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Abstract: The availability of aerial and satellite imageries has greatly reduced the costs and time
associated with gully mapping, especially in remote locations. Regardless, accurate identification
of gullies from satellite images remains an open issue despite the amount of literature addressing
this problem. The main objective of this work was to investigate the performance of support vector
machines (SVM) and random forest (RF) algorithms in extracting gullies based on two resampling
methods: bootstrapping and k-fold cross-validation (CV). In order to achieve this objective, we
used PlanetScope data, acquired during the wet and dry seasons. Using the Normalized Difference
Vegetation Index (NDVI) and multispectral bands, we also explored the potential of the PlanetScope
image in discriminating gullies from the surrounding land cover. Results revealed that gullies had
significantly different (p < 0.001) spectral profiles from any other land cover class regarding all bands
of the PlanetScope image, both in the wet and dry seasons. However, NDVI was not efficient in gully
discrimination. Based on the overall accuracies, RF’s performance was better with CV, particularly
in the dry season, where its performance was up to 4% better than the SVM’s. Nevertheless, class
level metrics (omission error: 11.8%; commission error: 19%) showed that SVM combined with
CV was more successful in gully extraction in the wet season. On the contrary, RF combined with
bootstrapping had relatively low omission (16.4%) and commission errors (10.4%), making it the
most efficient algorithm in the dry season. The estimated gully area was 88 £ 14.4 ha in the dry
season and 57.2 + 18.8 ha in the wet season. Based on the standard error (8.2 ha), the wet season was
more appropriate in gully identification than the dry season, which had a slightly higher standard
error (8.6 ha). For the first time, this study sheds light on the influence of these resampling techniques
on the accuracy of satellite-based gully mapping. More importantly, this study provides the basis
for further investigations into the accuracy of such resampling techniques, especially when using
different satellite images other than the PlanetScope data.

Keywords: satellite imagery; gully mapping; machine learning; random forest; support vector
machines; South Africa; semi-arid environment

1. Introduction

Defined as the detachment, transportation, and deposition of soil particles by the
erosive forces of raindrop and runoff [1,2], soil erosion by water represents one of the most
typical forms of land degradation affecting many countries around the world [3]. While
soil erosion has many negative effects, the most concerning one include the decline in
soil fertility, resulting in limited food production [4,5]. This, in turn, contributes to food
insecurity in several developing countries, particularly in those ones where a considerable
segment of their population strongly relies on agriculture for their survival [6]. South
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Africa, with approximately six million people deriving a livelihood from agriculture [7],
is extremely exposed to soil erosion. Formal agriculture provides employment to about
930,000 farm workers, including seasonal and contract workers [7]. Given the geomor-
phological conditions coupled with the strongly seasonal nature of rainfall across South
Africa, it is not surprising that the country is predisposed to soil erosion, a serious threat
to sustainable agriculture and natural environments [8]. Soil erosion in South Africa, es-
pecially in rural communities, has been further aggravated by human activities such as
inappropriate agricultural practices and overstocking [9-12].

Although various types of water-borne erosion exist in the country, gully formation
has been recognized as the major form of erosion in South Africa, accounting for consider-
able volumes of soil loss [13,14]. Accordingly, the Department of Agriculture, Forestry, and
Fisheries (DAFF) in South Africa has identified the need to determine the spatial extent
of gullies and their severity at a national scale [15]. Gullies occur when the soil and its
parent material are scored and destroyed by surface runoff, resulting in the formation of
v-shaped incised channels [16]. Gullies can either be classified as ephemeral or classical
(also called permanent) based mainly on their depth. Unlike ephemeral gullies, classical
gullies are deeper than 0.5 m and cannot be easily filled in by normal tillage [17], especially
in highly dissected terrains [18]. Gullies also result from piping and tunneling due to
the influence of soil chemistry on hydrological pathways [19]. The prevalence of erodi-
ble duplex and dispersive soils in certain parts of South Africa, especially the Eastern
Cape where the subsurface (piping) erosion mostly occur, considerably facilities the for-
mation and development of gullies [9,14]. Land use type and changes also trigger gully
initiation [19]. In the context of South Africa, gullies are more prominent on gently sloping
lands suitable for cultivation [15]. The spatial extent and severity of gully erosion vary
from one province to another because of the differences in land use, soil types, vegetation,
rainfall, and topography existing in different provinces. The Eastern Cape is one of the
most gully-affected provinces in South Africa, with about 161,500 ha of land covered by
gullies [15]. For this reason, most gully erosion studies in the country have been conducted
in this province [9,14,20-22].

Accurate mapping of gullies is essential for monitoring gully erosion and understand-
ing the associated environmental and socio-economic impacts [23], thereby supporting the
implementation of practical erosion control measures [24,25]. Manual field-based assess-
ments using tapes, rulers, and topographic profilers have been used for years to obtain
gully information [26], but over the last few decades, rapid developments had been wit-
nessed in digital aerial photography, and more recently, satellite images with different
imaging capabilities [23]. Following the availability of such remotely sensed data, gully
information has either been obtained through visual interpretation or automatic classifi-
cation of remotely sensed data. Remote sensing related mapping, either based on visual
interpretation or automatic method, is presently the only practical approach for mapping
gully features over large areas, in arid or semi-arid regions, given the complexity of gully
appearance (i.e., variability in size, shape, and occurrence) [27]. Although nowadays visual
interpretation is regarded as the most traditional and time consuming method, some re-
searchers still prefer it over the automatic method [15,28] because automatically-classified
results are still subject to the characteristics of the selected training samples, algorithms,
and satellite image, among other factors [29]. However, the low efficiency, uncertainty
and high subjectivity associated with visual interpretation have made most researchers to
investigate automatic methods [29].

The automatic extraction of gully information from satellite earth observation data
takes two forms: pixel-based and object-based analysis [23,30]. The pixel-based analysis is
relatively simple, and is the most frequently used and direct approach for image classifica-
tion, using only the spectral information [31]. Such spectral information can be extracted
using various image classification algorithms such as random forest (RF) and support vec-
tor machines (SVM), which thus far, are arguably the most commonly used algorithms due
to their classification efficiency in relation to other algorithms, including k-nearest neighbor
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(kNN), maximum likelihood (ML), artificial Neural Network (ANN), convolutional neural
networks (CNN), discriminant analysis (DA), and minimum distance (MD). One study
mapped the areas susceptible to gully erosion using RF and ANN [32], and found that
RF performed better than ANN. Noi and Kappas [33] compared SVM, RF, and kNN in
land cover classification, and found that SVM, followed by RF, were better than kINN.
Phinzi et al. [34] reported that both SVM and RF outperformed linear discriminant analyst
(LDA) in a study on gully detection. Although deep learning methods such as CNNs
have shown better performance over SVM and RF [35], like most deep learning methods,
CNNss also strongly rely on the availability of abundant high-quality training/ground truth
data [36]. While CNNs perform well in detecting and differentiating active gullies from
other forms of surface erosion (e.g., sheet and rills), they have errors in detecting complex
gully systems [37]. For these reasons, SVM and REF still attract most researchers” attention,
because of their low computational complexity and higher interpretability capabilities
compared to deep learning algorithms [36].

The wide usage of these machine learning algorithms in remote sensing proved that
learning features from dataset is more efficient and practical than merely defining the
features [38]. Although the application of machine learning in soil erosion research is
not new, previous investigations commonly use coarser spatial imagery such as Landsat,
ASTER and Sentinel /Sentinel-SAR (Synthetic Aperture Radar), which from an economic
point of view makes sense, given that such images are obtainable at no cost. Besides, these
sensors are good for wide area mapping of soil erosion. However, what has become appar-
ent from previous studies, is that such sensors cannot identify individual gullies (especially
small discontinuous gullies) with sufficient detail, this limitation is attributable to their low
spatial resolution [15]. Whereas other optical sensors such as IKONOS, WorldView, and
RapidEye with relatively higher spatial resolution exist for gully mapping, these sensors are
not readily or freely available, as such, their high acquisition costs limit their application for
gully mapping. Similarly, the use of LIDAR-derived elevation data from airborne surveys
including Unmanned Aerial Vehicles (UAVs) is limited by a lack of financial resources.
Depending on the availability of data and objective of a given study, multi-source and
multi-sensor data fusion are common in remote sensing since this provides synthetic data
that have the combined advantages of different sensors [39]. Multi-sensor or pixel level
data fusion are mainly applied to optical images, for example, the fusion of high resolution
panchromatic and low resolution multi-spectral images [40], was successfully applied in
gully feature extraction [34]. Multi-source data fusion concerns feature level and decision
level fusion of data from various sources such as SAR, optical images, LiDAR, geographic
information system (GIS) data, and in-situ data [40]. In our case, we did not perform any
data fusion due to lack of data (including the panchromatic band) with suitable spatial
resolution necessary for detecting individual gullies.

Despite the unavailability of a higher spatial resolution panchromatic band, the 3 m
PlanetScope image, which is available free of charge for research purposes, offers a great
potential for detecting individual gullies. However, the capability of PlanetScope image in
classifying gullies in different seasons (dry and wet) in an arid or semi-arid environment
had been investigated only in areas of large forms (1-5 km length, 100-600 m width) [41].
While machine learning algorithms such as the SVM and RF have been frequently applied,
little efforts have been made to investigate the influence of resampling techniques, par-
ticularly, bootstrapping and k-fold cross-validation (CV), on the accuracy relations. We
identified gullies from PlanetScope images based on these resampling methods. Our aim
was (i) to compare the satellite’s bands reflectance values from the aspect of gullies, (ii)
to reveal which classifier (RF or SVM) and resampling technique (CV or bootstrapping)
perform better regarding the overall and class level accuracy metrics, and (iii) which season
is more appropriate to identify the gullies.
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2. Materials and Methods
2.1. Study Area

The study area was located in the rural part of eastern South Africa, characterized by
extensive erosion where permanent gully erosion was the most prominent erosion type [42].
Geographically, the study area lies between 30°42/30-30°43'55"'S 28°46/22"-28°48'47"E,
covering a surface of about 10 km? (Figure 1). Subsistence agriculture (e.g., crop farming
and livestock rearing) and settlement were the main land use types. Grassland was the
most common vegetation type throughout the area, with some forest patches found in the
north-western section of the study area. The topography ranges from 1213 m-1658 m, with
the north-western and south-western sections being steeper than other parts of the area.
Steep mountain slopes with gently undulating footslopes characterize the geomorphology
of the area [14]. The climate is semi-arid with temperatures ranging from 7-30 °C. Winters
are cold and dry, with less vegetation due to limited rainfall. Rainfall mostly occurs during
the summer season reaching approximately 670 mm on average per year. Although the
study area has limited annual rainfall, it experiences high-intensity rainfall events. Gully
development in the area was further fostered by the predominance of highly erodible soils
such as duplex and dispersive soils [9,43], predominantly underlain by mudstone and
sandstone of the Beaufort Group [44]. Although vegetation exists in the wet season, its
effectiveness in protecting soil against erosion and inappropriate land-use practices such as
overgrazing usually reduces vegetation cover, making the area susceptible to soil erosion.
The study area features both continuous and discontinuous gully networks with distinct
occurrences and appearances, i.e., narrow, wide, vegetated, shallow, deep with shadows,
etc. [14,42]. Additionally, some gullies resemble the unpaved road network in appearance.
Such complexity of gullies within the area makes the area particularly suitable for study.

28°47'0"E 28°48'0"E 28749°0"E

Wet season

28°49'0"E

Figure 1. Location of the study area (PlanetScope false-color images).

2.2. Data Acquisition and Pre-Processing

Two cloud-free PlanetScope orthorectified products (Level 3B) for the wet and dry
seasons acquired on 23 January 2017 and 25 June 2017, respectively, were used in this
study. The images were downloaded from the Planet explorer website (https://www.
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planet.com/explorer (accessed on 30 July 2020)). The orthorectified scenes had already
been radiometrically and geometrically corrected and projected to the Universal Traverse
Mercator (UTM) projection, referenced to the world geodetic system (WGS84) datum.
With a spatial resolution of 3 m and temporal resolution of 1 day, the PlanetScope image
is comprised of 4 spectral bands: red, green, blue (RGB), and near-infrared (NIR). The
flowchart summarizing the workflow followed in this study is presented in Figure 2.

2.3. Gully Classification

Classification of gullies from the PlanetScope image was conducted in Python soft-
ware using random forest (RF) and support vector machines (SVM). These were the
most widely applied algorithms and their detailed description has been provided in
the literature [10,34,36,45-47]. The RF, developed by Breiman [48], is a robust machine
learning algorithm that is increasingly becoming more popular in remote sensing of soil
erosion. The algorithm has several parameters that need to be tuned, amongst which the
ntree (number of trees) and mtry (number of features in each split) are the most important
that should be considered when training the algorithm [49]. The models were built using
only 4 variables (e.g., four multispectral bands of the PlanetScope image), thus we tested
all possible values of the mtry parameter. For the ntree parameter, we tested different
values ranging from 50 to 1000. After ntree = 100, the accuracies stagnated while the com-
putational time kept increasing [50]; thus, the final model was trained with 100 individual
decision trees, selecting 2 random variables at each split.

The support vector machine (SVM) model was capable of overcoming both classifica-
tion and regression problems [51,52]. To achieve this, SVM searched for the flat boundary
(hyperplane) in some feature space that best separated the classes into homogeneous par-
titions where each partition contained only data points of a given class [34,49]. In reality,
however, it was difficult to find a hyperplane that perfectly separated the classes using
just the original features [49]. SVM overcomes this problem in 2 ways: first, loosen what
is meant by “perfectly separates,” and second, use the so-called kernel trick to expand
the feature space to the extent that perfect separation of classes is more likely [49]. The
radial basis function (RBF) was chosen for the kernel type. For RBE, a C penalty parameter
against misclassifications and a kernel coefficient (y) as a decision boundary have to be
specified, which greatly affects the performance of the model [53]. Hyperparameter tuning
was performed with the grid search method.

2.4. Reference Data Collection and Accuracy Assessment

The reference data were collected through field surveys and visual interpretation
of high-resolution Google Earth images. We delineated the study area into 7 land cover
classes, of which all were identifiable both in the field and in images (Google Earth and
PanetScope): forest, built-up, agriculture, gully, bare soil, and mixed bare soil (i.e., exposed
rocks, unpaved roads/dirty roads, and exposed soil mostly in ploughed fields). A total of
966 points were collected using stratified random sampling in ArcMap. Each land cover
class was assigned a number of points proportional to its size.
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Figure 2. Workflow followed in this study (CV: cross-validation; boot: bootstrapping; SVM: support
vector machines; RF: random forest).

We evaluated the overall performance of the RF and SVM algorithms using CV
and bootstrapping. Kappa coefficients and overall accuracy (OA) were among the most
commonly used metrics to evaluate classification accuracy [54]. However, the use of
kappa in remote sensing classification accuracy is becoming less common [33,55]. Pontius
and Millones [56], Flight and Julious [57], and more recently, Delgado and Tibau [58],
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recommend against using kappa because of its inherent limitations. A major limitation of
kappa was that it is highly sensitive to the distribution of the marginal totals, potentially
producing unreliable results [57]. Thus, we used OA to assess the overall performance
of the models. Contrary to the conventional error matrix, which used all of the available
data to test the model, CV splits the reference dataset into training and testing data. It
used the majority of the data for training and the remainder, often called the holdout
sample, was used to test the model, ensuring that the model was robust [49]. In total,
we used 17,757 pixels for the wet season and 30,597 pixels for the dry season, generated
from PlanetScope. We repeated the 5-fold CV 20 times, meaning that final accuracies were
computed from 100 models. Before each repetition, the dataset was randomly shuffled
and new folds were generated to increase the robustness of the models. Unlike CV, in
bootstrapping, the original data were randomly sampled with replacement, meaning
that, after a data point (bootstrap sample) was selected for inclusion in the subset, it was
still available for further selection [49]. Two parameters must be chosen before running
bootstrapping: sample size and the number of repetitions. In our case, the sample size was
the same as the original dataset [59], and we applied 100 repetitions. The models were
validated on the samples that were not included in the bootstrap sample.

We used the traditional error matrix to assess the model performance at class level as
bootstrapping and CV do not provide class accuracies. An error matrix compared reference
data to the classified map using various accuracy indices [54], but in this study, we only
focused on class level accuracies/errors: producer’s accuracy (PA) and user’s accuracy
(UA); PA was also known as sensitivity or recall while UA was sometimes referred to
as precision. The difference of the possible 100% accuracy and the PA represented the
omission error, which occurred when a pixel was excluded from the class to which it
belonged. A difference of 100% and UA represented a commission error, which occurred
when a pixel was incorrectly included in the class where it did not belong. We computed
unbiased area-based PAs and UAs, following “good practice” recommendations for accu-
racy assessment [60]. The Fl-score was also reported as the harmonic mean of UA and
PA [61]. Additionally, we computed unbiased areal coverages (ha) of gullies along with
their standard errors (ha) and associated + 95% confidence intervals (ha). We generated
6 algorithms based on the combination of the classifiers: svm and rf, seasons: dry (d) and
wet (w), and resampling methods: bootstrapping (b) and cross validation (cv), i.e., rf-d-b,
rf-d-cv, rf-w-cv, rf-w-b, svm-d-cv, svm-d-b, svm-w-cv, and svm-w-b.

2.5. Statistical Analysis

NDVI values of the images, and specifically focusing on the gullies, were compared
by the 2 seasons with the robust Mann-Whitney test using the Monte Carlo p (ppic) with
9999 permutations. We applied the General Linear Model (GLM) to determine the effects
of spectral bands (4 bands; RGB + NIR), seasons (wet and dry), and the LULC classes
(7 classes). Furthermore, we also determined the statistical interactions to reveal if factorial
variables had a common effect (e.g., effects of spectral bands differed by LULC classes
or were different in the dry or wet seasons). Besides, we also determined the effect size
(w?) as a standardized measure of the variables’ contribution in the model (higher values
indicate larger contribution, w? > 0.14 was considered as a large effect [62].

The Dunnett test [63] was used to determine if gullies had significant differences
from other land cover types (HO: mean reflectance values of gullies was identical with the
other land cover types). The Dunnett test was developed to perform multiple comparisons
against 1 control group; in this case, gullies’ land cover type was chosen as the control.
As in the Dunnett test, the number of comparisons was limited (related to a full factorial
approach; i.e., 6 instead of 21). Furthermore, the test compared the factor groups’ means
with the control group’s mean (unlike other tests, which compare group means to the
grand mean); thus, it can reveal small significant differences [64], and our intent was to
find all overlaps in the reflectance with the gullies.
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3. Results
3.1. Spectral Bands, Land Cover Classes and Seasons as Determinants of Reflectance

The difference of NDVI values was significant between the two seasons (U = 35303,
z =19.102, pmc < 0.0001). The NDVI for the wet season had relatively higher values rang-
ing from —0.36 to 0.81, while the values for the dry season lay in the range —0.41 to 0.59.
The dry season had bimodal distribution while the wet season had multimodal distribu-
tion (Figure 3). Such bimodal distribution in the dry season represents non-vegetation
(first mode) and vegetation pixels (second mode). Like in the dry season, the first mode
in the wet season was indicative of non-vegetation pixels denoted by lower NDVI values
compared to the last two modes, represented by relatively higher NDVI values. These last
two modes represent vegetated areas: vegetation and forest pixels, respectively.
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Figure 3. Distribution of NDVI reflectance values in the dry and wet season.

We also compared the NDVIs’ of the gullies in the dry and wet seasons. Accordingly,
the difference was significant (U = 162, z = 9.5534, p < 0.0001). The mean difference was
0.08 in the wet season, green vegetation was also present in gullies, thus, NDVI was larger.
According to the results of the GLM we found that the spectral bands, LULC classes, and
the seasons, as factorial variables and the interactions, were significant (p < 0.001) and
explained 92.3% of the variance. Among the factors, the difference of dry and wet seasons
had the largest effect on the reflectance (0.868). The bands and LULC classes had almost the
same effect with a bit lower value (~0.6), however, also indicating a large effect. Regarding
the interactions, we confirmed that reflectance by the band was different by LULC classes
and seasons. The contribution of these interactions was large (Table 1). Furthermore, the
effect size of the interaction between the seasons and the LULC classes was the lowest,
being only third related to the interactions with the bands (0.141), but it still indicated a
large effect. The interaction of all factors (spectral bands, seasons, LULC classes) also had a
large effect but only with a smaller value (0.185).
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Table 1. Results of General Linear Modelling (GLM) performed with reflectance as an independent
variable (SS: Sum of Squares, df: degree of freedom, F: F-statistic, p: significance, wzp: effect size;
p < 0.05: significance level).

Variables SS df F P w?p
Model 6.99 x 10° 55 860.4 <0.001 0.923
Bands 1.00 x 10° 3 2256.1 <0.001 0.633
Season 3.80 x 10° 1 25,715.0 <0.001 0.868
Class 9.79 x 108 6 1104.2 <0.001 0.629
Bands x Season 448 x 108 3 1010.0 <0.001 0.436
Bands x Class 5.30 x 108 18 199.3 <0.001 0.477
Season x Class 9.62 x 107 6 108.5 <0.001 0.141
Bands x Season x Class 1.34 x 108 18 50.3 <0.001 0.185
Residuals 5.70 x 108 3860
Total 2.96 x 1010 3916

The post hoc test performed with the Dunnett test revealed significant differences
(p < 0.001) between the gullies and other LULC classes in the dry season (Figure 4). The
difference was not significant between the gullies and the agricultural areas (blue band),
the vegetation and agricultural areas (green band and red band) in the wet season. Table 2
ranks the original band’s importance in terms of discriminating gullies. We also studied
the differences of NDVI and found that this spectral index was not as successful in dis-
criminating the gullies as the original bands. It did not differ from the mixed bare soil and
the vegetation in the dry season. Although NDVI performed better in the wet season, the
difference was not significant with the built-up class.

GREEN RED NIR NDVI
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Figure 4. Differences of gullies and other land cover types’ reflectance by bands and seasons (G: gully; F: forest; Bu: built-up;

BS: bare soil; MBS: mixed bare soil; V: vegetation; A: agriculture; mean + 95% confidence intervals; the difference was not

significant if confidence range intersects the dashed line).

Table 2. PlanetScope bands ranking in discriminating gullies against the surrounding land cover.

Dry Season Wet Season
Band Importance Ranking (%) Band Importance Ranking (%)
NIR 31 NIR 35
Red 26 Red 32
Green 25 Green 21
Blue 17 Blue 12
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3.2. Accuracy Assessment of Gully Mapping

Using machine learning algorithms (RF and SVM), the cross-validation (CV) resam-
pling method yielded better OA compared to bootstrapping for both the wet and dry
seasons (Figure 5). Two apparent trends can be observed from these results based on OA:
(i) RF consistently performed better than SVM irrespective of the season or resampling
methods: bootstrapping and cross-validation; (ii) dry season had better OAs than the wet
season, but this was not reflected in class level accuracy indices for gully classification.
Based on the unbiased UA, all algorithms showed good performance in gully classification,
recording UA above 70% (Figure 6). In particular, the best performance belonged to the
svm-d-b (93.4%), whereas the worst UA belonged to the rf-w-b model (77%). For most
models, PA was generally low relative to UA. Only half of the models recorded a PA greater
than 70%, with the best performance belonging to svm-w-cv (89.2%), while the other half
fell below 70%, with the svm-d-b model recording the lowest PA (32.5%).

An unbiased area estimate of gullies (ha) is presented in Table 3. With the highest PA
(89.2%) and lowest standard error (3.7 ha), svm-w-cv provided the most accurate gully
areal coverage (57.2ha). The highest standard error (11.5 ha) belonged to rf-w-b model,
which had a gully area of 55.2 + 25ha. However, in the F1-score ranking, rf-d-b and rf-d-cv
algorithms achieved the best results (>0.90), but RF algorithms belonging to the wet season
had relatively low score (0.82). On the other hand, all SVM algorithms (svm-d-cv, svm-d-b,
svm-w-cv, and svm-w-b) recorded lower Fl-scores, ranging 0.85-0.88. The two resampling
techniques recorded the same omission error (85.1%), but slightly different commission
errors, e.g., bootstrapping had 40.8% error of commission compared to 37.8% error for
k-fold CV (Table 4).
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Figure 5. Accuracy assessment based on overall accuracy (OA) by the classification algorithm
(RF: random forest, SVM: support vector machine), resampling method (boot: bootstrapping, CV:
cross-validation), and season (wet and dry).
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Figure 6. Unbiased user’s accuracy and producer’s accuracy (rf: random forest, svm: support vector
machine, w: wet season, d: dry season, cv: cross-validation, b: bootstrapping, blue dashed line is
70% accuracy benchmark).

Table 3. Estimated gully area (ha) with associated standard error (ha) at = 95% CI (ha) for each
algorithm (rf: random forest, svm: support vector machine, d: dry, w: wet, b: bootstrapping, cv:
cross-validation, CI: confidence interval).

Algorithm Area (ha) Standard Error (ha) £ 95% CI (ha) PA (%) UA (%) F1-Score

rf-d-b 88 6.1 14.4 83.6 90.6 0.92
rf-d-cv 91.3 7.6 17.1 76.3 89.3 091
rf-w-cv 54.6 11.3 243 479 77.9 0.82
rf-w-b 55.2 11.5 25.0 46.8 77 0.82
svm-d-cv 32.6 10.1 21.1 35.4 92.3 0.86
svm-d-b 31.1 10.5 21.8 32.5 93.4 0.85
SVM-W-CV 57.2 3.7 18.8 89.2 81 0.88
svm-w-b 57.4 6.4 19.3 741 79.4 0.86

The two resampling techniques recorded the same omission error (85.1%), but slightly
different commission errors, e.g., bootstrapping had 40.8% error of commission compared
to 37.8% error for k-fold CV.

Table 4. Summary of average error for resampling techniques, classifier, and season (RF: random
forest, svm: support vector machine, CV: cross-validation).

Resampling Technique Classifier Season
Error Bootstrap  k-Fold CV RF SVM Dry Wet
Commission (%) 40.8 37.8 36.4 422 43.1 35.5
Omission (%) 14.9 14.9 16.3 13.5 8.6 21.2
Standard error (ha) 8.6 8.2 9.1 7.7 8.6 8.2

3.3. Gully Distribution

Results indicated that gullies can be spectrally discriminated from other land cover
classes, both in the dry and wet season; although there were observable differences in the
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distribution of the extracted gullies in these two seasons (Figure 7). In the wet season,
there seem to be more gullies than there are in the dry season. This difference in gully
areal coverage between the two seasons is more pronounced in Figure 7a, corresponding
to rf-d-b and Figure 7b, representing the svm-w-cv model.

Differences in gully reflectance among the two seasons also had a bearing on gully
classification. The underlying statistical test revealed that the difference was significant
(U =162, z=9.5534, p < 0.0001), and the mean difference was 0.08. The wet season had
more vegetation covering bare surfaces, and because of this, spectral differences were more
pronounced during the wet season (Figure 8). On the contrary, in the dry season, most
gullies spectrally resembled the bare surfaces they dissect. Consequently, the algorithms
were less efficient in extracting gullies occurring on bare soil surfaces in the dry season.
This probably explains the high commission error (43.1%) and standard error (8.6 ha) in
the dry season.

Dry season Wet season
'2'\‘ N ) R )7
‘:‘{7, s | Yay 5'
¢ > :
kb ‘ s
W e
P 3 "1.
TN @ @ D
Cross-validation Bootstrapping ] Cross-validation Bootstrapping

N g A SN i AR
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‘I‘.&; 1 %"‘\/’ 3 ) Z"ﬁ}' £ S S sl )\ i ﬁ - &

Figure 7. Spatial distribution of gullies: (a) rf-d-b and (b) svm-w-cv correspond to the best models
for gully mapping in the dry and wet seasons, respectively (rf: random forest, svm: support vector
machine, w: wet season, d: dry season, cv: cross-validation, b: bootstrapping).
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Aerial photo Wet season Dry season

Figure 8. An example of a vegetated gully (dashed yellow ellipse) in the dry and wet seasons.

4. Discussion

Remotely sensed data are inherently subject to errors, hence, error assessment is
essential for data assimilation, one of the primary uses of satellite data products [65]. In
this section, we discuss errors associated with the derived gully maps, offering a possible
explanation for such error sources. Different resampling methods undoubtedly play an
important role in classification accuracy, hence, the final model selection. Specifically,
we explored the influence of bootstrapping and k-fold cross-validation techniques in
gully classification, considering different seasons (dry and wet) and classifiers (SVM and
RF). Results revealed that k-fold CV performs slightly better than bootstrapping in terms
of commission error. Kohavi et al. [66], in his study of CV and bootstrap for accuracy
estimation and model selection, also reported k-fold CV as the best method to use over
bootstrapping. Kim [67] estimated classification error rate, comparing repeated k-fold CV,
repeated hold-out and bootstrap, and found that the repeated k-fold CV was better than
bootstrap. The author further reported that bootstrapping had bias problems for both large
and small samples, despite its small variance, hence, the expectation for better performance
for small samples.

Although the results of our study are generally in agreement with previous studies, it
is worth noting that the performance of the bootstrapping and k-fold CV varied consid-
erably at class level with algorithm and season. There are instances where bootstrapping
performed better than k-fold CV in gully classification. For instance, the best model, namely,
svim-d-b, based on UA, belonged to bootstrapping. Such results are important because most
studies using either bootstrapping or k-fold CV rarely focus on class level accuracy when
evaluating the performance of these resampling techniques. More importantly, even at the
class level, different accuracy metrics ought to be considered. This increases the robustness
and reliability of the accuracy results, making it possible for researchers to draw correct
deductions on the behavior of the algorithms under investigation [61]. However, various
class accuracy metrics (UA, PA, standard error, and Fl-score) used in the current study;,
all derived from the confusion matrix, disagreed with one another in some instances. For
example, some algorithms that obtained high PA values had low corresponding UA values
or vice-versa. This is also true with F1-score vs. either PA or UA. Based on the F1-score, the
best algorithms belonged to RF (e.g., rf-d-b and rf-d-cv). Given the disagreement amongst
various accuracy metrics, we relied on the standard error as a reliable measure to judge the
accuracy of the algorithms.

In the wet season, the algorithms proved to be more efficient in gully classification
on bare soil surfaces due to the existence of vegetation cover in bare soil surfaces, making
it possible to discriminate gullies. Such findings are comparable or similar to those of
previous studies. For example, one study automatically identified gullies based on ASTER
images acquired during the dry and wet seasons [68]. The study concluded that the wet
season-acquired image performed better than the dry season one. It is worth noting that
the wet season is not always appropriate for gully identification in all situations. The
success of gully identification depends on the complexity of gully appearance as influenced
by their morphological characteristics (shape, size, length, depth, etc.) [42], sensor type
and/or resolution, and classification algorithms [69], amongst other factors. For example,
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Sentinel and Landsat images performed relatively well in the dry season than in the wet
season [70]. Although gully classification was successful in the wet season relative to the
dry season, there were few locations where gullies were filled up with vegetation. Such
gullies could not be automatically classified, in which case we relied on visual interpretation
of high-resolution aerial photographs and/or dry season PlanetScope images.

Gully appearance also played an important role in gully classification. Consistent with
previous studies [42,71], the classification algorithms were efficient in detecting continuous
gullies mostly in linear shape. Conversely, the algorithms proved to be less efficient in
areas with high gully density, often surrounded by transitional zones to non-gully [71], but
these areas form a relatively small portion of the study area and had negligible influence on
the accuracy. The SVM combined with CV (e.g., svm-w-cv) reflected the best performance
in the wet season with the least standard error (3.7 ha) and highest PA (89.2%), followed
by a RF model (rf-d-b), recording slightly different standard error (6.1 ha) and PA (83.6%).
Nevertheless, 50% of the models obtained a PA that is below 70%. Despite this discrepancy,
the estimated gully areas (ha), based on area-weighted metrics, are unbiased and can be
relied upon.

From a practical point of view, the identification of gullies from satellite images with
reasonable accuracies is of paramount importance to gully rehabilitation. Like all remote
sensing-derived products, gully maps are subject to errors, and hence, accuracy assessment
is a prerequisite [54]. However, most remote sensing-based gully studies tend to rely
on accuracy indices, such as PA and UA, without taking into account the uncertainty of
the estimated gully areas. Although it is not a requirement, it is often recommended to
provide not only PA and UA but also unbiased quantitative area estimates such as the
area-weighted metrics and confidence intervals [60]. In this study, we quantified gullied
areas (ha) together with their associated levels of uncertainties, such as standard errors (ha)
and confidence intervals (ha).

RF combined with bootstrapping resampling provided the best gully area (88 & 14.4 ha)
estimate with the least standard error (6.1 ha) in the dry season. In the wet season, SVM
combined with CV resampling estimated gully area (57.2 &= 18.8 ha) with the lowest
standard error (3.7 ha). These findings shed light on the influence of these resampling
techniques on the accuracy of satellite-based gully mapping but also provides the basis
for further investigations into the accuracy of such resampling techniques, especially
when using different satellite images other than the PlanetScope data, preferable, freely
available ones, with higher spatial resolution. Initially, we planned to use both PlanetScope
and SPOT-7 images, also obtainable free of charge for the test area, but SPOT-7 image
scenes acquired in the wet and dry season months were not available for the test area.
Nevertheless, given that we only mapped gullies in a small part of the problem area, we are
planning to test the method in other areas with wider spatial coverage. However, mapping
gullies over large areas, particularly using automatic methods, is still a challenge due to
the complexity of gullies over such large areas [14]. Thus far, even advanced methods
such as CNNs have errors in detecting complex gully systems [37]. It is worth noting that
the detection of gullies mainly depends on the spatial resolution of the image used. For
example, at larger scales, gullies have only been mapped at a spatial resolution of up to
2.5 m in South Africa [14,15]. To overcome this challenge, the future implementation of
our method, will in part, require the use of a high spatial resolution (<2 m) image, for
instance, pansharpened SPOT-7 image (1.5 m) or WorldView (0.5 m), which can detect
individual gullies. Another limitation of this method relates to climate. The method is
suitable for application in arid /semi-arid regions where gullies are often not covered by
trees [42]. Our study demonstrated that gullies could be better identified in the dry season
with RF combined with bootstrapping, whereas SVM combined with k-fold CV is best for
identifying gullies in the wet season. Therefore, we recommend the use of RF and SVM
for mapping gullies in the dry and wet seasons, respectively. Provided that PlanetScope
provides global spatial coverage with daily revisit time, we particularly recommend it for
continuous monitoring of gullies at any location.
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5. Conclusions

The aim of this study was to assess the efficacy of cross-validation and bootstrap-
ping in gully classification and also to reveal how well the PlanetScope images perform
in gully extraction in the dry and wet seasons of a semi-arid climate. We found the
following outcomes.

e  Gullies were spectrally different in all bands of the PlanetScope images, both in the
dry and the wet seasons.

e NDVIvalues did not differ from all land cover classes regarding the reflectance values;
thus, it was not involved in gully classification.

e Dry and wet seasons ensured different classification accuracy, but gully extraction was
successful. RF outperformed the SVM algorithm in terms of OA, but the differences of
the OAs were < 4%. Differences were larger in the dry season (3.5%) and smaller in
the wet season (~1%).

e  Generally, based on the OAs, CV performed better with the RF algorithm than the
bootstrapping (with ~1.0-1.5% differences), but on a class level, bootstrapping pro-
vided the most accurate gully extraction with the RF in the dry season, whereas CV
was efficient with SVM in the wet season.

Accordingly, both resampling techniques were efficient, but RF with bootstrapping
resampling technique in the dry season can be suggested to map gullies. In the future,
we plan to extend the mapping in larger areas to help landowners and managers to fight
against erosion and to plan the interventions at the hot spot areas.

Author Contributions: Conceptualization, K.P. and S.S.; methodology, K.P.; software, K.P. and D.A.;
validation, K.P. and D.A., formal analysis, K.P,; investigation, K.P.; resources, S.S.; data curation,
K.P. and D.A; writing—original draft preparation, K.P; writing—review and editing, K.P. and S.S.;
visualization, K.P, D.A., and S.S.; supervision, S.S. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the Thematic Excellence Programme (TKP2020-NKA-04)
of the Ministry for Innovation and Technology in Hungary projects and Department of Higher
Education and Training (DHET) of South Africa.

Data Availability Statement: PlanetScope images can be purchased from the PlanetLabs Inc. Limited,
non-commercial access to PlanetScope imagery can also be gained through the Education and
Research Program (https://www.planet.com/markets/education-and-research/ (accessed on 30
July 2020)). Reference data can be provided by the authors on demand.

Acknowledgments: The first author (K.P.) greatly acknowledges the Tempus Public Foundation for
funding his Ph.D. studies through the Stipendium Hungaricum Scholarship Programme. The author
is equally grateful to the Department of Higher Education and Training (DHET) of South Africa for
the supplementary support.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

1. Meyer, L.D.; Wischmeier, W.H. Mathematical simulation of the process of soil erosion by water. Trans. ASAE 1969, 12, 754-758.

2. Morgan, R.P.C. Soil Erosion and Conservation; John Wiley & Sons: Hoboken, NJ, USA, 2009; ISBN 140514467X.

3. Borrelli, P; Robinson, D.A.; Fleischer, L.R.; Lugato, E.; Ballabio, C.; Alewell, C.; Meusburger, K.; Modugno, S.; Schiitt, B.; Ferro, V.;
et al. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 2017, 8, 1-13. [CrossRef]

4. Omuto, C.; Nachtergaele, F; Rojas, R.V. State of the Art Report on Global and Regional Soil Information: Where Are We? Where To Go?
Food and Agriculture Organization of the United Nations: Rome, Italy, 2013; ISBN 9251074496.

5. Kertész, A; Kiecek, J. Landscape degradation in the world and in Hungary. Hung. Geogr. Bull. 2019, 68, 201-221. [CrossRef]

6.  Phinzi, K.; Ngetar, N.S.; Ebhuoma, O. Soil erosion risk assessment in the Umzintlava catchment (T32E), Eastern Cape, South
Africa, using RUSLE and random forest algorithm. S. Afr. Geogr. J. 2020, 103, 139-162. [CrossRef]

7.  Strategic Plan for the Department of Agriculture, Pretoria, South Africa. 2007. Available online: https://www.gov.za/sites/
default/files/gcis_document /201409 /agricstratplan2007.pdf (accessed on 16 July 2020).


https://www.planet.com/markets/education-and-research/
http://doi.org/10.1038/s41467-017-02142-7
http://doi.org/10.15201/hungeobull.68.3.1
http://doi.org/10.1080/03736245.2020.1716838
https://www.gov.za/sites/default/files/gcis_document/201409/agricstratplan2007.pdf
https://www.gov.za/sites/default/files/gcis_document/201409/agricstratplan2007.pdf

Remote Sens. 2021, 13, 2980 16 of 18

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

25.

26.
27.

28.

29.

30.

31.

32.

33.

34.

35.

Meadows, M.E.; Hoffman, M.T. The nature, extent and causes of land degradation in South Africa: Legacy of the past, lessons for
the future? Area 2002, 34, 428-437. [CrossRef]

Beckedahl, H.R.; de Villiers, A.B. Accelerated erosion by piping in the Eastern Cape Province, South Africa. S. Afr. Geogr. J. 2000,
82,157-162. [CrossRef]

Kakembo, V.; Rowntree, K.M. The relationship between land use and soil erosion in the communal lands near Peddie town,
Eastern Cape, South Africa. Land Degrad. Dev. 2003, 14, 39—49. [CrossRef]

Mhangara, P.; Kakembo, V.; Lim, K.J. Soil erosion risk assessment of the Keiskamma catchment, South Africa using GIS and
remote sensing. Environ. Earth Sci. 2012, 65, 2087-2102. [CrossRef]

Phinzi, K; Ngetar, N.S. Land use/land cover dynamics and soil erosion in the Umzintlava catchment (T32E), Eastern Cape, South
Africa. Trans. R. Soc. S. Afr. 2019, 74, 223-237. [CrossRef]

Kakembo, V.; Xanga, W.W.; Rowntree, K. Topographic thresholds in gully development on the hillslopes of communal areas in
Ngqushwa Local Municipality, Eastern Cape, South Africa. Geomorphology 2009, 110, 188-194. [CrossRef]

Le Roux, J.J.; Sumner, P.D. Factors controlling gully development: Comparing continuous and discontinuous gullies. Land Degrad.
Dev. 2012, 23, 440-449. [CrossRef]

Mararakanye, N.; Le Roux, J.J. Gully location mapping at a national scale for South Africa. S. Afr. Geogr. J. 2012, 94, 208-218.
[CrossRef]

Poesen, J.; Nachtergaele, J.; Verstraeten, G.; Valentin, C. Gully erosion and environmental change: Importance and research needs.
Catena 2003, 50, 91-133. [CrossRef]

Zhang, T,; Liu, G.; Duan, X.; Wilson, G.V. Spatial distribution and morphologic characteristics of gullies in the Black Soil Region
of Northeast China: Hebei watershed. Phys. Geogr. 2016, 37, 228-250. [CrossRef]

Zglobicki, W.; Poesen, J.; Cohen, M.; Del Monte, M.; Garcia-Ruiz, ].M.; Ionita, I.; Niacsu, L.; Machov4, Z.; Martin-Duque, J.F,;
Nadal-Romero, E.; et al. The potential of permanent gullies in Europe as geomorphosites. Geoheritage 2019, 11, 217-239. [CrossRef]
Valentin, C.; Poesen, J.; Li, Y. Gully erosion: Impacts, factors and control. Catena 2005, 63, 132-153. [CrossRef]

Phinzi, K.; Ngetar, N.S. Mapping soil erosion in a quaternary catchment in Eastern Cape using geographic information system
and remote sensing. S. Afr. . Geomat. 2017, 6, 11. [CrossRef]

Seutloali, K.E.; Dube, T.; Mutanga, O. Assessing and mapping the severity of soil erosion using the 30-m Landsat multispectral
satellite data in the former South African homelands of Transkei. Phys. Chem. Earth 2017, 100, 296-304. [CrossRef]

Phinzi, K.; Ngetar, N.S.; Ebhuoma, O.; Szab6, S. Comparison of rusle and supervised classification algorithms for identifying
erosion-prone areas in a mountainous rural landscape. Carpathian J. Earth Environ. Sci. 2020, 15, 405-413. [CrossRef]

Shruthi, R.B.V.; Kerle, N.; Jetten, V. Object-based gully feature extraction using high spatial resolution imagery. Geomorphology
2011, 134, 260-268. [CrossRef]

Seutloali, K.E.; Beckedahl, H.R.; Dube, T.; Sibanda, M. An assessment of gully erosion along major armoured roads in south-
eastern region of South Africa: A remote sensing and GIS approach. Geocarto Int. 2016, 31, 225-239. [CrossRef]

Phinzi, K.; Ngetar, N.S. The assessment of water-borne erosion at catchment level using GIS-based RUSLE and remote sensing: A
review. Int. Soil Water Conserv. Res. 2019, 7, 27-46. [CrossRef]

Casali, J.; Lopez, ].J.; Giraldez, ].V. Ephemeral gully erosion in southern Navarra (Spain). Catena 1999, 36, 65-84. [CrossRef]
Knight, J.; Spencer, J.; Brooks, A.; Phinn, S. Large-area, high-resolution remote sensing based mapping of alluvial gully erosion in
Australia’s tropical rivers. In Proceedings of the 5th Australian Stream Management Conference, Thurgoona, Australia, 21-25
May 2007; Institute for Land, Water and Society, Charles Sturt University: Bathurst, Australia, 2007; Volume 2, pp. 199-204.
[CrossRef]

Karydas, C.; Panagos, P. Towards an assessment of the ephemeral gully erosion potential in Greece using google earth. Water
2020, 12, 603. [CrossRef]

Liu, K.; Ding, H.; Tang, G.; Zhu, A.X,; Yang, X,; Jiang, S.; Cao, J. An object-based approach for two-level gully feature mapping
using high-resolution DEM and imagery: A case study on hilly loess plateau region, China. Chin. Geogr. Sci. 2017, 27, 415-430.
[CrossRef]

Duro, D.C.; Franklin, S.E.; Dubé, M.G. A comparison of pixel-based and object-based image analysis with selected machine
learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery. Remote Sens. Environ. 2012, 118,
259-272. [CrossRef]

Zhang, L.; Zhang, L.; Du, B. Deep learning for remote sensing data: A technical tutorial on the state of the art. IEEE Geosci. Remote
Sens. Mag. 2016, 4, 22-40. [CrossRef]

Ghorbanzadeh, O.; Shahabi, H.; Mirchooli, E; Valizadeh Kamran, K.; Lim, S.; Aryal, J.; Jarihani, B.; Blaschke, T. Gully erosion
susceptibility mapping (GESM) using machine learning methods optimized by the multi-collinearity analysis and K-fold
cross-validation. Geomat. Nat. Hazards Risk 2020, 11, 1653-1678. [CrossRef]

Thanh Noi, P.; Kappas, M. Comparison of Random Forest, k-Nearest Neighbor, and Support Vector Machine Classifiers for Land
Cover Classification Using Sentinel-2 Imagery. Sensors 2017, 18, 18. [CrossRef]

Phinzi, K.; Abriha, D.; Bertalan, L.; Holb, I.; Szabd, S. Machine learning for gully feature extraction based on a pan-sharpened
multispectral image: Multiclass vs. Binary approach. ISPRS Int. . Geo Inf. 2020, 9, 252. [CrossRef]

Heydari, S.S.; Mountrakis, G. Meta-analysis of deep neural networks in remote sensing: A comparative study of mono-temporal
classification to support vector machines. ISPRS J. Photogramm. Remote Sens. 2019, 152, 192-210. [CrossRef]


http://doi.org/10.1111/1475-4762.00100
http://doi.org/10.1080/03736245.2000.9713709
http://doi.org/10.1002/ldr.509
http://doi.org/10.1007/s12665-011-1190-x
http://doi.org/10.1080/0035919X.2019.1634652
http://doi.org/10.1016/j.geomorph.2009.04.006
http://doi.org/10.1002/ldr.1083
http://doi.org/10.1080/03736245.2012.742786
http://doi.org/10.1016/S0341-8162(02)00143-1
http://doi.org/10.1080/02723646.2016.1184079
http://doi.org/10.1007/s12371-017-0252-1
http://doi.org/10.1016/j.catena.2005.06.001
http://doi.org/10.4314/sajg.v6i1.2
http://doi.org/10.1016/j.pce.2016.10.001
http://doi.org/10.26471/cjees/2020/015/140
http://doi.org/10.1016/j.geomorph.2011.07.003
http://doi.org/10.1080/10106049.2015.1047412
http://doi.org/10.1016/j.iswcr.2018.12.002
http://doi.org/10.1016/S0341-8162(99)00013-2
http://doi.org/10.1046/j.1365-2923.2000.00638.x
http://doi.org/10.3390/w12020603
http://doi.org/10.1007/s11769-017-0874-x
http://doi.org/10.1016/j.rse.2011.11.020
http://doi.org/10.1109/MGRS.2016.2540798
http://doi.org/10.1080/19475705.2020.1810138
http://doi.org/10.3390/s18010018
http://doi.org/10.3390/ijgi9040252
http://doi.org/10.1016/j.isprsjprs.2019.04.016

Remote Sens. 2021, 13, 2980 17 of 18

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.
58.

59.
60.

61.

62.
63.

64.

Sheykhmousa, M.; Mahdianpari, M.; Ghanbari, H.; Mohammadimanesh, F.; Ghamisi, P.; Homayouni, S. Support Vector Machine
Versus Random Forest for Remote Sensing Image Classification: A Meta-Analysis and Systematic Review. IEEE ]. Sel. Top. Appl.
Earth Obs. Remote Sens. 2020, 13, 6308-6325. [CrossRef]

Gafurov, A.M.; Yermolayev, O.P. Automatic gully detection: Neural networks and computer vision. Remote Sens. 2020, 12, 1743.
[CrossRef]

Dong, L.; Xing, L.; Liu, T.; Du, H.; Mao, F; Han, N.; Li, X.; Zhou, G.; Zhu, D.; Zheng, |.; et al. Very High Resolution Remote
Sensing Imagery Classification Using a Fusion of Random Forest and Deep Learning Technique-Subtropical Area for Example.
IEEE ]. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 113-128. [CrossRef]

Ghamisi, P; Rasti, B.; Yokoya, N.; Wang, Q.; Hofle, B.; Bruzzone, L.; Bovolo, F,; Chi, M.; Anders, K.; Gloaguen, R. Multisource and
multitemporal data fusion in remote sensing: A comprehensive review of the state of the art. IEEE Geosci. Remote Sens. Mag. 2019,
7,6-39. [CrossRef]

Zhang, ]. Multi-source remote sensing data fusion: Status and trends. Int. J. Image Data Fusion 2010, 1, 5-24. [CrossRef]
Shahabi, H.; Jarihani, B.; Tavakkoli Piralilou, S.; Chittleborough, D.; Avand, M.; Ghorbanzadeh, O. A Semi-Automated Object-
Based Gully Networks Detection Using Different Machine Learning Models: A Case Study of Bowen Catchment, Queensland,
Australia. Sensors 2019, 19, 4893. [CrossRef] [PubMed]

Phinzi, K.; Holb, I; Szab6, S. Mapping Permanent Gullies in an Agricultural Area Using Satellite Images: Efficacy of Machine
Learning Algorithms. Agronomy 2021, 11, 333. [CrossRef]

van Breda Weaver, A. The distribution of soil erosion as a function of slope aspect and parent material in Ciskei, Southern Africa.
GeoJournal 1991, 23, 29-34. [CrossRef]

Hilbich, C.; Daut, G.; Mdusbacher, R.; Helmschrot, J. A landscape-based model to characterize the evolution and recent dynamics
of wetlands in the Umzimvubu headwaters, Eastern Cape, South Africa. In Wetlands: Modelling, Monitoring, Management;
Kotkowski, W., Maltby, E., Miroslaw-Swiatek, D., Okruszko, T., Szatylowicz, J., Eds.; Taylor & Francis: Abingdon, UK, 2007; pp.
61-69.

Adam, E.; Mutanga, O.; Odindji, J.; Abdel-Rahman, E.M. Land-use/cover classification in a heterogeneous coastal landscape
using RapidEye imagery: Evaluating the performance of random forest and support vector machines classifiers. Int. |. Remote
Sens. 2014, 35, 3440-3458. [CrossRef]

Sabat-Tomala, A.; Raczko, E. Comparison of Support Vector Machine and Random Forest Algorithms for Invasive and Expansive
Species Classification Using Airborne Hyperspectral Data. Remote Sens. 2020, 12, 516. [CrossRef]

Papp, L.; van Leeuwen, B.; Szilassi, P.; Tobak, Z.; Szatmari, J.; Arvai, M.; Mészéros, J.; Pasztor, L. Monitoring invasive plant
species using hyperspectral remote sensing data. Land 2021, 10, 29. [CrossRef]

Breiman, L. Random forests. Mach. Learn. 2001, 45, 5-32. [CrossRef]

Boehmke, B.; Greenwell, B.M. Hands-On Machine Learning with R; CRC Press: Boca Raton, FL, USA, 2019; ISBN 1000730190.
Oshiro, T.M.; Perez, PS; Baranauskas, ].A. How many trees in a random forest? In Proceedings of the 8th International Workshop
on Machine Learning and Data Mining in Pattern Recognition, Berlin, Germany, 1320 July 2012; Springer: Berlin/Heidelberg,
Germany, 2012; pp. 154-168.

Vapnik, V. The Nature of Statistical Learning Theory; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013;
ISBN 1475732643.

Brenning, A. Spatial prediction models for landslide hazards: Review, comparison and evaluation. Nat. Hazards Earth Syst. Sci.
2005, 5, 853-862. [CrossRef]

Pedregosa, F; Varoquaux, G.; Gramfort, A.; Michel, V,; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.
Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825-2830.

Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37,
35-46. [CrossRef]

Heydari, S.S.; Mountrakis, G. Effect of classifier selection, reference sample size, reference class distribution and scene heterogene-
ity in per-pixel classification accuracy using 26 Landsat sites. Remote Sens. Environ. 2018, 204, 648—658. [CrossRef]

Pontius, R.G.; Millones, M. Death to Kappa: Birth of quantity disagreement and allocation disagreement for accuracy assessment.
Int. |. Remote Sens. 2011, 32, 4407-4429. [CrossRef]

Flight, L.; Julious, S.A. The disagreeable behaviour of the kappa statistic. Pharm. Stat. 2015, 14, 74-78. [CrossRef] [PubMed]
Delgado, R.; Tibau, X.-A. Why Cohen’s Kappa should be avoided as performance measure in classification. PLoS ONE 2019,
14, €0222916. [CrossRef] [PubMed]

Kuhn, M.; Johnson, K. Applied Predictive Modeling; Springer: Berlin/Heidelberg, Germany, 2013; Volume 26.

Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and
assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42-57. [CrossRef]

Chicco, D.; Jurman, G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary
classification evaluation. BMC Genom. 2020, 21, 1-13. [CrossRef] [PubMed]

Field, A. Discovering Statistics Using IBM SPSS Statistics; Sage: Newcastle upon Tyne, UK, 2013; ISBN 1446274586.

Lee, S.; Lee, D.K. What is the proper way to apply the multiple comparison test? Korean J. Anesth. 2018, 71, 353. [CrossRef]
[PubMed]

McHugh, M.L. Multiple comparison analysis testing in ANOVA. Biochem. Med. 2011, 21, 203-209. [CrossRef] [PubMed]


http://doi.org/10.1109/JSTARS.2020.3026724
http://doi.org/10.3390/rs12111743
http://doi.org/10.1109/JSTARS.2019.2953234
http://doi.org/10.1109/MGRS.2018.2890023
http://doi.org/10.1080/19479830903561035
http://doi.org/10.3390/s19224893
http://www.ncbi.nlm.nih.gov/pubmed/31717546
http://doi.org/10.3390/agronomy11020333
http://doi.org/10.1007/BF00204406
http://doi.org/10.1080/01431161.2014.903435
http://doi.org/10.3390/rs12030516
http://doi.org/10.3390/land10010029
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.5194/nhess-5-853-2005
http://doi.org/10.1016/0034-4257(91)90048-B
http://doi.org/10.1016/j.rse.2017.09.035
http://doi.org/10.1080/01431161.2011.552923
http://doi.org/10.1002/pst.1659
http://www.ncbi.nlm.nih.gov/pubmed/25470361
http://doi.org/10.1371/journal.pone.0222916
http://www.ncbi.nlm.nih.gov/pubmed/31557204
http://doi.org/10.1016/j.rse.2014.02.015
http://doi.org/10.1186/s12864-019-6413-7
http://www.ncbi.nlm.nih.gov/pubmed/31898477
http://doi.org/10.4097/kja.d.18.00242
http://www.ncbi.nlm.nih.gov/pubmed/30157585
http://doi.org/10.11613/BM.2011.029
http://www.ncbi.nlm.nih.gov/pubmed/22420233

Remote Sens. 2021, 13, 2980 18 of 18

65.

66.

67.

68.

69.

70.

71.

Povey, A.C.; Grainger, R.G. Known and unknown unknowns: Uncertainty estimation in satellite remote sensing. Atmos. Meas.
Tech. 2015, 8, 4699-4718. [CrossRef]

Kohavi, R. A study of cross-validation and bootstrap for accuracy estimation and model selection. In Proceedings of the 14th
International Joint Conference on Artificial Intelligence (IJCAI), Montreal, QC, Canada, 20 August 1995; Volume 14, pp. 1137-1145.
Kim, J.-H. Estimating classification error rate: Repeated cross-validation, repeated hold-out and bootstrap. Comput. Stat. Data
Anal. 2009, 53, 3735-3745. [CrossRef]

Vrieling, A.; Rodrigues, S.C.; Bartholomeus, H.; Sterk, G. Automatic identification of erosion gullies with ASTER imagery in the
Brazilian Cerrados. Int. |. Remote Sens. 2007, 28, 2723-2738. [CrossRef]

Lu, D.; Weng, Q. A survey of image classification methods and techniques for improving classification performance. Int. J. Remote
Sens. 2007, 28, 823-870. [CrossRef]

Sepuru, TK,; Dube, T. Understanding the spatial distribution of eroded areas in the former rural homelands of South Africa:
Comparative evidence from two new non-commercial multispectral sensors. Int. J. Appl. Earth Obs. Geoinf. 2018, 69, 119-132.
[CrossRef]

Orti, M.V.; Winiwarter, L.; Corral-Pazos-de-Provens, E.; Williams, J.G.; Bubenzer, O.; Hofle, B. Use of TanDEM-X and Sentinel
products to derive gully activity maps in Kunene Region (Namibia) based on automatic iterative Random Forest approach. IEEE
J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 14, 607-623. [CrossRef]


http://doi.org/10.5194/amt-8-4699-2015
http://doi.org/10.1016/j.csda.2009.04.009
http://doi.org/10.1080/01431160600857469
http://doi.org/10.1080/01431160600746456
http://doi.org/10.1016/j.jag.2018.02.020
http://doi.org/10.1109/JSTARS.2020.3040284

	Introduction 
	Materials and Methods 
	Study Area 
	Data Acquisition and Pre-Processing 
	Gully Classification 
	Reference Data Collection and Accuracy Assessment 
	Statistical Analysis 

	Results 
	Spectral Bands, Land Cover Classes and Seasons as Determinants of Reflectance 
	Accuracy Assessment of Gully Mapping 
	Gully Distribution 

	Discussion 
	Conclusions 
	References

