then the enhanced data were input into the
attention pyramid network for aircraft detection. In their experiment, the average precision
(AP) was 83.25%, but the complexity of the whole network should also be noticed.

YOLOv5s is the lightest model among all YOLOv5 networks in depth and width,
which presents excellent speed and precision in automatic object detection. Therefore,
we choose it as the backbone network and further combined it with our own Efficient
Bidirectional Path Aggregation Attention Network (EBPA2N) for efficient aircraft detection.
The main contributions of this paper are summarized as follows:

(1) An effective and efficient aircraft detection network EBPA2N is proposed for SAR
image analytics. Combined with the sliding window detection method, an end-to-end
aircraft detection framework based on EBPA2N was established, which offers accurate
and real-time aircraft detection from large-scale SAR images.

(2) As far as we know, we are the first to apply involution in SAR image analytics. We
invented the Involution Enhanced Path Aggregation (IEPA) and Effective Residual
Shuffle Attention (ERSA) module in an independent efficient Bidirectional Path Ag-
gregation Attention Module (BPA2M). The IEPA module is proposed to capture the
relationship among aircraft’s backscattering features to better encode multi-scale
geospatial information. As the basic module of the IEPA module, involution redefines
the design method of feature extraction. By contrast with the traditional standard
convolution, it uses different involution kernels in different spatial positions (i.e., spa-
tial specificity) to integrate pixel spatial information, which is more conducive to
establishing the correlation between aircraft scattering features in SAR images. On the
other hand, the ERSA module mainly focuses on the scattering features information
of the target and suppresses the influence of background clutter, then the influence of
speckle noise in SAR images can be reduced.

(3) Our experiment has proved the outstanding performance of EBPA2N, which indicates
the success of implementing multi-scale SAR image analytics as geospatial attention
within deep neural networks. This paper has paved the path for further integration
of SAR domain knowledge and advanced deep learning algorithms.

The rest of this paper is organized as follows. In Section 2, the aircraft detection
framework of SAR images proposed in this paper is introduced in detail. Section 3 presents
the experimental results and corresponding analysis of aircraft detection on three airport
SAR data with different networks. In Section 4, the experimental results are discussed and
the future research direction is proposed. Section 5 briefly summarizes the results of this
paper.

2. Methodology
2.1. Overall Detection Framework

In this paper, an Efficient Bidirectional Path Aggregation and Attention Network
(EBPA2N) is proposed for aircraft automatic detection in SAR images as shown in Figure 1.
Based on the trade-off between the speed and the precision, the YOLOv5s backbone
network was selected for feature extraction to achieve substantial representation. Then, the
last three output feature maps C3, C4, and C5 of the backbone network were chosen to inject
the bidirectional path aggregation and attention module (BPA2M) to enrich the expression
of features. BPA2M is a new object detection module proposed in this paper. It consists of
IEPAM and three parallel ERSA. The IEPA module was used to fuse three feature maps of
different sizes output from backbone network to learn multi-scale geospatial information.
Then, three parallel attention mechanisms were used to refine the multi-scale features of
the aircraft. Furthermore, a classification and box prediction network was used to obtain
preliminary prediction results. The Non-Maximum Suppression (NMS) [22] method was
employed to remove overlapping prediction boxes to obtain detection results. Last but not
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the least, a new sliding window algorithm is proposed to improve the detection efficiency
of large-scale SAR images.
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Figure 1. The architecture of the Efficient Bidirectional Path Aggregation and Attention Network (EBPA2N).

2.2. YOLOv5s Backbone

The input data with the size of 512 × 512 were sliced to generate feature map
C1 ε R32×256×256. In this paper, the three-dimensional tensor is expressed as X ε RC×H×W ,
where C, H and W represent the channel dimension, height and width of the feature map.
Then, through four feature extraction modules with downsampling, rich image features
are extracted to form feature maps as C2 ε R64×128×128, C3 ε R128×64×64, C4 ε R256×32×32,
and C5 ε R512×16×16. In particular, the spatial pyramid pooling [23] module is embedded
in the top feature extraction block. By using multi-scale pooling to construct features on
multiple receptive fields to learn the multi-scale characteristics of aircraft. The detailed
internal structure of the YOLOv5s backbone network can be referred to the introduction
in [24,25].

2.3. Bidirectional Path Aggregation and Attention Module (BPA2M)
2.3.1. Involution Enhanced Path Aggregation (IEPA) Module

For the multi-level feature map formed by the backbone network, the low-level feature
maps can provide rich spatial details of the target which is helpful for target localization.
High-level feature maps with abundant semantic information play an important role in
distinguishing foreground from background. Therefore, the effective fusion of feature
maps with different scales is helpful to improve the detection accuracy of targets.

In this paper, IEPA module is proposed to adequately fuse the feature maps of C3, C4
and C5 output from the backbone network. As shown in Figure 2a. In IEPA module, the
1 × 1 convolution module is used to adjust the number of channels. The stacking of up
fusion (UF) and down fusion (DF) modules forms a bidirectional path, which effectively
fuses shallow detail features and deep semantic information to achieve complementary
advantages, which is conducive to improving the detection rate of targets with different
scales. The Cross Stage Feature Refinement (CSFR) module is used in both UF and DF
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modules. The CSFR module is a new module proposed in this paper, which is inspired by
involution [26]. It aims to learn features in a large receptive field to establish the relationship
between discrete features of the aircraft, and then improve the performance of the network
for aircraft detection.

Remote Sens. 2021, 13, x FOR PEER REVIEW 5 of 16 
 

 

the 1 × 1 convolution module is used to adjust the number of channels. The stacking of up 
fusion (UF) and down fusion (DF) modules forms a bidirectional path, which effectively 
fuses shallow detail features and deep semantic information to achieve complementary 
advantages, which is conducive to improving the detection rate of targets with different 
scales. The Cross Stage Feature Refinement (CSFR) module is used in both UF and DF 
modules. The CSFR module is a new module proposed in this paper, which is inspired by 
involution [26]. It aims to learn features in a large receptive field to establish the relation-
ship between discrete features of the aircraft, and then improve the performance of the 
network for aircraft detection. 

 
Figure 2. The structure of Involution Enhanced Path Aggregation (IEPA) and Cross Stage Feature Refinement (CSFR) 
module. 

As shown in Figure 2b, in the CSFR module, the input feature map is processed by 
two respective branches. In these two branches, the input feature map adopts 1 × 1 con-
volution reducing the dimension of features by half to reduce the amount of computation. 
In branch B, the input feature map after dimension reduction is input into the 1 × 1 con-
volution module to learn cross channel information interaction. Then, 7 × 7 involution is 
used to capture the relationship between the scattering features of aircraft in a large range 
to obtain rich feature representation ability. In the involution, in order to speed up the 
operation of the network, the input feature map × ×  are divided into several 
groups of sub-feature maps by feature grouping, and then they are processed in parallel. 
Meanwhile, two 1 × 1 convolutions are used as the involution kernels generation function, 
and then the corresponding involution kernels are adaptively generated according to each 
pixel of the feature map. Therefore, each group of sub-feature maps with the size of H × 
W will generate a corresponding involution group, which contains H × W involution ker-
nels. Different involution kernels are represented by different colors in Figure 2b. It is easy 
to know that the whole involution kernel and the input feature map are automatically 
aligned in the spatial dimension. Furthermore, each group of feature maps is multiplied 
with the involution kernels of the corresponding group to learn features. That is, each 
group of feature maps share the same involution kernels in the channel dimension, and 
different involution kernels are used in different spatial locations to learn the spatial vis-
ual patterns of different spatial regions. Subsequently, all the group feature maps are ag-
gregated to obtain the output of involution module. Finally, branch A and branch B are 
concatenated, and then the channel information is fused by 1 × 1 convolution to get the 
output of CSFR module. Importantly, the number of parameters in the CSFR module is 
less than the standard 3 × 3 convolution, which also facilitates network lightweighting. 

  

Figure 2. The structure of Involution Enhanced Path Aggregation (IEPA) and Cross Stage Feature Refinement (CSFR)
module.

As shown in Figure 2b, in the CSFR module, the input feature map is processed by two
respective branches. In these two branches, the input feature map adopts 1 × 1 convolution
reducing the dimension of features by half to reduce the amount of computation. In branch
B, the input feature map after dimension reduction is input into the 1 × 1 convolution
module to learn cross channel information interaction. Then, 7 × 7 involution is used to
capture the relationship between the scattering features of aircraft in a large range to obtain
rich feature representation ability. In the involution, in order to speed up the operation
of the network, the input feature map XεRC×H×W are divided into several groups of sub-
feature maps by feature grouping, and then they are processed in parallel. Meanwhile,
two 1 × 1 convolutions are used as the involution kernels generation function, and then
the corresponding involution kernels are adaptively generated according to each pixel of
the feature map. Therefore, each group of sub-feature maps with the size of H × W will
generate a corresponding involution group, which contains H × W involution kernels.
Different involution kernels are represented by different colors in Figure 2b. It is easy to
know that the whole involution kernel and the input feature map are automatically aligned
in the spatial dimension. Furthermore, each group of feature maps is multiplied with the
involution kernels of the corresponding group to learn features. That is, each group of
feature maps share the same involution kernels in the channel dimension, and different
involution kernels are used in different spatial locations to learn the spatial visual patterns
of different spatial regions. Subsequently, all the group feature maps are aggregated to
obtain the output of involution module. Finally, branch A and branch B are concatenated,
and then the channel information is fused by 1 × 1 convolution to get the output of CSFR
module. Importantly, the number of parameters in the CSFR module is less than the
standard 3 × 3 convolution, which also facilitates network lightweighting.

2.3.2. Effective Residual Shuffle Attention (ERSA) Module

The feature map processed by the IEPA module contains abundant image information.
The scattering characteristics of aircraft should be highlighted timely and effectively, which
is beneficial to improve the detection performance of aircraft. The attentional mechanism
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is a signal processing mechanism similar to the human brain, which can select high-value
information relevant to the task at hand from a large amount of information. Chen et al. [27]
revealed the effectiveness of using the attention mechanism in SAR image detection.

In this paper, the ERSA module is proposed to filter the features so that the network
pays more attention to the channel features and the spatial regions containing the target
information. It is an ultra-lightweight dual attention mechanism module that is inspired by
the ideas of residual [28] and shuffle attention [29]. In order to lighten the weight as much
as possible, the Fc(·) function and sigmoid function are used to form gating mechanism in
channel attention and spatial attention branches to adaptively learn the correlation of the
channel features and the importance of the spatial features.

The channel attention module is defined as follows:

FGAP =
1

H × W

W,H

∑
i,j=1

Xi,j (1)

E1 = FGAP(X1) (2)

Fc(E1) = W1·E1 + b1 (3)

X11 = δ(Fc(E1))⊗ X1 (4)

where X1 ε RC×H×W is the input feature map, FGAP is the global average pooling, and
E1 ε RC×1×1 is the channel vector with global receptive field. W1 and b1 are a pair of
learnable parameters, which are used to scale and translate the channel vector respectively,
and learn different importance of channel dimensions. δ is the sigmoid function for
normalization. Finally, the normalized channel attention weight vector δ(Fc(E1))εRC×1×1

is multiplied by the input feature map X1εRC×H×W to realize the feature recalibration.
Similarly, in spatial attention, the group norm (GN) performed on the feature maps

X2 to capture the spatial information, and then the similarity gating mechanism is used to
adaptively adjust the input feature map X2 to highlight the essential spatial information.

The overall ERSA module structure is shown in Figure 3. In order to improve the
efficiency of the network, the input feature maps are divided into 32 groups of independent
sub-features along the channel dimension for parallel processing. In each group of sub-
features, the input feature maps are divided into two parts according to the channel
dimension. They are input into the channel attention branch and the spatial attention
branch respectively to learn the important features of the target. Then the two branches
are fused to obtain the sub-features after attention enhancement. All the sub-features of
groups after attention enhancement are aggregated, and then channel shuffle operator is
used to enhance the information flow between feature channels to get the fine features after
attention enhancement. Finally, with the addition of skip connection, the coarse-grained
features of the initial input feature map are retained effectively and the training process
becomes more robust.

2.4. Classification and Box Prediction Network

After extracting the features of the aircraft, the BPA2M module outputs effective
prediction feature maps at three scales, in which the grid area is divided into 64 × 64,
32 × 32 and 16 × 16 separately. The schematic diagram of classification and box prediction
is shown in Figure 4. For each grid cell, the classification and box prediction network
generates three anchor boxes with different sizes and aspect ratios (represented by orange
box in Figure 4). The size and shape of anchor boxes are obtained by clustering algorithm
based on the size of the target box in the dataset. Then, a 1 × 1 convolution is directly used
to predict the location, confidence and category of each bounding box through classification
regression.
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After obtaining the bounding box, the NMS is used to remove the overlap box, and the
final output detection result is obtained, as show in Figure 1. In the training stage, the loss
of the network is calculated. The network is optimized by adjusting network parameters to
minimize network loss.

2.5. Detection by Sliding

In this paper, the detection method by sliding window is proposed to perform air-
craft detection from large-scale SAR images, which can improve the efficiency of the
network [30], as shown in Figure 5. First, the input large-scale SAR image is clipped by
sliding window with the window size of 512 × 512 and the step size of 450. In this way,
the size of the aircraft is relatively larger in the test samples which is conducive for aircraft
detection [31]. Then, the test samples are fed into EBPA2N to detect the aircraft. After the
detection results are obtained, coordinate mapping and NMS are used as post-processing
modules to achieve coordinate aggregation. The final detection results of aircraft from
large-scale SAR images are then produced.

3. Experimental Results and Analyzer
3.1. Data and Evaluation Metrics

The data used in this experiment were more than 10 large-scale SAR images containing
airports from the Gaofen-3 system with 1 m resolution. For the insufficiency of manually
annotated aircraft data, we used rotation, translation (data augmentation in width and
height directions), flipping and mirror to expand the data. Finally, 4396 samples of aircraft
data with the size of 512 × 512 pixels were obtained, and the training set and verification
set were divided by a ratio of 8:2. In order to evaluate the performance of the network
more objectively and efficiently, four evaluation indexes were used in this paper: detection
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rate (DR) [32], false alarm rate (FAR) [32], training time and testing time. The calculation
formulas of DR and FAR are as follows:

DR =
NDT
NGT

(5)

FAR =
NDF

NDT + NDF
(6)

where NDT , NDF and NGT are the number of correctly detected aircraft, falsely detected
aircraft, and the real aircraft targets. We use N to represent numbers, and the subscripts DT
stands for Detected True, DF for Detected False, and GT means Ground Truth, respectively.

Remote Sens. 2021, 13, x FOR PEER REVIEW 8 of 16 
 

 

 
Figure 5. The architecture of sliding window detection. 

3. Experimental Results and Analyzer 
3.1. Data and Evaluation Metrics 

The data used in this experiment were more than 10 large-scale SAR images contain-
ing airports from the Gaofen-3 system with 1 m resolution. For the insufficiency of man-
ually annotated aircraft data, we used rotation, translation (data augmentation in width 
and height directions), flipping and mirror to expand the data. Finally, 4396 samples of 
aircraft data with the size of 512 × 512 pixels were obtained, and the training set and veri-
fication set were divided by a ratio of 8:2. In order to evaluate the performance of the 
network more objectively and efficiently, four evaluation indexes were used in this paper: 
detection rate (DR) [32], false alarm rate (FAR) [32], training time and testing time. The 
calculation formulas of DR and FAR are as follows: = 	 (5) 

=	 + 	 (6) 

where , 	and 	are the number of correctly detected aircraft, falsely detected 
aircraft, and the real aircraft targets. We use N to represent numbers, and the subscripts 
DT stands for Detected True, DF for Detected False, and GT means Ground Truth, respec-
tively. 

3.2. Implementation Details 
The experimental environment was based on a single 12G memory NVIDIA RTX 

2080ti GPU and Unbuntu18.04 system. All networks were based on Pytorch framework, 
training with 100 epochs by the same data set and recording the training time. The batch 
size was 16. The learning rates for EfficientDet-D0 [33], YOLOv5s [12] and our network 
(EBPA2N) were 3e-4, 1e-3 and 1e-3, respectively. In particular, none of these networks 
was loaded with pretraining models. In addition, multi-scale training and additional en-
hancement testing techniques (e.g., Test Time Augmentation, TTA) were not used. 

3.3. Analysis of the Experimental Results 
In order to evaluate the performance of the framework proposed in this paper, three 

large-scale SAR images from the Gaofen-3 system with 1m resolution are used as inde-
pendent tests, which are airport I (Hongqiao Airport) with 12,000 × 14,400 pixels, airport 

Figure 5. The architecture of sliding window detection.

3.2. Implementation Details

The experimental environment was based on a single 12G memory NVIDIA RTX
2080ti GPU and Unbuntu18.04 system. All networks were based on Pytorch framework,
training with 100 epochs by the same data set and recording the training time. The batch
size was 16. The learning rates for EfficientDet-D0 [33], YOLOv5s [12] and our network
(EBPA2N) were 3e-4, 1e-3 and 1e-3, respectively. In particular, none of these networks
was loaded with pretraining models. In addition, multi-scale training and additional
enhancement testing techniques (e.g., Test Time Augmentation, TTA) were not used.

3.3. Analysis of the Experimental Results

In order to evaluate the performance of the framework proposed in this paper, three
large-scale SAR images from the Gaofen-3 system with 1m resolution are used as inde-
pendent tests, which are airport I (Hongqiao Airport) with 12,000 × 14,400 pixels, airport
II (Capital Airport) with 14,400 × 16,800 pixels and airport III (Military Airport) with
9600 × 9600 pixels.

3.3.1. Analysis of Aircraft Detection for Airport I

Figure 6 shows the detection results of aircraft by different networks in Airport I.
correct detection, false alarms and missed detection are indicated by green, red and yellow
boxes respectively. This airport is a large civil airport (Hongqiao airport in Shanghai,
China) with heavy transportation. As shown in Figure 6a, the distribution of aircraft is
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relatively dense, and the distance between adjacent aircraft is small. The backscattering
characteristics of the aircraft at the bend of the airport are complex and diverse, which
increases the difficulty of the detection. According to Figure 6b, EfficientDet-D0 has many
false alarms (red color boxes) outside the airport. However, there are no obvious false
alarms in YOLOv5s (Figure 6c) and EBPA2N (as shown in Figure 6d). This shows that
the robustness of YOLOv5s and EBPA2N is much better. In the enlarged detail of the
bend area of the airport, we can find that EfficientDet-D0 is better than YOLOv5s (as
shown in Figure 6c) in missed detection, but it has much more false alarms. However,
in the detection results of YOLOv5s, many aircraft are missed. Because IEPA and ERSA
modules in EBPA2N can effectively detect aircraft and eliminate false alarms, the detection
performance is much better than that of YOLOv5s and EfficientDet-D0. Furthermore, it
shows that EBPA2N has good ability of feature learning and can fit the multi-scale and
multi-directional features of aircraft well.

3.3.2. Analysis of Aircraft Detection for Airport II

Airport II is another large-scale civil airport (the capital airport in Beijing, China). As
shown in Figure 7a, the background area covers large commercial and residential areas.
There are also lots of strong scattering highlights, which are likely to cause false alarms. In
addition, the mechanical and metal equipment around the aircraft appears to have similar
texture as the aircraft, which is also very prone to generate false alarms. The detection
results of aircraft for Airport II by each network are shown in Figure 7b–d. According to the
results, there is a serious problem of false alarms in EfficientDet-D0 (as shown in Figure 7b),
especially at the edge of the airport. In contrast, the detection results of YOLOv5s and
EBPA2N are more satisfactory (as shown in Figure 7c,d). According to the magnified
view of the local details, the EfficientDet-D0 has only two missed aircraft, but it has five
false alarms. YOLOv5s has three missed detection and one false alarm. The result of
EBPA2N (as shown in Figure 7d) is the closest to that of the ground truth (as shown in
Figure 7a), in which, only one aircraft with weak brightness information has been missed.
Remarkably, this aircraft is missed in both networks. This also demonstrates the advantage
of the parallel ERSA module used in our network, which can focus more on learning the
characteristics of the aircraft, thus the detection rate of the aircraft is improved.

3.3.3. Analysis of Aircraft Detection for Airport III

Airport III is a military airport with 33 aircraft, as shown in Figure 8a, it can be seen
that the overall background area is relatively clean. Only a few scattered buildings with
strong scattering points in the left area of the airport are prone to interference. At the
same time, although the aircraft at the airport are smaller than civil aircraft, the scattering
characteristics are obvious, so the detection of the three networks have high detection
integrity. Figure 8a–d show the ground truth and the detection results by different networks.
It can be seen that only one aircraft has been missed by EfficientDet-D0, which is marked
with a yellow box in the Figure 8b, but there are 10 false alarms. This shows that the
EfficientDet-D0 has a weak ability to distinguish the effective features of the aircraft. There
are only two false alarms in YOLOv5s (as shown in Figure 8c), one of which is distributed
in the airport runway and the other is outside the airport area. However, it missed three
aircraft. In the proposed EBPA2N network, there is only one missed detection and one
false alarm located at the edge of the equipment inside the airport (as shown in Figure 8d).
Compared with the original YOLOv5s, the number of missed detection by EBPA2N is
reduced, which indicates that the addition of IEPA module enhances the ability of the
network to capture scattering characteristics of aircraft.
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Figure 8. The detection result for Airport III. (a) The ground truth of Airport III from Gaofen-3 system. (b–d) are the
detection results of aircraft by EfficientDet-D0, YOLOv5s, and EBPA2N respectively. The corrected detection, false alarms
and missed detection are indicated by green, red and yellow boxes respectively.
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3.4. Performance Evaluation

For a more intuitive performance comparison, Tables 1 and 2 show the evaluation
indexes of the two airports for different networks. For Detection Rate (DR) and False Alarm
Rate (FAR), EfficientDet-D0 has the worst performance. The average DR is 85.90%. The
average FAR is 34.99%, which indicates that the robustness of the network for aircraft
detection is poor. YOLOv5s has more balanced detection performance than EfficientDet-D0.
The average FAR is 6.63%, and the average DR is 87.32%. For the proposed EBPA2N,
DR is at least 5% higher than YOLOv5s and EfficientDet-D0, and FAR is only 4.49%.
So, EBPA2N has much more reliable detection performance. For efficiency, combined
with Tables 1 and 2 and Figure 9, EBPA2N is close to YOLOv5s in both training and testing
times, which is far better than EfficientDet-D0. The above results show that the proposed
network (EBPA2N) has the best detection performance and satisfying computation speed.

Table 1. Comparison of test performance and test time between different networks.

Network Airport Detection Rate (%) False Alarm Rate (%) Testing Time (s)

EfficientDet-D0

Airport I 77.50 34.51 18.05
Airport II 83.22 46.64 28.03
Airport III 96.97 23.81 5.98

Mean 85.90 34.99 17.03

YOLOv5s

Airport I 80.83 8.49 8.24
Airport II 90.21 5.15 12.11
Airport III 90.91 6.25 4.80

Mean 87.32 6.63 8.38

EBPA2N(Ours)

Airport I 89.17 6.14 9.68
Airport II 93.01 4.32 13.50
Airport III 96.97 3.03 5.01

Mean 93.05 4.49 9.40

Table 2. Comparison of training times between different networks.

Network Training Time (h)

EfficientDet-D0 5.10
YOLOv5s 0.69

EBPA2N(Ours) 0.882

4. Discussion

At present, most of the mainstream target detection networks are designed for optical
images, and the research on SAR image is relatively immature. This paper proposes an
effective aircraft detection network for large-scale SAR images, which greatly improves the
accuracy of aircraft detection and provides fast detection of aircraft.

In the design and development of the detection neural network, the main consideration
lies in the trade-off between the detection accuracy and speed, because complex deep neural
networks that achieve high accuracy usually suffer from huge computation intensity. The
YOLOv5s network is light in computation intensity, so it can be deployed at front-end
devices such as mobile terminals. This is the major reason why we combine YOLOv5s with
SAR image analysis as the implementation of our deep neural network. The IEPA module
is designed to address the correlation between discrete features of aircraft over a larger
scope, and then the lightweight ERSA attention module is proposed to adaptively choose
important features of aircraft, which systematically integrates attention mechanism and
residual structure. According to Tables 1 and 2, the overall FAR of EfficientDet-D0 network
is 34.99%, and training and testing time of the network is the longest. This means that
EfficientDet-D0 has poor ability in suppressing the interference of a complex background
for the detection of small man-made targets in SAR images. The computation efficiency
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of YOLOv5s is very satisfying, but the detection accuracy needs to be improved. The
proposed EBPA2N has achieved a good balance of accuracy and speed in aircraft detection.

Moreover, we have only conducted experiments on single-band SAR images with
1 m resolution from the Gaofen-3 system. For SAR images acquired from different systems
(e.g., different band or different resolution), the performance may vary. In the future,
we will employ transfer learning [34] to EBPA2N to realize rapid aircraft detection with
multi-resolution and multi-band SAR images. Furthermore, the network proposed in this
paper is only tested for the aircraft detection, with satisfying detection accuracy. In the
following research, the network will be extended for further experimental analysis of other
man-made small targets (e.g., ships, buildings and vehicles). In addition, the motion error
in SAR image [35] is also worth considering, because it will indeed bring additional impact
on SAR target detection.
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5. Conclusions

In this paper, a high-precision and efficient automatic aircraft detection network for
SAR images is proposed, namely, EBPA2N. The performance improvement of EBPA2N
mainly results from two innovative modules proposed in this paper. The IEPA module
and ERSA module work in series, which effectively integrates the multi-scale context
information of aircraft and greatly improves detection accuracy. The experimental results
on three different types of airport from Gaofen-3 SAR images indicate that EBPA2N has
strong and robust capabilities in extracting multi-scale and multi-direction aircraft image
features, and it also can suppress the interference of the complex background very well.

By combining deep neural networks with geospatial analytics, BEPA2N can also be
applied to detect other small man-made targets, such as ships, buildings and vehicles. We
plan to purse these topics in our future study. BEPA2N will promote closer fusion of deep
learning techniques and SAR image analytics, so as to speed up the research of intelligent
target detection of SAR imagery.
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