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Abstract: The Korea Meteorological Administration (KMA) has developed many product algorithms
including that for soil moisture (SM) retrieval for the geostationary satellite Geo-Kompsat-2A (GK-
2A) launched in December 2018. This was developed through a five-year research project owing
to the significance of SM information for hydrological and meteorological applications. However,
GK-2A’s visible and infrared sensors lack direct SM sensitivity. Therefore, in this study, we developed
an SM algorithm based on the conversion relationships between SM and the temperature vegetation
dryness index (TVDI) estimated for various land types in the full disk area using two of GK-2A’s
level 2 products, land surface temperature (LST) and normalized difference vegetation index (NDVI),
and the Global Land Data Assimilation System (GLDAS) SM data for calibration. Methodologically,
various coefficients were obtained between TVDI and SM and used to estimate the GK-2A-based
SM. The GK-2A SM algorithm was validated with GLDAS SM data during different periods. Our
GK-2A SM product showed seasonal and spatial agreement with GLDAS SM data, indicating a
dry-wet pattern variation. Quantitatively, the GK-2A SM showed annual validation results with a
correlation coefficient (CC) >0.75, bias <0.1%, and root mean square error (RMSE) <4.2–4.7%. The
monthly averaged CC values were higher than 0.7 in East Asia and 0.5 in Australia, whereas RMSE
and unbiased RMSE values were <0.5% in East Asia and Australia. Discrepancies between GLDAS
and GK-2A TVDI-based SMs often occurred in dry Australian regions during dry seasons due to the
high LST sensitivity of GK-2A TVDI. We determined that relationships between TVDI and SM had
positive or negative slopes depending on land cover types, which differs from the traditional negative
slope observed between TVDI and SM. The KMA is currently operating this GK-2A SM algorithm.

Keywords: soil moisture; temperature vegetation dryness index; Geo-Kompsat-2A; algorithm; global
land data assimilation; satellite remote sensing

1. Introduction

Soil moisture (SM) is a significant variable for understanding the hydrological cycle,
agriculture, weather forecasting, and water management. Dry soil often provides favorable
conditions for natural disasters such as wildfires and desertification [1–3], whereas wet
soil information can be utilized for detecting floods or abnormal overflow of rivers. SM
regulates the Earth’s thermal energy balance through interactions between the soil and
the atmosphere [4–9]. SM is also considered a fundamental parameter in climate change
studies and atmospheric circulation [9–11].

Although providing point measurements within limited regions, ground observations
are the most accurate and commonly used to obtain land variable data such as SM. Satellite
remote sensing presents the advantage of providing global SM observations including for
regions lacking ground measurements. Thus, satellites equipped with the visible (VIS),
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infrared (IR), and microwave (MW) sensors have been mainly used to obtain SM informa-
tion through remote sensing [12–18]. MW radiation tends to be well absorbed by water
particles [19–23]. Thus, MW satellites have been mainly used for soil monitoring (depths
of 0–10 cm) [24–27] with coarse temporal and spatial resolutions. However, SM prod-
ucts using MW satellites, including the National Aeronautics and Space Administration’s
(NASA) Soil Moisture Active Passive (SMAP) and European Space Agency’s (ESA) Soil
Moisture and Ocean Salinity (SMOS), have not shown good performance in the Korean
Peninsula, where forested mountains cover 70% of the region. Recently, geostationary
satellites using VIS and IR sensors with high temporal and spatial resolution have been
used for SM research [28–32]. VIS/IR satellite remote sensing adopts indirect methods
such as using the temperature vegetation dryness index (TVDI) based on the land surface
temperature (LST) and the normalized difference vegetation index (NDVI) [33–35], because
VIS and IR sensors cannot directly observe SM.

The Geo-Kompsat-2A (GK-2A) satellite is a geostationary weather satellite developed
by the Korea Aerospace Research Institute (KARI) and National Meteorological Satellite
Center (NMSC) of the Korea Meteorological Agency (KMA). It was launched on 5 December
2018, and it began operating on 25 July 2019. As a successor of the Communication, Ocean
and Meteorological Satellite (COMS), it has an advanced meteorological imager (AMI)
sensor with 16 bands [36]. GK-2A/AMI level (L) 1B products with a spatial resolution of
0.5–2 km and a temporal resolution of 10 min provide near real-time observations. The
NMSC/KMA has developed various L2 and L3 products such as LST and NDVI using
GK-2A/AMI L1B products [37,38] through a five-year research project for increasing the
diversification of the AMI’s 16 channels. This study presents one GK-2A L3 product
and SM products of GK-2A/AMI as part of the GK-2A/AMI algorithm development
research project.

Physically, SM is particularly affected by LST and vegetation. For example, the NDVI
value remains approximately constant because of the delayed response to SM, whereas LST
changes immediately in response to water stress [39]. Additionally, the interaction between
NDVI and LST determines the thermal capacity of the soil [34,39–46]. The relationship
between NDVI and LST has been studied for a variety of meteorological variables such as
evapotranspiration and air temperature [47–49]. The properties of slopes of the NDVI and
LST relationships have been used in SM studies [39,43,50–52].

TVDI is an index developed to empirically interpret the water stress associated with
surface temperature and vegetation within the NDVI/LST space [33,40,42]; this repre-
sentative method uses slopes of NDVI and LST relationships. Recently, many studies
have focused on the TVDI-based SM retrieval algorithm using VIS/IR bands because of
their high spatial resolutions. The satellite-based TVDI was correlated negatively with
ground-based SM observations [53]. Moran et al. [42] analyzed the relationship between
the soil–vegetation–atmosphere transfer (SVAT) model and TVDI, and presented the con-
cept of a water deficit index (WDI) related to the actual or potential evapotranspiration rate
of surfaces, which describes how SM can be reproduced from the partial vegetation cover
of NDVI/LST spaces using the SVAT models. Moran et al. [54] validated the NDVI/LST
method through simulations. Areas with sparse canopy may be less related to SM than are
moist surfaces as the satellite-derived surface temperature is affected by vegetation and
soil surfaces [55].

This study presents the GK-2A SM retrieval algorithm using TVDI and GK-2A/AMI
products. The GK-2A SM was estimated using the conversion relationships between the
Global Land Data Assimilation System (GLDAS) SM and TVDI calculated using the GK-2A
LST and NDVI products for various land cover types [30,56,57] in the daily full disk area
of the GK-2A, because the use of GLDAS SM was a KMA requirement for SM algorithm
development and validation. The GK-2A SM was temporally and spatially compared with
the GLDAS SM for different periods. In addition, this study confirmed the dependence of
TVDI characteristics on land cover type.
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2. Study Area and Data
2.1. Study Area

The study area included the entire GK-2A disk area, including Australia in the south-
ern hemisphere and East Asia and the Korean Peninsula in the northern hemisphere, as
observed by GK-2A located at 128.0◦ E. The data from August 2019 to July 2020 were
utilized because the GK-2A began to operate on 25 July 2019 [36]. The verification of the
calculated GK-2A soil moisture was carried out on a different date from the one on which
the soil moisture conversion coefficient was calculated. The ocean pixels in the full disk
data were masked using the land/sea mask data of GK-2A. The pixels with the solar zenith
angle of 70◦ or higher were also masked due to inaccurate satellite observation. In addition,
the water, permanent wet land, urban, built-up, snow, and ice regions were excluded using
the GK-2A land cover data. Figure 1 shows the study area for estimating TVDI and soil
moisture. For validation, we cropped East Asia to represent the northern hemisphere and
Australia to represent the southern hemisphere from the full disk.
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Figure 1. (a) Study area used for obtaining soil moisture coefficients. Validation areas of (b) East Asia
and (c) Australia.

2.2. GK-2A/AMI Satellite

The GK-2A satellite, located at 128.0◦ E, covers East Asia, including the Korea penin-
sula, and Australia in the full disk every 10 min. The GK-2A/AMI sensor has 16 VIS
and IR channels. A variety of GK-2A L2 products such as the LST and NDVI have been
developed [37,38,58]. In this study, we used the GK-2A LST and NDVI L2 products for
estimating the TVDI, and GLDAS SM data, which were provided by NMSC/KMA. Table 1
summarizes the full disk data information used in this study.

Table 1. Input and ancillary data for the GK-2A TVDI calculation.

Products Temporal Resolution Spatial Resolution (km) Purpose

GK-2A LST 10 min 2 Input data for TVDI

GK-2A NDVI 1 day 2 Input data for TVDI

Latitude/Longitude - 2 Ancillary data

Land Cover - 2 Ancillary data

Land/Sea Mask - 2 Ancillary data

Solar Zenith Angle - 2 Ancillary data
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Table 2 summarizes the land covers used in this study. Notably, land cover areas were
fixed because of annual average values. This may have caused differences around the
borders between two different land types.

Table 2. GK-2A land cover types.

Number Type Note

0 Water Excluded

1 Evergreen Needleleaf Forest Included

2 Evergreen Broadleaf Forest Included

3 Deciduous Needleleaf Forest Included

4 Deciduous Broadleaf Forest Included

5 Mixed Forest Included

6 Closed Shrublands Included

7 Open Shrublands Included

8 Woody Savannas Included

9 Savannas Included

10 Grasslands Included

11 Permanent wet land Excluded

12 Croplands Included

13 Urban and Built-up Excluded

14 Cropland/Natural Vegetation Mosaic Included

15 Snow and Ice Excluded

16 Barren or Sparsely Vegetated Included

254 Unclassified Excluded

255 Fill Value Excluded

2.3. GLDAS

GLDAS, including SM, soil condition, and canopy condition data [59], is one of the
representative global modeling systems for the land environment provided by NASA. It
has been available since 1948. GLDAS SM data have been widely used as verification
data in various SM studies [5,60–62]. The GLDAS products incorporate various modeling
systems (Noah, CLM, VIC, and Mosaic) and various datasets based on ground observations.
GLDAS has a spatial resolution of 0.25◦ and 1.0◦, and a temporal resolution of 3 h and
1 month for monitoring daily and monthly variations. In particular, GLDAS SM data
include many soil layers: 0–10 cm, 10–40 cm, 40–100 cm, and 100–200 cm.

This study used the GLDAS L4 SM data for the 0–10 cm layer with a 0.25◦ spatial
resolution and a 3 h temporal resolution for the development and validation of the GK-2A
SM algorithm according to the KMA’s requirements for algorithm development.

3. Methods
3.1. TVDI Calculation Using GK-2A LST and NDVI

In this study, TVDI is an intermediate parameter used to estimate the GK-2A SM.
TVDI is determined in the LST/NDVI space as a function of LSTmax and LSTmin, which are
obtained from the linear regressions of NDVI and LST [40,42]. Figure 2 shows a scatterplot
between the NDVI and the LST and illustrates the characteristics of TVDI. The regression
line with the top dashed line represents LSTmax, and the regression line with the bottom
dashed line indicates LSTmin. LSTmax represents the dry edge, while LSTmin indicates
the wet edge. In the dry edge, the TVDI value is 1, which mainly exists in the bare soil
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and savanna. In the wet edge, the TVDI value is 0, which mostly occurs in forests and
vegetation canopies.
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Figure 2. Example of a TVDI distribution and its characteristics in NDVI/LST space.

Two edge lines LSTmax and LSTmin in the LST/NDVI space are expressed as fol-
lows [33,40,42]:

LSTmax = a + b × NDVI (1)

LSTmin = c + d × NDVI (2)

where a, b, c, d are the coefficients determined for LSTmax and LSTmin using real LST and
NDVI data. This study used the GK-2A L2 LST and NDVI products. Table 3 shows the
coefficient values of LSTmax and LSTmin according to the land cover on 19 July 2020.

Table 3. Coefficients of LSTmax and LSTmin.

Land Cover Northern Hemisphere Southern Hemisphere

No.
LSTmax LSTmin LSTmax LSTmin

a b c d a b c d

1 321.6 −15.5 287.9 −9.4 312.0 −7.0 280.1 −0.9
2 316.0 2.7 290.3 −14.4 309.6 6.5 274.6 2.3
3 318.4 −3.1 293.0 −13.4 309.0 5.8 284.1 −10.3
4 313.8 4.7 292.2 −15.5 312.6 −1.7 278.4 −0.8
5 317.9 −1.3 281.7 −4.5 320.4 −11.8 277.5 0.1
6 319.5 −5.5 287.0 −4.1 328.7 −24.9 283.5 −6.9
7 329.9 −19.9 282.8 −4.1 330.9 −27.1 276.9 1.9
8 326.4 −9.5 290.0 −12.1 335.9 −30.7 282.4 −5.9
9 327.0 −9.6 287.9 −8.2 334.1 −26.3 281.8 −3.5

10 335.6 −21.7 279.0 −0.1 332.8 −28.7 272.5 5.4
12 333.9 −20.7 283.2 2.6 330.6 −24.3 280.1 0.4
14 331.6 −15.7 289.7 −8.8 326.7 −12.8 301.9 −27.4
16 339.6 −33.5 277.3 21.6 325.3 −27.9 285.9 24.4
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TVDI is calculated using LSTmax and LSTmin as follows:

TVDI =
LSTs,obs − LSTs,min

LSTs,max − LSTs,min
(3)

where LSTs,obs is the observed LST at a specific pixel.

3.2. Conversion Relationship between TVDI and SM

In this study, we applied linear regression to convert TVDI into SM based on the
existent linear relationships between TVDI and model SM [63] as follows:

SM = A + B × TVDI (4)

where SM is the GK-2A SM in units of volumetric ratio (m3/m3). A and B are the intercept
and the slope for converting TVDI into SM, respectively.

In this step, we used the GLDAS SM and GK-2A–derived TVDI to obtain these slopes
and intercepts for various land cover types.

Table 4 summarizes the data periods in which we obtained the conversion coefficients
between TVDI and SM and validated the GK-2A–derived SM.

Table 4. Data periods for calibration and validation of GK-2A-derived SM.

No. Dates for Calibration of TVDI-SM
Coefficients

Dates for Validation of
GK-2A–Derived SM

1 8 August 2019 3 August 2019

2 18 August 2019 13 August 2019

3 28 August 2019 23 August 2019

4 7 September 2019 2 September 2019

5 17 September 2019 12 September 2019

6 27 September 2019 22 September 2019

7 7 October 2019 2 October 2019

8 17 October 2019 12 October 2019

9 27 October 2019 22 October 2019

10 6 November 2019 1 November 2019

11 16 November 2019 11 November 2019

12 26 November 2019 21 November 2019

13 6 December 2019 1 December 2019

14 16 December 2019 11 December 2019

15 26 December 2019 21 December 2019

16 1 January 2020 31 December 2019

17 11 January 2020 6 January 2020

18 21 January 2020 16 January 2020

19 31 January 2020 26 January 2020

20 10 February 2020 5 February 2020

21 20 February 2020 15 February 2020

22 1 March 2020 25 February 2020

23 11 March 2020 6 March 2020
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Table 4. Cont.

No. Dates for Calibration of TVDI-SM
Coefficients

Dates for Validation of
GK-2A–Derived SM

24 21 March 2020 16 March 2020

25 31 March 2020 26 March 2020

26 10 April 2020 5 April 2020

27 20 April 2020 15 April 2020

28 30 April 2020 25 April 2020

29 10 May 2020 5 May 2020

30 20 May 2020 15 May 2020

31 30 May 2020 25 May 2020

32 9 June 2020 4 June 2020

33 19 June 2020 14 June 2020

34 29 June 2020 24 June 2020

35 9 July 2020 4 July 2020

36 19 July 2020 14 July 2020

37 29 July 2020 24 July 2020

Table 5 summarizes the daily-averaged slopes and intercepts for different land cover
types in the northern and southern hemispheres on 9 July 2020. Our linear relationships
between TVDI and GLDAS SM for 16 land types showed low correlation coefficient values
ranging from −0.432 to 0.268 in the northern hemisphere, while we found high correlation
coefficients ranging from −0.845 to 0.360 in the southern hemisphere. In particular, our
study showed a relatively low correlation between TVDI and SM for forests and savannas
in the northern hemisphere and showed variable correlations, including high correlations
for open shrublands, savannas, and grasslands and low correlations for mixed forest and
closed shrublands, in the southern hemisphere. Notably Chen et al. (2015) [53] showed
a negative correlation between the TVDI using LANDSAT-5 Thematic Mapper data and
the in situ measured SM (R2 = 0.15–0.8 in the Laoshan forest, the largest forest in Nanjing,
China) under different tree species.

Table 5. Conversion coefficients and their statistics (R, p-value, RMSE) for TVDI and SM for 16 land cover types on 19
July 2020.

Land Cover Northern Hemisphere Southern Hemisphere

No. Slope Intercept R p-Value RMSE Slope Intercept R p-Value RMSE

1 −0.045 0.291 −0.130 0.027 0.056 −0.054 0.284 −0.271 0.371 0.068
2 −0.040 0.357 −0.100 0.000 0.049 0.091 0.274 0.315 0.000 0.049
3 −0.043 0.220 0.086 0.000 0.047 −0.008 0.295 −0.038 0.783 0.061
4 0.044 0.246 0.118 0.001 0.045 0.053 0.279 0.235 0.084 0.058
5 0.123 0.221 0.268 0.000 0.059 −0.033 0.295 −0.146 0.197 0.055
6 0.076 0.255 0.217 0.000 0.057 −0.075 0.254 −0.182 0.098 0.095
7 0.039 0.229 0.107 0.000 0.050 −0.196 0.222 −0.557 0.000 0.040
8 0.069 0.266 0.175 0.000 0.056 −0.202 0.284 −0.612 0.000 0.052
9 0.006 0.269 0.018 0.684 0.060 −0.242 0.298 −0.676 0.000 0.050

10 −0.145 0.309 −0.432 0.000 0.050 −0.289 0.346 −0.845 0.000 0.048
12 −0.095 0.345 −0.197 0.000 0.063 0.007 0.220 0.018 0.638 0.054
14 −0.053 0.322 −0.137 0.000 0.056 0.095 0.246 0.211 0.001 0.068
16 −0.040 0.187 −0.139 0.000 0.044 0.101 0.057 0.360 0.000 0.031
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In this study, all the data were synthesized as 10-day average data as per another
requirement of the NMSC/KMA for their use. Notably, the elevation-correction to the LST
was not performed because the GK-2A LST data were already calibrated according to the
elevation pressure [37,58]. The GK-2A and GLDAS collocated in terms of their respective
latitude and longitude data based on the calculation of the latitude and longitude of the
nearest distance. Figure 3 shows a flowchart of the GK-2A TVDI-based SM algorithm.

Remote Sens. 2021, 13, x FOR PEER REVIEW 8 of 22 
 

 

 

Figure 3. Flow chart of the GK-2A TVDI-based SM retrieval algorithm. 

3.3. Statistical Factors 

In this study, the GK-2A SMs were quantitatively validated with the GLDAS SM data 

using the statistical indices: correlation coefficient (CC), bias, the root mean square error 

(RMSE), and unbiased RMSE (ubRMSE) as follows [64,65]: 

𝐶𝐶 =  
∑ ( 𝑅𝐺𝐾2𝐴,𝑖 − 𝑅𝐺𝐾2𝐴

̅̅ ̅̅ ̅̅ ̅̅  )(𝑅𝐺𝐿𝐷𝐴𝑆,𝑖 − 𝑅𝐺𝐿𝐷𝐴𝑆
̅̅ ̅̅ ̅̅ ̅̅ ̅)𝑁

𝑖=1

√∑ (𝑅𝐺𝐾2𝐴,𝑖 − 𝑅𝐺𝐾2𝐴
̅̅ ̅̅ ̅̅ ̅̅ )2𝑁

𝑖=1  √∑ (𝑅𝐺𝐿𝐷𝐴𝑆,𝑖 − 𝑅𝐺𝐿𝐷𝐴𝑆
̅̅ ̅̅ ̅̅ ̅̅ ̅ )2𝑁

𝑖=1

 
(5) 

𝐵𝑖𝑎𝑠 =  
1

𝑁
 ∑ ( 𝑅𝐺𝐿𝐷𝐴𝑆,𝑖 −  𝑅𝐺𝐾2𝐴,𝑖 ) 

𝑁

𝑖=1
 (6) 

𝑅𝑀𝑆𝐸 = √  
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Figure 3. Flow chart of the GK-2A TVDI-based SM retrieval algorithm.

3.3. Statistical Factors

In this study, the GK-2A SMs were quantitatively validated with the GLDAS SM data
using the statistical indices: correlation coefficient (CC), bias, the root mean square error
(RMSE), and unbiased RMSE (ubRMSE) as follows [64,65]:

CC =
∑N

i=1
(

RGK2A,i − RGK2A
)(

RGLDAS,i − RGLDAS
)√

∑N
i=1
(

RGK2A,i − RGK2A
) 2
√

∑N
i=1
(

RGLDAS,i − RGLDAS
)2

(5)

Bias =
1
N ∑N

i=1(RGLDAS,i − RGK2A,i) (6)

RMSE =

√√√√ 1
N

N

∑
i=1

(RGLDAS,i − RGK2A,i)
2 (7)

ubRMSE =
√

RMSE2 − Bias2 (8)

where N is the total number of pixels in the corresponding GK-2A and GLDAS data, i is the
index from 1 to N, RGLDAS,i indicates the SM of the pixel in the GLDAS data, and RGK−2A,i
indicates the SM of the pixel in the GK-2A data. RGLDAS and RGK−2A are the mean values
of the GLDAS and GK-2A SM data, respectively.
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4. Results
4.1. TVDI

Figure 4 shows the scatterplots between NDVI and LST data of GK-2A for 13 different
land cover types (evergreen needleleaf forest, evergreen broadleaf forest, deciduous needle-
leaf forest, deciduous broadleaf forest, mixed forest, closed shrublands, open shrublands,
woody savannas, savannas, grasslands, croplands, cropland/natural vegetation mosaic,
and barren or sparsely vegetated) in the northern hemisphere on 19 July 2020. The top and
bottom dashed lines indicate the linear regression lines of the maximum and minimum
LST values, respectively.

Remote Sens. 2021, 13, x FOR PEER REVIEW 9 of 22 
 

 

shrublands, woody savannas, savannas, grasslands, croplands, cropland/natural vegeta-

tion mosaic, and barren or sparsely vegetated) in the northern hemisphere on 19 July 2020. 

The top and bottom dashed lines indicate the linear regression lines of the maximum and 

minimum LST values, respectively. 

 

Figure 4. Scatterplots of NDVI and LST on 19 July 2020 for 13 land cover types: (a) Evergreen 

Needleleaf Forest, (b) Evergreen Broadleaf Forest, (c) Deciduous Needleleaf Forest, (d) Deciduous 

Broadleaf Forest, (e) Mixed Forest, (f) Closed Shrublands, (g) Open Shrublands, (h) Woody Savan-

nas, (i) Savannas, (j) Grasslands, (k) Croplands, (l) Cropland/Natural Vegetation Mosaic, and (m) 

Barren or Sparsely Vegetated. 

Figure 5 illustrates the spatial distributions of land cover, 10-day averaged GK-2A 

LST, NDVI, and the estimated TVDI values on 19 July 2020 (summer in the northern hem-

isphere and winter in the southern hemisphere). The LST values were high in the Gobi 

Desert in summer and northern Australia in winter. The NDVI values showed in the typ-

ical distribution. The TVDI values were high in the desert areas, southeastern Asia, tropi-

cal regions, and northern Australia, and low in Tibet, Siberia, southern Australia, and 

New Zealand. 

Figure 4. Scatterplots of NDVI and LST on 19 July 2020 for 13 land cover types: (a) Evergreen
Needleleaf Forest, (b) Evergreen Broadleaf Forest, (c) Deciduous Needleleaf Forest, (d) Deciduous
Broadleaf Forest, (e) Mixed Forest, (f) Closed Shrublands, (g) Open Shrublands, (h) Woody Savannas,
(i) Savannas, (j) Grasslands, (k) Croplands, (l) Cropland/Natural Vegetation Mosaic, and (m) Barren
or Sparsely Vegetated.

Figure 5 illustrates the spatial distributions of land cover, 10-day averaged GK-2A
LST, NDVI, and the estimated TVDI values on 19 July 2020 (summer in the northern
hemisphere and winter in the southern hemisphere). The LST values were high in the
Gobi Desert in summer and northern Australia in winter. The NDVI values showed in the
typical distribution. The TVDI values were high in the desert areas, southeastern Asia,
tropical regions, and northern Australia, and low in Tibet, Siberia, southern Australia, and
New Zealand.
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Figure 5. Spatial distributions of GK-2A (a) land cover and 10-day averaged (b) LST, (c) NDVI, and (d) TVDI on 19 July 2020.

Figure 6 shows the temporal variation of the 10-day averaged slopes of LSTmax for
various land types in East Asia and Australia during winter, spring, summer, and autumn
of one year [55]. Sandholt et al. (2002) [55] reported that the slope of the LSTmax function
in the NDVI/LST space can be an indicator for determining dry periods [55]; further, TVDI
is particularly variable in dry regions or dry periods as compared to those in wet regions
or periods [55].

The slopes for both East Asia and Australia showed common sinusoidal seasonal
variations, which decreased relatively quickly during the dry season, from winter to early
summer, and increased during other seasons. The slope values fluctuated more severely
during the dry period from winter to early summer than during the wet period from
summer to early winter. Notably, the barren or sparsely vegetated area (land cover 16)
showed the highest variation in the slope value. Furthermore, the comparison between
East Asia and Australia showed increased slope variation for each land cover in Australia
compared to those in East Asia due to the higher ratio of dry regions in Australia than
those in East Asia. These results show agreement with those of a previous study [55].
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Figure 6. Time series of the slopes of the NDVI/LST space in (a) East Asia and (b) Australia from August 2019 to July 2020.

Figure 7 illustrates the 10-day-averaged TVDI values for various land cover types in
East Asia and Australia. Notably, the amount of vegetation decreased and the heights of
trees decreased as the amount of land cover increased. East Asia showed stable temporal
variations in TVDI values in general land types except for bare soil in spring. Australia
showed similar patterns to East Asia, and greater variation for bare soil (land cover 16)
than in East Asia. We identified that TVDI values highly fluctuated during the dry periods
from January 1 to May 10 in East Asia and from August 28 to May 1 in Australia. The TVDI
values were sometimes >1, especially in Australia, which is in agreement with a previous
finding that TVDI values often exceed 1 in regions where LST is rapidly increasing because
TVDI is sensitive to the effects of LST [55]. Thus, we examined the distributions of LST in
East Asia and Australia during winter and summer (Figure 8) because TVDI values varied
more in Australia than they did in East Asia and were often >1.
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Figure 7. Temporal distributions of the averaged TVDI for each date and land cover in (a) East Asia and (b) Australia from
August 2019 to July 2020.

Figure 8 shows the high sensitivity of TVDI values to LST values in East Asia and
Australia, and supports the analysis presented in Figure 7. The LST values in Australia
increased sharply because most regions in Australia were dry except for the outskirts. In
addition, LST increased rapidly in the Gobi Desert compared to that in other regions in
East Asia. Therefore, TVDI values are often >1.

4.2. GK-2A SM

Figure 9 shows the three-month-averaged GK-2A and GLDAS SM data for spring
(March, April, and May), summer (June, July, and August), autumn (September, October,
and November), and winter (December, January, and February). The GK-2A SM showed a
similar pattern to that of GLDAS SM including dry-wet patterns, while GK-2A SM showed
discontinuous SM patterns near the Gobi Desert in the northern hemisphere and inland
Australia in the southern hemisphere due to the fixed land cover area.
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Figure 8. GK-2A LST distributions in East Asia on (a) 11 January 2020 (winter) and (b) 19 July 2020 (summer) and in
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Figure 10 shows the results of the statistical comparison between the GLDAS and
GK-2A SM shown in Figure 9. The CC ranged from 0.767 to 0.846. The bias ranged from
−0.001 m3/m3 to 0.001 m3/m3. The RMSE ranged from 0.042 m3/m3 to 0.047 m3/m3.
These results indicated that the estimated GK-2A SM shows good agreement with GLDAS
SM. Notably, the accuracy requirement of SM for MW satellite remote sensing, such as
the NASA SMAP SM product, is 4% (0.04 m3/m3) in the top 5 cm of soil at a 40 km
spatial resolution and 3-day-average intervals over the global land area excluding re-
gions of snow and ice, frozen ground, mountainous topography, open water, and urban
areas (https://smap.jpl.nasa.gov/science/objectives, access on 11 May 2021) Further, the
RMSE of our GK-2A SM results ranged within the analogous values of the error require-
ment of SMAP SM. Table 6 summarizes the statistical results of the previous scatterplots.

Table 6. Statistical comparison results between GLDAS and GK-2A SM.

Statistical Factors
Average Months

(a) Spring (b) Summer (c) Autumn (d) Winter

CC 0.772 0.832 0.846 0.767
Bias (m3/m3) 0.001 −0.000 −0.001 0.000

RMSE (m3/m3) 0.046 0.042 0.044 0.047
ubRMSE (m3/m3) 0.046 0.042 0.044 0.047

https://smap.jpl.nasa.gov/science/objectives
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Figure 9. Spatial distribution of GK-2A and GLDAS SM during four seasons: (a) spring (March,
April, May), (b) summer (June, July, August), (c) autumn (September, October, November), and
(d) winter (December, January, February).
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Figure 10. Scatterplots between GLDAS and GK-2A SM for the four seasons of (a) spring, (b) summer, (c) autumn, and
(d) winter.

Figure 11 shows the temporal variation of GK-2A SM for different land types in East
Asia and Australia. In both hemispheres, GK-2A SM showed similar patterns of variation.
In general, land cover types from 1 to 5 corresponding to forests showed relatively high
SM values of approximately 0.3 m3/m3, whereas land cover 16 (bare soil region) showed
the lowest seasonal variation of SM values from 0.1 m3/m3 in winter and 0.15 m3/m3 in
summer in East Asia and from 0.1 m3/m3 to 0.2 m3/m3 in Australia. In East Asia, the
average SM values ranged between 0.2 and 0.3 m3/m3, whereas they varied from 0.1 to
0.3 m3/m3 in Australia. This result may be attributed to the relatively higher ratio of dry
regions in the southern hemisphere compared to that in the northern hemisphere.
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Figure 11. Temporal variations in the 10-day-averaged GK-2A SM for each land cover type in (a) East Asia and (b) Australia
from August 2019 to July 2020.

Figure 12 shows the different characteristics of GK-2A SM in the northern and southern
hemispheres based on the temporal dynamics of the spatial CC and RMSE between GK-
2A and GLDAS SM in East Asia and Australia during one year. Figure 12a shows good
and consistent agreement of CC (>0.7) between GK-2A and GLDAS SM in East Asia. In
Australia, the CC values from February to November were similar to those in East Asia,
whereas the CC values decreased rapidly during January and December, i.e., summer in
the southern hemisphere. This may be attributed to the rapid increase of the LST effect
in the Australian summer, which was described with the TVDI values being >1 in this
period. Notably, Figure 12b,c shows that RMSE and ubRMSE values in Australia were
consistent and smaller (0.03 m3/m3 to 0.04 m3/m3) than those in East Asia (0.04 m3/m3

to 0.05 m3/m3). However, the CC values dropped in January and December, which is
summer in the southern hemisphere.



Remote Sens. 2021, 13, 2990 17 of 22Remote Sens. 2021, 13, x FOR PEER REVIEW 17 of 22 
 

 

 

Figure 12. Temporal dynamics of the spatial (a) CC, (b) RMSE, and (c) ubRMSE between the 10-day-averaged GLDAS and 

GK-2A SM in East Asia and Australia from August 2019 to July 2020. 

5. Discussion 

In this study, the conversion coefficients between TVDI and SM were obtained for 

each land cover. Previous TVDI studies indicated that TVDI was negatively correlated 

with the model and ground observations of SM. However, this study determined the ex-

istence of positive as well as negative correlations between TVDI and SM based on satellite 
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5. Discussion

In this study, the conversion coefficients between TVDI and SM were obtained for
each land cover. Previous TVDI studies indicated that TVDI was negatively correlated
with the model and ground observations of SM. However, this study determined the
existence of positive as well as negative correlations between TVDI and SM based on
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satellite observations and GLDAS SM data. TVDI variations in dry regions and periods
increased due to the slope of LSTmax, a function of NDVI and LST, which can undergo
drastic changes [55].

Figure 13 shows the scatterplots with negative (Figure 13a,c) and positive slopes
(Figure 13b,d) between TVDI and the SM for different land cover types from August 2019
to July 2020 in the full disk of the GK-2A. The results in Figure 13a,c showed agreement
with previous studies [53,55], but Figure 13b,d indicated differing results. In terms of data
frequency, different land cover types showed similar data pixels in the northern hemisphere,
as shown in Figure 13a,b. However, data frequencies in the southern hemisphere were
concentrated in small areas with high TVDI and low SM values in the TVDI and SM space,
as shown in Figure 13c,d. These results indicate the simple land types such as dry regions
in most parts of Australia.
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Figure 13. Scatterplots between GK-2A TVDI and GLDAS SM from August 2019 to July 2020 with (a) negative and
(b) positive slopes in the northern hemisphere, and (c) negative and (d) positive slopes in the southern hemisphere.

Figure 14 shows the positively correlated data distribution between TVDI and SM
(Figure 13) represented in the NDVI/LST space. In Figure 14, the green line shows wet soil
regions with high vegetation, high LST, and high TVDI values. The red line indicates dry
soil regions with low vegetation, low LST, and high TVDI values. The regions with high
vegetation density and high LST values were related to wet soil due to a high vegetation
canopy. Thus, high TVDI values can be calculated based on the high LST value in this
region. The regions with low vegetation density and low LST were related to dry soil due
to a low vegetation canopy. However, high TVDI can be calculated based on the low LST
value in this region.
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The quality of microwave satellite-based SM values such as SMAP and SMOS is
insufficient for surface conditions that include mountainous terrain and dense vegetation
with high vegetation water content (VWC) [66] because of the dependence on the radiative
transfer model; sensitivity of polarization to the surface SM; various and a priori ancillary
data including physical temperature, vegetation, roughness, and soil texture [21]; or
a relation between SM and VWC [12]. In particular, it is difficult to directly measure
the VWC, while NDVI has a high sensitivity to abrupt environmental change, such as
floods and droughts, without a priori information [67]. Thus, this study, based on the
TVDI as a function of NDVI and LST, showed feasible results for the vegetated and
mountainous topology in the Korean Peninsula in addition to providing SM information,
including regions lacking ground measurements and SMAP and SMOS SM values, and
supplementing low spatial and temporal resolutions of GLDAS SM in the Korean Peninsula.

6. Summary and Conclusions

This study presented the GK-2A SM algorithm using TVDI as a function of GK-2A LST
and NDVI products. GLDAS SM data were used for GK-2A SM algorithm development
and validation as a requirement of the KMA. We obtained the daily LST, NDVI, TVDI, and
GLDAS SM data and then composited 10-day-averaged LST, NDVI, TVDI, and SM data
for various land types. The conversion coefficients between TVDI and GLDAS SM for
different land types were obtained and validated with GLDAS SM for different periods
from August 2019 to July 2020. The results showed a high CC of >0.75 in East Asia and
>0.5 in Australia for all seasons, low bias from −0.001 to 0.001 m3/m3, and low RMSE of
<0.05 m3/m3. Notably, the RMSE results showed a low error rate of 0.05 m3/m3 or less,
which is close to the NASA’s accuracy requirement for SM products for the SMAP mission.
The GK-2A SM values were accurate except those for summer in Australia. The slope of
LSTmax, a function of NDVI and LST, can show drastic changes. Our results presented
this characteristic in the drier southern hemisphere but not in the northern hemisphere.
We also identified and explained the positive correlation between TVDI and SM due to
the high sensitivity of TVDI to LST. Our GK-2A SM algorithm has an advantage of better
spatial and temporal resolutions compared to those of the other algorithms implemented
in geostationary weather satellites. It allows for the monitoring of more spatial structures
that would not be identified by GLDAS, captures extreme events where the SM content can
change very quickly, and shows an accuracy similar to that of SM products of polar-orbiting
microwave satellites. However, the algorithm is dependent on the accuracy of GK-2A LST
and NDVI products. The KMA is currently operating the proposed SM retrieval algorithm.
A future scope of study will be to improve the conversion coefficients between TVDI and
SM in our algorithm using the long-term GK-2A observational data.
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