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Abstract: Topographic products are important for mission operations and scientific research in
lunar exploration. In a lunar rover mission, high-resolution digital elevation models are typically
generated at waypoints by photogrammetry methods based on rover stereo images acquired by
stereo cameras. In case stereo images are not available, the stereo-photogrammetric method will
not be applicable. Alternatively, photometric stereo method can recover topographic information
with pixel-level resolution from three or more images, which are acquired by one camera under
the same viewing geometry with different illumination conditions. In this research, we extend the
concept of photometric stereo to photogrammetric-photometric stereo by incorporating collinearity
equations into imaging irradiance model. The proposed photogrammetric-photometric stereo algo-
rithm for surface construction involves three steps. First, the terrain normal vector in object space
is derived from collinearity equations, and image irradiance equation for close-range topographic
mapping is determined. Second, based on image irradiance equations of multiple images, the height
gradients in image space can be solved. Finally, the height map is reconstructed through global
least-squares surface reconstruction with spectral regularization. Experiments were carried out using
simulated lunar rover images and actual lunar rover images acquired by Yutu-2 rover of Chang’e-4
mission. The results indicate that the proposed method achieves high-resolution and high-precision
surface reconstruction, and outperforms the traditional photometric stereo methods. The proposed
method is valuable for ground-based lunar surface reconstruction and can be applicable to surface
reconstruction of Earth and other planets.

Keywords: photometric stereo; photogrammetric-photometric stereo; close-range topographic map-

ping; surface reconstruction; Yutu-2 rover images; lunar exploration

1. Introduction

In lunar exploration, topographic mapping products, such as digital elevation model
(DEM) and digital orthophoto map (DOM), are important for mission operations and
scientific research. Orbital mapping provides large-area products for topographic analysis,
geological characterization and other scientific investigations [1-3], and ground-based
mapping using rover stereo imagery has been routinely applied in landing missions to
support surface operations and in-situ scientific explorations [4-8]. Image matching is of
particular importance in topographic mapping using rover stereo images [9]. However,
sometimes the application of image matching is limited due to stereo imaging quality
and insufficient image texture. Moreover, stereo images could not be acquired due to
payload limit under some circumstances. For example, Chang’e-4 lander carried a terrain
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camera, which is located on top of the lander [10]. It can rotate 360° horizontally to obtain a
panoramic view of the lunar surface, but without stereo imaging capability. In these cases,
ground-based high-precision topographic mapping becomes very challenging.

In the field of computer vision, shape from shading (S£S) technique has long been
studied to estimate the shape of an object from one image on the basis of the surface
photometry, the position of light, and the viewing directions [11,12]. As an extension to
the original single image SfS, the photometric stereo method can recover albedo and local
surface shape at pixel-level with more than two images of the same scene taken under
different illumination conditions [13]. Photometric stereo techniques have been developed
for lunar and planetary surface reconstruction [14-18] to improve the quality of mapping
products and generate pixel-level DEMs where image matching fails [14,19]. It is noted that
these lunar and planetary researches all use orbital images to generate mapping products,
and both the viewing angle and illumination angle of the images are different.

Following the work of Woodham [13], the traditional photometric stereo method
assumes orthographic projection and Lambert reflectance model. This simple reflectance
model can be reasonable for certain types of materials, and orthographic projection is
appropriate when objects are far away from the camera, e.g., in the case of orbital im-
ages. Since the rover imaging are significantly off-nadir, they cannot be simplified as
orthographic projection, perspective projection with collinearity equations should be more
accurate. Meanwhile, various lunar reflectance models can be used for lunar rover map-
ping. Thus, it would be valuable to integrate photometric stereo with collinearity equations
and lunar reflectance model for rover image-based surface reconstruction when stereo-
photogrammetric method is not applicable.

This paper proposes a novel photogrammetric-photometric stereo (PPS) method based
on the collinearity equation and reflectance model for ground-based mapping of the lunar
surface. The PPS method is able to generate a height map from multiple rover images
acquired under different illumination conditions and the same viewing condition. The
paper is organized as follows: Section 2 summarizes related studies, and Section 3 describes
the proposed PPS method in detail. The experimental results using simulated images and
lunar surface images captured by Yutu-2 navigation camera (Navcam) are presented in
Section 4. Section 5 provides a brief discussion and the concluding remarks.

2. Related Work

Topographic reconstruction of the lunar surface is critical to engineering applications
and scientific research. Traditional 3D reconstruction techniques based on photogram-
metry have been widely applied in lunar topographical mapping using stereo orbital
images [20] or stereo rover images [4,5]. Some software packages have been developed
for planetary image mapping, such as ASP [21], SOCET SET [22], dense matcher [23], and
Planetary3D [24].

In general, the key techniques of orbital image mapping include construction of geo-
metric model, bundle adjustment, dense image matching, and point cloud generation. So
far, most studies use a rigorous physical sensor model based on collinearity equations, e.g.,
geometric parameters of a terrain camera (TC), lunar reconnaissance orbiter camera (LROC),
narrow angle camera (NAC) images, Chang’e-1 (CE-1), Chang’e-2 (CE-2) images are refined
to improve mapping accuracy based on a rigorous sensor model [25-29]. Recently, the
rational function model (RFM) for geometric modelling has been developed [30-33]. After
block adjustment based on REM, the residual is less than 1 pixel, precise topographic
models are generated from CE-1, CE-2, and NAC images [31,33,34]. Image matching is a
crucial step in orbital photogrammetric processing. The scale invariant feature transform
(SIFT) algorithm has been used for feature matching [35]. Based on matched feature points,
epipolar constraints and spatial constraints are used to generate dense points. Delaunay
triangulation is used to predict the approximate corresponding locations of other non-
feature points [36,37]. Dense matching algorithm, such as semi-global matching (SGM),
has been adopted in orbital mapping [38,39]. Recently, to deal with matching images with
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illumination differences, a photoclinometry assisted image matching (PAM) approach is
developed in the image matching to create pixel-wise matches [40].

Compared with the orbital data, ground images obtained by rover cameras can provide
high accuracy in situ measurements at centimeter resolution. Stereo rover images have
been routinely used to generate DEMs and DOMs for mission operations and scientific
investigations in Chang’e-3 and Chang’e-4 rover missions [4,5].

The early algorithms of SfS were initiated since 1970s [11,12], and laid the foundation
of photoclinometric surface reconstruction. Based on the image irradiance equation, with
corresponding reflectance model, these algorithms estimate the surface slopes and heights
of each pixel. Many SfS methods are built upon specific geometry conditions and limited
properties of reflectance [13,16,17]. Although such methods can reconstruct reasonable 3D
models, they are restricted to benchmark datasets and indoor images. Planetary images
(e.g., Moon and Mars images) generally have subtle albedo variations and trivial reflectance
diversities [41], these characteristics make them suitable for reconstructing DEM using SfS
techniques. Actually, SfS has been further developed and applied in planetary mapping
and relevant scientific research [42—44]. For instance, the SfS derived DEMs (together
with stereo derived DEMs) were used for safety assessment of the Mars exploration
rovers (MER) landing sites [45], the candidate Mars science laboratory (MSL) landing
sites evaluation [46], and topographic analysis of Chang’e-4 landing site [47]. Moreover,
SfS derived DEMs have also been used in spectral analysis of the lunar surface [48], lunar
soil strength estimation based on Chang’e-3 images [49], concreted fragments analysis at
Chang’e-4 landing site [50], and fine-scale analysis of craters and rocks at the Chang’e-4
landing site [40]. Photoclinometric surface reconstruction performs well in local scale
reconstruction but has poor large scale accuracy. Hence, in recent years, methods have
been developed to incorporate existing low-resolution 3D information (e.g., low-resolution
DEMs from photogrammetry or laser altimetry) into photoclinometry [16,17,51,52] and
improved results have been achieved.

To overcome the uncertainty from the single-image SfS, photometric stereo method
has been developed to estimate the local surface orientation by using several images of
the same surface taken from the same viewpoint but under illuminations from different
directions [13]. The method first recovers surface gradients from the overdetermined
equations, and then integrates the gradient field to determine the 3D surface. As multiple
images with different illuminations yield redundancy, the photometric stereo method
can improve the accuracy of surface reconstruction. It has been applied to close-range
and small-scale scene reconstruction [53]. In the field of planetary mapping, the multi-
image shape from shading (MI-5fS) algorithm was developed [14]. The core concept of
MI-SS is similar to photometric stereo and it was able to produce high resolution lunar
DEMs when image matching fails due to lack of distinctive texture. This method was
further investigated in lunar mapping [19,54], and pixel-level resolution mapping results
at Chang’e-4 and Chang’e-5 landing sites are achieved [19].

In regard to photoclinometric surface reconstruction for rover images, several methods
have been proposed to derive detailed topography. For Chang’e-3 rover images, a linear
approximation photoclinometry algorithm is applied to generate a DTM in 3-dimensional
pixel scale, and the relationship between disparity and height is used to calculate the
soil strength [49]. Wu et al. [40] presented an approach by integrating photogrammetry
and photoclinometry for centimeter-resolution modelling from Yutu-2 stereo Pancam
images. Firstly, photogrammetry processing of stereo images is completed to generate
a DEM and an orthoimage mosaic of the landing site [40]. Then the DEM is refined to
higher resolution using photoclinometry. The same procedure is also applied to derive the
detailed topography for target crater analysis [50]. In summary, this rover-based method
mainly include stereo photogrammetry processing and photoclinometry refinements, stereo
photogrammetry provides an initial DEM and phototoclinometry retrieves fine-grained
details and complement the limitations of dense image matching. However, while the rover-
based methods depend on the photogrammetry processing of stereo images, PPS approach
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integrates photometric stereo with collinearity equations, it can reconstruct topography
directly from multiple monocular images. As multiple images with different illuminations
provide redundancy, PPS can provide reliable reconstruction results. Furthermore, as
the images are obtained by the rover cameras at the same location, it is not necessary for
images co-registration.

It is well noted that the traditional photometric stereo algorithm assumes orthographic
projection and Lambertian surface. The method has been extended from different aspects
to deal with general materials, unknown lighting and reflection [55,56], and perspective
camera model [57]. Particularly, Tankus and Kiryati [57] introduced the image irradiance
equations under the perspective projection model with identity rotation matrix, and de-
veloped the solution to a set of three image irradiance equations, which provided better
accuracy than that under orthographic projection. The orthographic projection used in
traditional photometric stereo is not appropriate for rover images. Firstly, the distance
between rover camera and the lunar surface is close, secondly a pitch angle is usually
set for the rover camera, the rotation matrix is not the identity matrix. Thus, the tradi-
tional photometric stereo method should be improved to accommodate rover images.
The proposed PPS method integrates photogrammetry collinearity equations and lunar
reflectance model, which extends the photometric stereo method for ground-based lunar
topographic mapping.

3. Photogrammetric-Photometric Stereo Method

The framework of the PPS for lunar rover images is illustrated in Figure 1. First, the
imaging irradiance equation of close-range topographic mapping is introduced based on
collinearity equations and lunar reflectance model, and the relationship between surface
height value and image gray value can be obtained. It can be applied in general cases
of photogrammetry, when the rotation matrix is not the identity matrix. Second, the
solution of photometric stereo for close-range topographic mapping is derived based on
multiple perspective image irradiance equations, and height derivatives can be estimated
by iterative calculation. Finally, the global least-squares surface reconstruction with spectral
regularization is used to attain the height value from the estimated gradient.

—_—— —— — o — o — —

Object normal vector derivation
based on collinearity equations

| |
| |
I | b
l |

| Modelling of image irradiance
| for close-range topographic mapping [

| |
| |
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I l |
| |
| |
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Illumination | | Image irradiance
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I
I

| — | | —7 |
Cost function determination | | . ML.'mple lmag_e
| irradiance equations |
| J I I 7 |
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| | | image coordinate
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Figure 1. Framework of photogrammetric-photometric stereo (PPS) method.
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3.1. Modelling the Image Irradiance for Close-Range Topographic Mapping

The modelling of the image formation process defines the process between the surface
shape and the projected image intensity, which is crucial for photometric stereo problem.
The image intensity of a pixel depends mainly on the projection model, the surface re-
flectance property, surface orientations, and the direction of the illumination. Figure 2
shows relationships of the rover image formation, where L is the incident illumination
direction vector, N is the normal vector of the surface, and E is the viewing direction, and
the incidence angle i is formed between the vector of solar ray and the normal vector of the
surface, the emission angle ¢ is formed between the vector pointing to the sensor and the
normal vector of the surface, and « is the phase angle between the solar ray and camera.

Figure 2. Illustration of rover image formation.

3.1.1. Coordinates in Traditional Photometric Stereo vs. Coordinates in PPS

As Figure 3a shows, for most photometric stereo applications [55,56], the origin of the
object coordinate system is at the optical center S of the camera, f is the focal length, the axes
of X, and Y are parallel to the x and y axes of the image plane, respectively. Furthermore,
orthographic projection is assumed, so that the camera is considered to be far from the
surface relative to the size of the scene. The light source is regarded as a point source at
infinite distance and therefore constant illumination is assumed over the entire scene.

Assuming height Z is differentiable with respect to X and Y, the normalized surface
normal N can be represented in terms of partial derivatives of Z with respect to X and

Y [58].
9z oz
_71_7/1
CED
V@2 +(2) 41
9z 3z

where (W/ W) represents the partial derivatives of Z in X and Y directions.

/ )

The orthographic projection is widely used in traditional photometric stereo for orbital

mapping. The partial derivatives of height Z w.r.t. x and y, which are described as %—f and
g—f , are always used to represent the surface normal, and as the resolution is the same for
each pixel, there is

g—)z( = m%—f =mZy

Z __ 07 __
W—mw—mZy

@)

The scaling factor m is usually set to 1 for convenience.
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Figure 3b shows the image and object coordinates under perspective projection. The
image coordinate is 0-xy, the object coordinate is S-XYZ. The surface normal is derived as
in [59]

(fZx, fZy,xZx +yZy+ Z)

oz vz 427+ (24 23)

where (x,y) is the perspective projection of (X, Y, Z) with identity matrix as the rotation
matrix, that is

N
N = 3)

X= _XZ
f 7
4
—_yz
Y=-%,
Z(Zp)
A Zp
A
\
\
S X(Xp) Yp
\
AV
()Qp X
) - Xp
(b) (c)

Figure 3. Schematic representation of different imaging conditions (a) image and object coordinates for photometric stereo
under orthographic projection (PSOP), (b) image and object coordinates for photometric stereo under perspective projection
with identity matrix (PSPP), (c) image and object coordinates for PPS.

However, to facilitate topographic mapping, rover localization, and path planning,
rotation angles of rover cameras are used [5]. The rotation angles are not small angles, and,
thus, cannot be approximated as zero. Figure 3c shows the image and object coordinates
for PPS. The image coordinate is o-xy, the object coordinate is A-XpYpZp, and it is well
noted that the axes of Xp, Yp in object space are not parallel to x, y axes of the image
plane. For rover orthorectified images, the axes of Xp, Yp in object space are parallel to
x, y axes of the image plane, traditional photometric stereo can be used. However, new
image irradiance equations should be developed for original rover images with perspective
projection. In summary, the following aspects should be considered when developing a
proper image irradiance equation for rover-based lunar surface mapping: (1) The pitch
angle of the camera cannot be ignored, and the rotation matrix cannot be treated as identity
matrix; (2) Objects are not often located very far from the camera as the camera is close
to the ground; (3) The axes of Xp, Yp are not parallel to x, y of the image plane. Thus
the surface normal should be deduced based on the principles of photogrammetry and
photometric stereo.

3.1.2. Modelling of Surface Normal Based on Collinearity Equations

To make the photometric stereo algorithm useful, a general imaging irradiance equa-
tion is introduced based on photogrammetric collinearity equations, illumination condi-
tions and camera interior and exterior orientation parameters.
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As the object coordinates X, Y are unknowns, the surface normal can be derived from
the collinearity equations.

fu1 X Xs +b1(Y Y5)+C1(Zfzs)
asz(X— Xs +b3(Y Y<)+C3(Z_Z5) (5)

_ (X—Xs)+by(Y—Y5)+co(Z—Zs)
Yyo—¥= _fzi X— Xs§+b§EY Y@)+z§(Z*ZS)'

X — X9 =

In the equations, (x,y) represents the coordinate of the image point in the image plane
coordinate system; (X, Y, Z) is the object coordinate in the object coordinate system; (Xs,
Ys, Zs) represents three translation components of the exterior orientation parameters of
the camera; (a1, ap, a3, . .. , c3) stands for the elements of the rotation matrix; (xg, yo) is the
principle point position, f represents the principal distance of the camera.

In order to simplify the derivation process, the following symbols are used

X =X-Xg

Y=Y-Xs

Z=27-1Zs, (6)
X =Xx—Xp

Yy=yo—y

The derivatives can be calculated as

7 _ oz d
aé_az,ax+az Ay

X = ox X
g = 9z, ax _|_ a}’ ! )
ay — ox ay Y
ox __ _f [<ﬂ1+cl %) (113)~(+b3)7+632)— <a3+03 %) (a1)~(+b117+c12)]
0X (ﬂ3}?+b3?+€32)2
iz _ f {(az+cz%> (a3i+b317+c32)7 (@ﬁq%) (az)?+b217+c22)]
aX (ﬂ3i+b3?+€3z)2 (8)
ax _ —f Kb1+c1 g%) (a3}~(+h317+c32)— (b3+C3g%) (al}N(-i-blf/-&-ch)]
oy (ﬂ3?~(+b33~(+(:32)2
y _ f [(szrcz%) (a3)~(+b317+c32)7 <b3+63%) (az)?+b2)7+c22)}
a? B <53i+b31~/+63z)2

By substituting Equation (8) into Equation (7), the following equations are derived:

FloX+niroz) = F(~f(n+af)-x(orok)
~ + (f(a2+628x~>+]/<a3+c3ax ) )
2 (63X +bsY +03Z) = %—f(—f(h%—cl?)—x(bg%—cs 2))

+ 3;(f(b2+czay)+y(b3+c3gyzf))

Since the (55, 17, Z) is translation of (X, Y, Z) by (Xs, Ys, Zs), according to the derivative

rule, we have

%=%
X ~ X
oZ _ az (10)

Yy  9Y
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Substituting Equation (10) into Equation (9), by grouping all terms in dZ/0X, 0Z/9Y
on the left hand side of the equations, then Equation (9) is rewritten as follows:

9z _ (_”1f_”3x)%+(’12f+’13y)%

oxX (a3X+b3Y+c3Z )+ (c1 f+e3x) % —(c2f+esy) %
(=1 f—b3x) B +(ba f+bay) %

(IZ3X+Z73?+C3Z)+(C1f+63x)%7(C2f+C3y)%

(11)

U
'<‘N

ox
(ag‘zz) (aa—f) = ag;z and g = (%) (%—f) = (agg) (%) = alar;z, which is similar with
the definition in Tankus and Kiryati [57], finally the normal vector of real terrain can be
represented with the height derivatives in image coordinates, focal length, and the rotation

matrix elements.

Dividing the right side of Equation (11) with Z and replacing p = (%) (aZ) =

gZ — (*bﬂlfb*ﬂaif)l’+(ﬂ2f+ﬂay)q
X = Trayy— Y
(‘13 2%2377?;{ +b3 cgﬂ;;ﬁg]{ +C3) +(e1f+esx)p—(caf+esy)q

gZ _ (—bblfb—hsg)l?‘lr(bzf*-bw)q
Y = Trayy— oy
(a3 S F2I00] oy TRU BT ) (1 f+es0)p— (o f +e3y)g

(12)

The parameters (xg, y9) and f can be obtained from calibrated results of the rover
camera, (a1, 4, a3, . .., c3) are determined using rover localization results [5]. Notice that
when the rotation matrix is identity matrix, there is

%{ =1 o
+xp—yq
oz _ __fa (13)
Y = 1+xp—yg
The unit surface normal is
C - 7 s - 1
No__ (frfoxp—yg+l) - (14)
\/fZ(P2 +4%) + (xp —yq +1)
which is the same as that of Tankus and Kiryati [57].
3.1.3. The Image Irradiance Equation
From Figure 2, the emitting vector between the image and the camera is E,
E=—(X-Xs,Y~Ys5,Z~Zs) (15)
After normalization, the vector is
_X-Xs _Y-Ys5 4
£ ( Z—Zs'  Z-Zs ) , (16)
X—Xs\2 | (Y—Yg\2
N s
According to the collinearity equations
X=X ap az as X —Xo
Y=Y | =| b by b3 y=vo |, (17)

Z — Zs c1 C (3 —f



Remote Sens. 2021, 13, 2975

9 of 30

Substituting the Equation (17) into Equation (16), then the Equation (16) is rewritten
as follows

_a19?+a2y7a3f _h]f“rbzgfbg,f 1
c1x+ey—c3f’  ciXtcy—csf’

mE+ai—asf\2 | [ biF+byi—byf \2
\/ (ererey) + (asamy) +
Defining the light source as a vector L = (ps,gs,1), (ps, gs) can be calculated from

azimuth and solar elevation angle, so that the illumination angle and emission angle can
be determined as

E:

(18)

9Z
cosi = N.L = —9Zps—%gs+1
V(& () e/
9z (mF+agy—asf by F+byi—bsf (19)
cose = NE = ox (C1X+cy C3f)+ <C1x+c2y c3f>+1

B ey (e )

Various models can be used to determine the reflectance depending on the applications
and data, such as Lambert, Lommel-Seeliger model [60], lunar-Lambert model [61], and
sophisticated Hapke model [60,62]. Hapke model has been used in shape from shading
when measurements of the surface properties are available. To combine photometric
image information of high resolution and DEM data of comparably low resolution, Hapke
IMSA and AMSA reflectance models, with two different formulations of the single-particle
scattering function being used [16]. The same method is further applied to combine
Global Lunar DTM 100 m (GLD100) and radiance image data [48]. Compared with lunar-
Lambert model, Lommel-Seeliger model is a simple analytical model. It can describe
the photometric properties of zero phase angle, and has been widely applied in various
lunar spectral datasets, such as UV/VIS of Clementine [63], lunar reconnaissance orbiter
camera [64], moon mineralogy mapper [65], Chang’e-1 interference imaging spectrometer
(IIM) [66]. The lunar-Lambert model is a combination of the Lambertian model and the
Lommel-Seeliger law. The Lambert model describes the reflectance of bright surfaces
very well. In contrast to the Lambert model, the Lommel-Seeliger model describes dark
surfaces better, and has been successfully used in planetary photoclinometry as part of the
lunar-Lambert model [61]. Based on three LROC NAC images, Lommel-Seeliger model
appears to be suitable for the purpose of the relief retrieval [67]. According to Lin et al. [68],
the reflectance values are the same when phase angle difference is less than 5°. Considering
the change of phase angles of rover images are small, and the ratio of the measurements
from two images can cancel out effects of the intrinsic reflectivity of the surface materials
(see Equation (22) below), Lommel-Seeliger model is chosen in this research. It can be

approximated as follows
cosi

I(x,y) = P(S)[m]r (20)

p(g) represents reflectance variation with the phase angle g.
After substituting the Equation (19) into Equation (20), image irradiation equation can
be finally expressed as

(*%Pr%ﬂsﬂ)

V Vb +'7$ +1

I(x/ y): 1Y oz oz 0z (M Xtay—asf + e Y YA (21)
(*Wpsquﬁl) L 90X \ cqx+cpy—c3f cixfcpy—c3f
VPR i+ (axtay—asf 2+(hlf+b2?*b3f)2+1

c1X+cpy—c3f c1x¥+cpy—c3f

where p is the terrain-dependent albedo which differs by pixel.
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3.2. Perspective Photometric Stereo for Close-Range Topographic Mapping

Denoting the images as {I(x, y)k}Z;é , the corresponding illuminations {L;}}_;, and

vector of emittance {Vk}Z;é , and assuming there are no shadow in the images, dividing
the ith image by the kth image can eliminate the albedo variable, that is

— —
li(x,y) _ (Nxps;+ Nygs, +1) VI (Nxps, + Nygs, +1) + [[Le] (NxVx + NyVy +1)

- — —
L(oy) (NxPsc + Ny 1) 1y (Ngpy, + Nygs +1) + | Lill (Nx Vie + Ny Vy, +1)

(22)

ﬁ A

where i, k = 1,2,3, I # k, and ||V|| represents the denominator of emittance vector E,
ﬁ

(Ps;qs;/1), (ps;qs,.,1) are the incident sun vector of the kth and ith image, || L[| is the mode

5
of the incident sun vector of the kth image || L;|| is the mode of the incident sun vector of
the ith image, and

Ny=—9%
_ _9Z
NY— _W
V. — OFtmi—af (23)
=

c1X+cpy—c3f
vV, — b1 x+byy—bsf
Y™ axtey—cf

After rearrangement, Equation (22) can be rewritten as
AiN% + By NZ + CyxNx Ny + Dy Nx + ExNy + Fx =0, (24)
where
— — — —
A = L(xy) IIVIIPs,-psk+|LiIIVxPsk>Ik(xry)<||V||Psmsk+|Lk|Vxﬁs;)
— — — —
B = o) (IV1gug+ 151 ) = o) (1V s + 12l Vi, )
— — — —
Cik = Ii(xry) ||V||psiqsk+||V|pskq5i+||Li||qu5k+”Li|Vyp5k>
— — — —
—hmw@wm%ﬁWWM%+MNW%+MMWQ
— — — —
Dic = 1) IVl + 1Vilps + I Vs + s, 25)
— — — —
—Ik(x,y)<IIVIIPs,-+IVllpsﬁIILkIIVx+IILkIIPs,->
— — — —
Ex = 1) (V1 + 1Vl + LNV, + Eilgs, )
— — — —
=L, y) ([ IVIgs; + I VIIgs, + ILel|Vy + || Lillgs;

= - - —
B fi<x,y>(||V||+|Li||)—Ik<x,y>(||vn+||Lk||)

In the previous research of perspective photometric stereo with identity matrix [57],
the Lambert model is generally adopted, and the image irradiance equations only include
the illumination angle, so that after equation division the system is linear and the p, g can
be solved directly. As our model combines collinearity equations and Lommel-Seeliger
model, in order to solve the derivatives p, g, the unknowns Nx and Ny must be determined
firstly. Because the reflectance represents ratio of energy reflection, its value must be greater
than zero, thus the estimated value of Ny, Ny are constrained so that it will not exceed the
feasible range.

N-L,N-E >0, (26)

As the system of Equation (24) is non-linear for two unknowns, there may exist
multiple solutions for the system, reasonable initial values of Nx, Ny are essential to
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improve the convergence speed and determine the results. Considering that the ground
photogrammetry covers small areas and there are small changes in Nx, Ny for the whole
images, initial values of Nx, Ny are assigned as a small value. Then Levenberg-Marquardt
least-squares minimization algorithm [69] is adopted to solve the unknown parameters for
each pixel.

After determining the surface normal (N, Ny), p and q can be solved directly using
Equation (12).

3.3. Height Estimation from Estimated Height Gradient

In order to solve the height value from the estimated height derivatives p and g, the
global least-squares surface reconstruction with spectral regularization is used [70]. In
this algorithm, the cost function is in the form of matrix-algebra, and the matrix Sylvester
equation can be solved efficiently and directly.

Assuming Dx and Dy are difference matrices [71], the partial derivatives of the height
Z in x-direction and y-direction can be calculated by

9Z

9 =7zDI

aZ_Dz’ (27)
oy = My

so that on the base of calculated gradient field p and g, the cost function is formed by
attaining the nearest gradient, represented as follows

2 2
E(Z) = ZD; —p|" +IDyZ —qll*, (28)
To attain the minimum of the cost function, the matrix equation can be deduced
DyDyZ + ZD{Dy — Dyqg—pDx =0, (29)

In order for surface regularization, the orthogonal basis function is introduced to
improve the cost function, and the surface can be described by

Z=vmur (30)

where U and V are matrices consisting of set of basis functions, M is the coefficient matrix
that represents the surface. After substituting Equation (30) into the Sylvester equation in
Equation (29), the matrix equation is

DyD,VMU" + VMU"D{ Dy — Dyq — pDy =0, (31)

After pre-multiplying the equation by V! and post-multiplying by U, the function
becomes
VIDyD,VM+ MU' D{D,U — VT<Dqu+ pr)u =0, (32)

The normal equation is a rank deficient Sylvester equation which is solved by means
of Householder reflections and the Bartels—Stewart algorithm [70]. After M is solved the
height Z can be reconstructed.

As gradients p and g are the derivatives of the natural logarithm of the height, which
7 9z ~
Oy _ dlnZ

4 ay

= Lla;;z and g =

NI

is defined as p = , exponent of Z is finally calculated to

obtain the relative height.

4. Experimental Analysis
4.1. Quantitative Evaluation Measures
As the reconstructed heights are integrated results, which are relative height, the

height map cannot be compared with the reference height directly. The following three
quantitative evaluation measures are used in the experiments: mean error between the
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normals, root mean square error between the normals, and normalized F-norm of height
differences.

Mean error between the normals (MEANN)

MEANN is widely used in photometric stereo studies [71], the normal error represents
the angle between different vectors. Let N, represents the calculated normal vector, and
N, denotes the reference normal vector, for image with M x N pixels MEANN can be
expressed as

‘Zi,j cos™! (Ncalc'Nref> ’

Mx N ’
MEANN is used to evaluate the accuracy of estimated normal vector. The lower the
MEANN is, the higher accuracy of the reconstructed height.

Normalized F-norm of height differences (NFD)
As the reconstructed height cannot be compared with the reference height directly,

MEANN =

(33)

the reconstructed height matrix and reference height matrix are normalized as Hegc, Href,
then the NFD is calculated as

H,,. —H
NED — H calc ref”P ) (34)

max(HHcachFr ”HrefHF)

where || H I_{,e || is Frobenius norm (F-norm) of the difference matrix between H cale

cale —

and Hyef, [|H gy || is Frobenius norm of Heic, [|H, || is Frobenius norm of H,,. Frobe-
nius norm of the difference matrix can be used as Euclidean distance of the two matrices.
NEFD is the normalized F-norm within the range of [0, 1] to depict the similarity between
the two matrices. The smaller the NFD is, the higher accuracy the reconstructed result is.

4.2. Experimental Analysis for Simulated Data

The mapping accuracy of the PPS should be investigated. Due to the difficulty of ob-
taining ground-truth height information of images under different illumination conditions
for rover cameras, simulated images are used to validate the effectiveness and the accuracy
of the proposed method. The simulated images are generated from digital projection with a
virtual camera by using the existing Chang’e-2 DEM and DOM of an area of lunar surface.
The resolutions of DOM and DEM are 4.5 m, and the vertical accuracy of the DEM is tens
of centimeters. As the resolution of DEM generated by rover image is 0.02 m [8], in order
to obtain the corresponding simulated rover images, DEM and DOM have been considered
as 0.02 m with 1400 x 1000 pixels, as shown in Figure 4.

(a) (b)
Figure 4. (a) DEM and (b) DOM for rover image simulation.
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Given the interior and exterior orientation parameters, pixel size, image size, and
illumination conditions for the virtual camera, the corresponding simulated images can
be generated using back projection techniques based on the rigorous sensor model, i.e.,
the collinearity equations. The distortion parameters are assumed to be equal to zero,
while the exterior orientation parameters of different images are defined differently. Height
values from the DEM are used as ground truth. Based on the illumination conditions,
Chang’e-2 DEM and DOM, ambient lighting, diffuse lighting, and specular lighting vectors
are calculated, respectively, and Lommel-Seeliger model is used to derive the simulated
images. Figure 5 shows three simulated images under different illumination conditions.
Table 1 lists illumination conditions of the simulated images. There are tens of small craters
in the image, and a larger crater is clear on the right side. As the field of view (FOV) of
the camera is limited, the craters show different scales, specifically the crater in the red
rectangular of Figure 5a corresponds to the marked crater in Figure 5c, other craters in
the distance have been compressed due to the principle of the pin-hole model. In order to
verify the method efficiently, there are no shadows in the simulated images.

(b) (c) (d)

Figure 5. Simulated images under different lighting conditions (a) simulate image of solar azimuth
angle 90°and elevation angle 55° (b) simulate image of solar azimuth angle 90°and elevation angle
60° (c) simulate image of solar azimuth angle 90°and elevation angle 65° (d).

Table 1. Illumination conditions of the simulated images.

Image ID Solar Azimuth Solar Elevation Approximated Phase
& Angle (°) Angle (°) Angle (°)

Figure 5b 90 55 107.5

Figure 5¢ 90 60 103.3

Figure 5d 90 65 99.0

Figure 6 shows height map of ground truth and estimated results using PPS, PSPP [57],
and PSOP methods. After replacing the normalized surface normal (12) with Equations (14)
and (1), respectively, the height gradient (p, ) can be calculated, PSPP and PSOP results
are generated from the corresponding height gradient (p, g). It is noted that the height
values have been normalized to the same scale [0, 1]. As illustrated in Figure 6b, the
height of large craters at the right side and the upper left corner of the image are recovered
distinctly. Small scale features, such as several small crater on the upper right corner of
image, are also recovered. Furthermore, the height changes between some small craters
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and surrounding area are obvious. For comparison purposes, PSPP and PSOP results are
shown in Figure 6¢,d. Although PSPP is based on the perspective projection model with
identity rotation matrix, the errors of the PSPP result are very large and similar with that of
PSOP. These two results deviate from the ground truth. For example, the large craters at
the right side and the upper left corner of the image are distorted, and the ejecta blankets
are not recovered. Two regions of interest (ROI) are chosen to compare in detail. ROI 1 is
located at the upper left corner of the image, it includes a large crater and several small
craters. ROI 2 includes the largest crater in the image, the height values change greatly in
this region.

(b)

(a)
= AN

| 0.7

v 0
() (d)

Figure 6. Height map of ground truth and results of three methods (a) Height map of ground truth,
(b) PPS result, (c) PSPP result, (d) PSOP result.

The enlarged view of ROI 1 and the height maps of ground truth and the three methods
are shown in Figure 7. The height distribution of PPS result is the same as the ground
truth. As shown in Figure 7c, the details of the terrain are obtained, e.g., both the ejecta
blankets of two big craters and the rim of the small crater has been correctly recovered
using PPS method. As shown in Figure 7d,e, the resultant distributions of elevations are
different from the ground truth, regions of two craters in Figure 7c are merged into a larger
region, and the details of craters cannot be recognized. The differences are caused by the
lack of interior and exterior elements. A profile along the diagonal direction in Figure 7a is
extracted and shown in Figure 8, the left y-axis is the normalized height, the right y-axis
represents the real height. The height of virtual camera is —16.5 m, the axis of elevation
points down. As Figure 8 shows, the PPS results of ROI 1 extract the height change of
the craters, and the height profile of the PPS results is well consistent with the ground
truth. Converting to real height difference, the reconstruction errors are at millimeter to
centimeter level. It is noted that differences in PPS result at the beginning part is greater
than the end part. The larger errors may be due to the elevation of the craters located at the
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top of the image change frequently, the small error of the height gradients in this area may

affect the integrated results.
I 0.6

0.6

0.4

0.2

(b) (c)

(d) (e)

Figure 7. ROI 1 and reconstruction results of the three methods (a) Enlarged view of region 1,
(b) ground truth, (c) PPS result, (d) PSPP result, (e) PSOP result.
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Figure 8. Height profile of ROI 1 in simulated imagery.

For ROI 2, Figure 9a shows a large crater where there is significant height difference
between the rim and bottom, Figure 9c shows the details of the whole crater, including the
bottom, wall, and ejecta blanket, has been well recovered using PPS method. Although
there are several small craters located at the bottom side of the image, the height difference
is small, the ground truth in Figure 9b does not show the corresponding terrain detail, and
so does the PPS result. Figure 9d,e show a distorted part of a crater, which is different from
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the ground-truth shown in Figure 9b, and the ejecta blanket is not correctly recovered. This
is caused by the ignorance of rotation matrix in the PSPP and PSOP methods. Figure 10
shows the height profiles along the white line in Figure 9a, which demonstrate a significant
decrease along the wall of crater. According to the ground truth, the depth of the big crater
is about 0.2 m. It is observed that the errors of PPS result are very small at millimeter to
centimeter level. It seems the bottom of the crater shows relatively larger deviations, which
needs further investigation.

__IS=

(a)
(d)

Figure 9. ROI 2 and reconstruction results of the three methods (a) Enlarged view of region 2, (b) ground truth (c) PPS

result, (d) PSPP result, (e) PSOP result.
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Figure 10. Height profile of ROI 2 in simulated imagery.

To quantitatively evaluate the three methods for the simulated image, MEANN are
obtained from these results. As the elevation coordinates of PSPP and PSOP are different
from ground truth, the heights cannot be transferred and compared directly, NFD is only
calculated for PPS. As the normal vectors of three methods correspond to different object
coordinates, it is worth noting that the normal vectors of PSPP and PSOP were multiplied
by rotation matrix before calculating the corresponding MEANN.
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From the quantitative results of Table 2, both PSPP and PSOP methods show large
errors, which are around 60°. The MEANN are similar for ROI 1 and ROI 2. For the whole
image, the values of MEANN are between that of ROI 1 and ROI 2. Although PSPP uses the
identity matrix, it does not show notable better performance than PSOP when the images
are obtained with large pitch angles.

Table 2. Quantitative measures of three methods for the simulated images.

Methods MEANN (°) NFD

PPS 0.494 0.003
ROI'1 PSPP 59.799 -
PSOP 60.065 -

PPS 0.734 0.092
ROI 2 PSPP 59.998 -
PSOP 59.855 -

PPS 0.324 0.042
whole image PSPP 59.963 -
PSOP 59.960 -

MEANN values of PPS for two regions are less than 1°, NFD of ROI 1 is less than that
of ROI 2. Since ROI 1 and ROI 2 represent two areas with large slope, the elevation of other
areas change less, the results of whole image are mainly affected by the two regions. The
PPS quantitative measures of whole image is larger than that of ROI 1 and smaller than
that of ROI 2. For the whole image, MEANN of PPS is 0.324°, and NFD is 0.042, which
show good performance of the PPS method.

4.3. Experimental Analysis for Yutu-2 Data

Yutu-2 rover of Chang’e-4 mission carries three pairs of stereo cameras: Pancam,
Navcam, and Hazcam [8]. The Navcam is mounted on the mast of the rover, and is mainly
used for navigation of the rover. Table 3 lists the geometric parameters of Navcam stereo
cameras. Normally, at each waypoint, the rover takes a sequence of Navcam images at every
20° in yaw direction at a fixed pitch angle [5]. As a special experiment, the rover obtained 3
pair of Navcam images at a fixed waypoint under different illuminations on 7 August 2019,
within the 8th lunar day of the mission. Figure 11 shows the three left images used in our
experiment. Their imaging conditions are summarized in Table 4. It can be observed that
image tones and shadows change with the change of illumination conditions. The shadow
regions are common on the rover images due to complex interactions of geometry and
illumination. Figure 12 shows shadows inside craters or behind a boulder.

Table 3. Geometric parameters of Chang’e-4 Navcam stereo cameras.

Stereo baseline 0.27 m
Focal length 1189 pixels
Pixel size 1024 x 1024
FOV 46.4° x 46.4°

Table 4. Illumination conditions of the images used in the experiment.

Image ID Solar Azimuth Solar Elevation Approximated Phase
& Angle (°) Angle (°) Angle (°)
94741 —70.8 17 37.7
94914 —71.8 16.2 38.6

95633 —77.1 114 441
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(a) (b) (c)

Figure 11. Navcam images of the left camera under different illumination conditions (a) 94741, (b) 94914, (c) 95633.

(a) (b) (©)

Figure 12. Examples of shadows (a) shadow inside two craters, (b) shadow inside a crater, (c) shadow behind a boulder.

In order to detect shadow pixels in the images, each image is segmented using 2D
Otsu thresholding method [72], which extends the Otsu method from one-dimensional to
two-dimensional. The 2D Otsu algorithm is based on two-dimensional gray histogram.
It utilizes the gray level of each pixel, as well as the average gray level of pixels in its
neighborhood, and performs better than the traditional Otsu’s method in case of low signal-
to-noise ratio (SNR). Figure 13a—c show the shadow maps of the three images generated by
the 2D OTSU method, the final shadow map is obtained after using union operation of the
three shadow maps of (a), (b), and (c). Figure 13d shows the final shadow map used in the
experiment. It can be seen that the lower parts of the images are full of shadows. This is
due to the solar elevation angles of the three images are all small, 17° or less.
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(c) (d)

Figure 13. Shadow maps (a) Shadow map of image 94741, (b) Shadow map of image 94914,
(c) Shadow map of image 95633, (d) Final shadow map.

To quantitatively evaluate the accuracy of the PPS method, the semi-global matching
(SGM) [38] is used on the first pair of stereo images to achieve height map as ground
truth. Semi-global matching is performed to attain the disparity map, where the energy
function is built on the determined disparity range of each pixel. The energy function used
is as follows

E(D)=Y.C(p.Dp)+ Y PiT[|Dp— Dyl =1]+ Y PT[|D,—Dy| >1], (35
p qGNp qENp

where C(p, Dp) is the matching cost of pixel p with disparity Dp, Py, P, represent constant
penalty coefficients for all pixels g in the neighborhood of p.

Least squares matching is then performed to attain sub-pixel matching result. Af-
ter that, 3D coordinates are calculated by space intersection using interior and exterior
parameters, finally the height map can be generated.

As Figure 13d shows, although the lower part of image is full of shadows, there exist
some continuous non-shaded areas on the upper part that can be used to reconstruct height
map using PPS, PSPP and PSOP methods. Figure 14a shows the detail of the upper part
image, Figure 14b shows the corresponding shadow map, two regions labelled as 1 and 2
are used to validate PPS method.
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(a) (b)

Figure 14. (a) Two sub-regions of the image, (b) Shadow map.

Figure 15 shows enlarged views of the area ROI 1 outlined in Figure 14b, the area
includes lunar regolith and the rim of a small crater. SGM results and results of three
methods have been normalised. As Figure 15b shows, the heights change continuously in
a small range, and the rim of the small crater is recovered correctly. The height distribution
of PPS result in Figure 15c is similar with that of SGM result, where the upper part
is higher than the lower part. Figure 15d,e show SGM and PPS result of ROI 1 with
corresponding hillshade map. The rims of three small craters in Figure 15e are clear,
and subtle terrain details are displayed. As the boulders are too small, they cannot be
recognised in Figure 15d,e. Figure 15f,g represent PSPP and PSOP results. As PSPP and
PSOP do not include the rotation matrix, the reconstructed results are inconsistent with
the SGM result. The height distributions are similar where the left part is higher than the
right part. The elevation axis of Yutu-2 points up, the origin of elevation axis located at the
centre of rover body chassis. Figure 15h shows the profile of the boulder marked by the
white circle in Figure 15a. Figure 16 shows SGM and PPS results of the profile along the
white line in Figure 15a, the left y-axis is the normalized height, the right y-axis represents
the real height. According to the SGM result, height range of the test area is about 0.18 m.
Most of the normalised height of PPS result is larger than that of SGM result, the trend of
the curves is consistent.
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Figure 15. ROI 1 and reconstruction results of the three methods (a) ROI 1 image, (b) SGM result, (c) PPS result, (d) shaded

SGM result, (e) shaded PPS result, (f) PSPP result, (g) PSOP result, (h) Profile of the boulder (marked by the white circle
in (a)) from PPS result.
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Figure 16. Height profile of ROI 1 in Yutu-2 rover imagery.

Enlarged view of ROI 2 is shown in Figure 17a—c show SGM result and normalised
PPS result, respectively. Although there exist some isolated height values in the PPS result,
the overall distribution of PPS result is close to that of SGM result, and the lower-right
corner of ROI 2 in the crater has the lowest height values. Figure 17d,e show SGM and
PPS results of ROI 2 with hillshading effects. Figure 17f,g show PSPP and PSOP results
with large deviations, indicating that these two methods are not applicable. Being similar
with Figure 15d,e, there is a small rotation angle between the PSPP result and the PSOP
result. Figure 17h shows the profile of the boulder marked by the white circle in Figure 17a.
The profiles of PPS result and SGM result along the white line are shown in Figure 18. As
the white line crosses a part of the small crater, the height values decrease continuously;,
and the maximum height range is about 0.2m. The PPS result is generally consistent with
the SGM results with difference at centimeter level, demonstrating the effectiveness of the
PPS method.

@) (b) (©)

Figure 17. Cont.
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Figure 17. ROI 2 and reconstruction results of the three methods (a) ROI 2 image, (b) SGM result, (c) PPS result, (d) shaded SGM result,
(e) shaded PPS result, (f) PSPP result, (g) PSOP result, (h) Profile of the boulder (marked by the white circle in (a)) from PPS result.
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Figure 18. Height profile of ROI 2 in Yutu-2 rover imagery.

Table 5 summarizes the errors of two regions from different methods. The MEANN
values of PSPP and PSOP are large, which are almost ten times the result of PPS. For
the PPS method, MEANN and NFD of ROI 1 are smaller than those of ROI 2, indicating
the method performs better for ROI 1 than for ROI 2, which is in good agreement with
the profile maps. Due to the presence of image noises and other errors, the quantitative
evaluation values are larger than that of the simulated images.
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(a)
Figure 19. Orthorectified images of ROI 1 in Yutu-2 rover imagery (a) ROI 1 of 94741, (b) ROI 1 of 94914, (c) ROI 1 of 95633.

Table 5. Quantitative measures of three methods for Yutu-2 images.

Methods MEANN (°) NFD

PPS 8.274 0.336
ROI 1 PSPP 93.792 -
PSOP 102.746 -

PPS 9.459 0.386
ROI 2 PSPP 86.786 -
PSOP 101.843 -

As rover images are largely oblique, PPS results show higher accuracy than that of
PSPP and PSOP. For general cases of PSOP, multiple images under the same viewing
geometry with different illumination conditions are available, and the DEM is unknown.
To further compare PPS with PSOP, three orthorectified images are generated from corre-
sponding images with mean elevation value. Height map is generated using PSOP based
on these orthorectified images. The PPS height result is transformed from image space
into object space in order for comparison with the PSOP result. The steps of PPS DEM
generation is as follows: (1) After SGM matching, the object coordinates of each point can
be obtained; (2) The height value is replaced with PPS normalized result; (3) DEM with
0.005 m resolution is generated using Kriging interpolation method.

Figure 19 shows orthorectified images of ROI 1. Figure 20 shows the normalized DEM
from SGM (a), normalized DEM from PPS (b), and PSOP result based on orthorectified
images. As Figure 20b shows, the height distribution is similar with that of Figure 19a,
most of the rim of small crater is reconstructed. The upper part of Figure 20c is lower than
that of Figure 20a, the rim of small crater is not reconstructed completely.

(b) (0
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Figure 20. Reconstruction DEM results of ROI1 by three methods (a) SGM interpolation result, (b) PPS interpolation result,
(c) PSOP result from orthorectified images.

(@)

Following the same procedure, the orthorectified images of ROI 2 is shown in Figure 21.
Figure 22 shows the normalized DEMs of three methods of ROI 2. The overall height dis-
tribution of Figure 22b is close to that of SGM interpolation result, the coverage of crater
is also similar. As shown in Figure 22c, the left part of reconstructed result is lower than
that of Figure 22a. Using the SGM result as a reference, the visual comparison results
in Figures 20 and 22 indicate that PPS result is generally better that that of PSOP with
orthorectified images.

As the height values are all normalized, statistical measures including NIQE [73] and
BRISQUE [74,75] were adopted to evaluate three DEM results. NIQE compares image
to a default model computed from images of natural scenes. A smaller score indicates
better perceptual quality. The BRISQUE model is based on a pretrained imaging model,
the lower values represent better quality. Table 6 summarizes quantitative measures of
DEMSs generated by three methods. For PPS result, the NIQE and BRISUE values are the
smallest for ROI 1 and ROI 2. These statistical measures also demonstrate that the quality
of the DEM derived from the PPS method is better than that derived from PSOP with
orthorectified images. However, if the DEM of stereo images are available, the DEM result
based on photoclinometry will show great improvement [40].

(b) ()
Figure 21. Orthorectified images of ROI 2 in Yutu-2 rover imagery (a) ROI 2 of 94741, (b) ROI 2 of 94914, (c) ROI 2 of 95633.
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Figure 22. Reconstruction results of ROI 2 by three methods (a) SGM interpolation result, (b) PPS interpolation result,

(c) PSOP result for orthorectified images.

Table 6. Quantitative measures of DEMs by three methods for Yutu-2 images.

Methods NIQE BRISQUE
SGM 11.15 45.41
ROI 1 PPS 10.81 45.26
PSOP for orthorectified images 11.24 46.15
SGM 7.819 47.47
ROI 2 PPS 7.540 47.37
PSOP for orthorectified images 8.230 48.31

5. Conclusions and Discussion

This paper proposes a photogrammetric-photometric stereo (PPS) method to recover
the height map from multiple rove images taken by a single camera under the same
viewing geometry with changing illumination conditions. The new imaging irradiance
model is developed based on collinearity equations and lunar reflectance model. The
relationship between surface normal and elevation gradients derived in the method is the
key to the final estimation of height map. The experimental results of simulated images and
actual Yutu-2 rover images show that the proposed PPS method algorithm can reconstruct
pixel-level height that preserves terrain details, while the reconstructed height map is
consistent with ground truth. The height reconstruction error varies between millimeter to
centimeter level. Because of the Navcam images taken at the same waypoint with different
illumination conditions is limited, and that the differences of azimuth angles and elevation
angles among the experimental images are small, the terrain reconstruction errors of the
actual rover images are generally larger that of the simulated images. This implies that the
illumination differences of multiple images used in photometric stereo affect the resulting
height accuracy.

PSPP and PSOP results show large deviations from the ground truth, and PSPP does
not show better performance than PSOP when the images are obtained with large pitch
angles. The MEANN measure of PSPP and PSOP results are almost ten times larger
than the result of PPS, indicating the importance of incorporating the rotation matrix in
photogrammetric-photometric stereo (PPS) model. In other words, the traditional PSPP and
PSOP methods are not appropriate in rover image based topographic mapping. Further
comparisons show that the quality of DEM derived from PPS method is better than that
derived from PSOP with orthorectified images.
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In this research, Lommel-Seeliger model is used without considering the phase an-
gle and photometric properties of the lunar surface. Other reflectance models, such as
lunar-Lambert and Hapke model can also be used for gradient calculation. These can be
investigated and compared in future research.

The proposed approach enriches the photometric stereo theory, and extends the
orthographic and perspective projection with identity matrix in classical photometric stereo
to general cases in close-range topographic mapping. It can also be used for surface
reconstruction of other planets with the corresponding reflectance model. In the near
future, we will also validate the performance of the model using more ground-based
images. Moreover, as the reconstructed height map are of relative height values, further
study can be performed by integrating stereo matching and PPS method to improve the
details and accuracy of rover image based topographic mapping.
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