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Abstract: In this paper, we propose a Dirichlet process (DP) mixture model of Gamma distributions,
which is an extension of the finite Gamma mixture model to the infinite case. In particular, we propose
a novel online nonparametric Bayesian analysis method based on the infinite Gamma mixture model
where the determination of the number of clusters is bypassed via an infinite number of mixture
components. The proposed model is learned via an online extended variational Bayesian inference
approach in a flexible way where the priors of model’s parameters are selected appropriately and
the posteriors are approximated effectively in a closed form. The online setting has the advantage to
allow data instances to be treated in a sequential manner, which is more attractive than batch learning
especially when dealing with massive and streaming data. We demonstrated the performance and
merits of the proposed statistical framework with a challenging real-world application namely oil
spill detection in synthetic aperture radar (SAR) images.

Keywords: Dirichlet process; infinite mixture models; Gamma distribution; variational inference;
online setting; oil spill detection; synthetic aperture radar images

1. Introduction

The use of statistical machine learning has proliferated in many fields, especially
to solve a broad range of problems ranging from signal processing, speech recognition,
to geosciences and remote sensing where strong models are needed to apply statistical
methodology. In the case of geosciences and remote sensing, for instance, statistical
machine learning techniques have been deployed successfully in a variety of problems
and applications in many parts of the earth system and beyond [1]. In particular, images
modeling (e.g., SAR images) has received much attention due to its importance and
applications in real world nature tasks related to land, climate, disturbance attribution,
vegetation dynamics, urbanization, etc.

Among the probabilistic generative models, the so-named finite mixtures have been
successfully applied due to their capability to represent large-scale complex probability
densities and to offer a principled way for analyzing missing data [2,3]. Mixture models
provide, in general, a formal approach to unsupervised learning and allow, in particular,
to select the optimal number of clusters for a given dataset. This fact has been largely de-
tailed in the literature (see, for example, [4,5]). This growing interest has led to developing
several fascinating and flexible mixture models such as Gaussian-based mixture models
(GMM) which have became popular even though they are not the most appropriate for
fitting complex non-Gaussian shapes [6,7]. To deal with conventional GMM limitations,
many other alternatives, such as Gamma (GaMM) mixtures [8–11], have shown to perform
significantly better than GMM [12] thanks to its compact analytical form which is able to
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cover long-tailed distributions and to approximate data with outliers. Thus, motivated by
the flexibility and good performance obtained with Gamma distribution, we will focus
here on investigating Gamma-based mixture model for SAR images classification. We
are mainly motivated by the excellent results that Gamma mixture has provided, thanks
to its flexibility, for SAR images analysis in many applications such as target detection
and discrimination, target recognition and surface classification, oil spill detection, noise
reduction, etc. [10]. In this paper, we will focus mainly on oil spill detection

The most challenging problem within finite mixture models is the estimation of the
number of clusters that best describes the data without over- or under-fitting [13,14]. In the
statistical learning context, this problem is solved using frequentist approach (i.e., maxi-
mum likelihood (ML)) within some criteria (ex. Akaike’s Information Criterion, Minimum
Description Length, Minimum Message Length, etc) [15,16]. It is noteworthy that the
evaluation of these criteria for many clusters using ML method is very costly in terms of
calculation. In addition, all parameters are supposed fixed and the inference process is
based mainly on the likelihood of data which leads to convergence isssues. An alternative
way to tackle the issue of selecting accurately the number of clusters is via nonparametric
Bayesian inference using for instance Dirichlet process (DP) [17]. In this case, the number of
clusters may increase as more data are observed. This property makes DP extremely useful
in exploratory data analysis. Thus, the assumption of an infinite number of components
allows to avoid the problems of over- and under-fitting. Dirichlet processes (DP) mixtures
have become a popular choice for various machine learning applications thanks to effective
sampling techniques such as Markov chain Monte Carlo (MCMC) [18,19]. Despite the fact
that MCMC yields good performance, it is frequently limited to small-scale problems and
computationally intensive [20].

An interesting alternative, to both frequentist and Bayesian methods, which has pro-
vided promising performance, is variational Bayes learning [15,21]. Variational inference
has the advantage to find optimal approximate posterior distributions by minimizing
Kullback–Leibler (KL) divergence, or as maximizing evidence lower bound. Recently,
an extended variational inference (EVI) was proposed [8] and has shown to be efficient for
minimizing the KL divergence and for tackling the estimation problem. In this work, we
go a step further by developing an infinite mixture model based on Gamma distribution
via Dirichlet process prior, and then we propose to exploit the merits found recently by the
extended variational framework [8] to learn the developed mixture model (InGaMM-eV)
in an online manner. Furthermore, it is possible to estimate all parameters in closed forms.
Moreover, compared to batch algorithms, online learning is more effective and helpful
especially when processing big and streaming data [22] which can be crucial in SAR images
analysis to allow continuous monitoring of the earth’s surface. It is noteworthy also that
many SAR satellite missions have accumulated repeated observations over the last decades
and processing these data in an online manner could offer ease of use and solutions to
some challenging problems (e.g., change detection [23]). Thus, an effective online extended
variational framework of Dirichlet process mixtures of Gamma distributions is developed
using stick-breaking representation. As a result, the number of clusters is selected appro-
priately, the model’s parameters are learned in a closed form, and the issue of under-fitting
is solved by deriving a model with an unlimited complexity.

The rest of this manuscript is presented as follows. We review some relevant works
related to oil spill detection in Section 2. The details of extending the finite Gamma mixture
to infinite case are given in Section 3. The principles of our implemented nonparametric
variational learning algorithm of infinite Gamma mixture are provided in Sections 4 and 5.
Section 6 is devoted to discuss the results obtained from experiments. Finally, the paper is
concluded with some future works.

2. Related Research Work

Oil pollution is a major ocean disaster and environmental threat to coastal ecosys-
tems which has been recently highlighted by several tankers accidents around the world.
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Accidents on offshore oil platforms, refineries, and pipeline can cause serious oil spills.
However, these accidents represent only 5% of the total oil pollution worldwide, and 95%
are caused by illegal discharges by ships that prefer to dispose, cheaply, of oil residues
in their tanks (according to many studies such as the European Space Agency) [24–26].
Oil pollution may result from several sources such as industrial discharges, oil produc-
tion, natural oil seepage, and urban runoff. Natural slicks are of bacterial or biological
decomposition or geological origin. Oil spills can devastate naval life as well as harm
humans and animals by reducing dramatically air-sea exchanges processes, such as surface
evaporation. Oil spills are then of great public, political and scientific concern. Therefore,
there is an urgent need to monitor and detect oil spills on ocean so as to facilitate govern-
ment decision making. The detection of these oil spills is considered an important and
challenging problem to effectively conduct countermeasures. An effective approach is the
use of satellites which provide radar images of the sea surface (500× 500 km2 in a single
image). Satellites radar images supply an occasion to monitor coastal waters day and night,
regardless of weather conditions allowing an early warning of oil spills. Moreover, satellite
detection is well adapted to this kind of problems by producing images of difficult access
areas [24]. Among different satellite imagery technologies, active microwave sensors such
as synthetic aperture radar (SAR), has been frequently investigated for remote sensing of
oil pollution [27]. The synthetic aperture radar emits and receives radio wave in order to
acquire a representation of the target scene. Detecting oil spill in SAR images (as shown
in Figure 1) is very complex procedure that involves many steps [26].

Figure 1. SAR image obtained by the European Remote Sensing satellite ERS-2 on April 1997 over
the South China Sea (left image) and SAR image obtained by the ERS-1 satellite on May 1994 over
Pacific Ocean east of Taiwan (right image). These images (area: 100 km × 100 km) showing an oil
spill [28].

For several decades, extensive works have been provided [27,29,30] to distinguish oil
slicks from natural biogenic slicks via analyzing satellite radar images. Most of conventional
oil slick (or dark objects) detection procedures are carried out in three steps: (1) a pre-
segmentation of dark spot, (2) the extraction of dark spot feature, and (3) a classification
step of these dark spots. Some early and recent review articles summarize different oil
slick detection methods [26,28,31]. These reviews state that most methods are based on
using statistical patterns to discriminate between oil slicks and look-alikes under varying
conditions. They conclude also that the automatic and accurate discrimination between
oil spills and look-alikes is a challenging problem and need more investigations in the
future. On the other side, a lot of efforts have been devoted to apply classic classifiers and
descriptive statistical approaches learned from training data [25,30,32–34]. These works
rely on highly trained human operators to asses and verify each region in a given SAR
image. In [33], authors proposed a one-class based approach for image classification to
detect oil-spill. First of all, a preprocessing step is used to identify related areas to oil spills.
A feature selection step to select relevant features is also performed given that the contrast
between spill’s region and the surrounding regions depends on the type and amount
of oil and other environmental factors (i.e., wave height, wind speed, and sea). Finally,
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a one-class classifier is used to detect oil spills. A geometric level-set based segmentation
method of oil spills and illegal oil discharges was developed in [35]. According to this
work the regions in SAR images can be classified into pure oil spills or look-alikes on
the basis of the following measurements: orientation, area, shape complexity, perimeter,
eccentricity, and mean border gradient. In [36], a region-based method was also proposed.
It involves both conventional detection theory and image segmentation techniques (such
as N-nearest-neighbor) to have more accurate results. In [37], authors developed an
adaptive thresholding-based algorithm to classify each slick as oil or look-alike. Here,
involved features are derived from shape (slick complexity, width, area, moment), slick
surroundings, contrast (slick local contrast, border gradient, smoothness contrast), and slick
homogeneity. Their algorithms have been trained on two datasets, namely Radarsat and
Envisat Advanced Synthetic Aperture Radar (ASAR) images. Fuzzy classifiers have been
also used in [38] to identify all possible oil spills (dark patterns) in SAR images. A set of
operations based on the fuzzy theory are used to establish the likeness of each candidate to
be an oil spill or not. In the last few years, artificial neural network algorithms have been
broadly applied in the context of remote sensing image segmentation and classification.
Indeed, authors in [39–43] proposed different neural network-based methods (like CNN
and Deep NN) in order to improve oil spill detection and classification. Some other notable
interesting CNN-based oil spill detection and classification frameworks include the works
in [44,45].

While considerable progress has been made in this field over the past few years,
designing more robust tools still needs wide amounts of specialized knowledge and manual
work. The goal here is to propose a method based on a nonparametric Bayesian model
(infinite model) as well as to learn it using variational inference. Our main contributions
are summarized as follow: First, we start by extending the finite Gamma mixture to the
infinite case via a nonparametric Dirichlet process prior such that the problem of selecting
the suitable number of clusters is solved fashionably. Then, we investigate the developed
approach for remote sensing image classification. Indeed, after extracting effective features
as in [46], we shall focus on modelling and classifying oil spills and other similar sea
surface features using the infinite mixture model. The merits of our approach have been
demonstrated using real datasets.

3. Statistical Model Specification

In this section, we present our developed variational learning approach based on the
infinite Gamma mixture model.

3.1. Finite Gamma Mixture Model

Let’s denote by Y our observed data such as Y = {~Y1, . . . ,~YN}, where each ~Yi =
(Yi1, Yi2, . . . , YiD) is a D -dimensional positive vector. These feature vectors are supposed
to be drawn from a mixture of Gamma distributions with parameter Θ. Let M denotes
the number of mixture’s components. ~Yi (i = 1, . . . , N) are independent and identically
distributed (iid). The density function of multi-dimensional Gamma distribution is defined
as follows:

p(~Yi | θ) =
D

∏
d=1

(βd)
αdYαd−1

id e−βdYid

Γ(αd)
(1)

where θ = {αd, βd} is the set of parameters of the distribution such that αd denotes the
shape and βd the location parameter. Here, Γ(.) is the Gamma function which is given as:
Γ(x) =

∫ ∞
0 sx−1e−sds.

Suppose that the D-dimensional random vector ~Yi (observed data) is drawn from a
finite mixture of Gamma (GaMM) distributions and consisting of M components which is
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established to model the data with different shapes. The probability density function (pdf)
of a GaMM is then given as:

p(~Y | Θ) = p(~Y |~α,~β, ~π) =
N

∏
i=1

M

∑
j=1

πj p(~Yi | θj) (2)

where Θ = {θ1, θ2, . . . , θM, π1, . . . , πM}. The parameters of the jth mixture component is
represented by θj = {αj, β j}. πj is the vector of the mixing weights subject to 0 6 πj 6 1,
and ∑M

j=1 πj = 1.

3.2. Infinite Gamma Mixture Model

The Dirichlet process (DP) is a stochastic process with a positive scaling factor and base
distribution used in Bayesian nonparametric models of data, notably in infinite mixture
models. The DP is an effective concept for various applications (for more details please refer
to [47]). In this section we address the issue of assuming an infinite number of components.
In order to solve properly this problem which is important for well describing the observed
data without over- or under-fitting, we propose a Dirichlet process mixture of Gamma
distributions. In other words, we construct our infinite model by following the principle
of Dirichlet process (DP) through stick-breaking representation [48,49]. Thus, the number
of components is intended to be infinite. In this case, let’s denote G a Dirichlet process
distributed with a base distribution H and a concentration parameter ψ. The construction
of G ∼ DP(ψ, H) is defined as

λ ∼ Beta(1, ψ)

Ωj ∼ H

πj = λj

j−1

∏
s=1

(1− λs)

G =
∞

∑
j=1

πjδΩj

(3)

where δΩj represents the Dirac delta measure centred at Ωj. The proportions πj are
determined by cutting a unit length stick, regularly, into an infinite number of pieces such
that ∑∞

j=1 πj = 1 and ψ is a real number. Consequently, the infinite mixture model of
Gamma distributions Y is expressed as

p(Y | Θ) = p(Y |~α,~β, ~π) =
N

∏
i=1

∞

∑
j=1

πj p(~Yi | θj) (4)

Subsequently, a latent variable Zi = (Zi1, Zi2, . . .) is introduced for observed data Y . These
latent membership vectors are used to point out if the vector ~Yi belongs to component j
(Zij = 1) or not (Zij = 0). Now, the complete-data likelihood is expressed as

p(Y , Z |~α,~β, ~π) =
N

∏
i=1

∞

∏
j=1

π
zij
j

(
p(~Yi | αj, β j)

)zij
(5)

According to the stick-breaking construction of DP (see Equation (3)), πj can be expressed
as a function of λj and after replacement, we have the following:

p(Z | ~λ) =
N

∏
i=1

∞

∏
j=1

[
λj

j−1

∏
s=1

(1− λs)

]zij

(6)
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The resulting complete-likelihood of the infinite Gamma mixture is finally expressed as
(including latent variables):

p(Y , Z |~α,~β, ~π) =
N

∏
i=1

∞

∏
j=1

[
λj

j−1

∏
s=1

(1− λs)

]zij(
p(~Yi | αj, β j)

)zij
(7)

4. Batch Variational Bayesian Learning

It is noteworthy that, when dealing with intractable models, variational inference is
presented as a powerful deterministic alternative to approximate posteriors and likelihoods.
In this section, we propose to develop a variational learning method to approximate
inference for the DP, where the truncated stick-breaking construction [50] is applied to
derive an approximate posterior and to estimate the model parameters. On the other side,
we proceed by determining an approximation Q(Θ) for true posterior p(Θ | Y) such that
Θ = {Z, α, β}. After that, we use the well-known KL divergence in order to reduce the
difference between Q(Θ) and p(Θ | Y):

KL(Q || P) =
∫

Q(Θ) ln
(

p(Θ | Y)
Q(Θ)

)
dΘ (8)

KL(Q || P) = ln(p(Y)−L(Q) (9)

L(Q) =
∫

Q(Θ) ln
(

p(Y , Θ)

Q(Θ)

)
dΘ (10)

KL divergence attains value of zero if we have Q(Θ) = p(Θ | Y) (since As KL(Q || P) ≥ 0).
From Equation (9), it is possible to deduce that L(Q) ≤ lnp(Y) and so L(Q) is a lower
bound to lnp(Y). However, it is difficult to solve the true posterior which cannot be directly
estimated because of the complexity of calculation. We get around this matter by taking
into account a restricted family of Q(Θ) that can be calculated [21]. In particular, the mean
field theory [51] is adopted to factorize Q(Θ) into different tractable distributions such that
Q(Θ) = ∏i=1 Qi(Θi). To maximize L(Q), we apply variational methodology with respect
to each Qi(Θi). Then, the optimal form of Qi(Θi) denoted by Qs(Θs) is given as

lnQs(Θs) = 〈ln(p(Y , Θ)〉j 6=s + const (11)

where 〈.〉j 6=s is the expectation value of Q, with respect to all Qi(Θi) excluding that case
of j = s. It is noted that we have to take into account the truncation of the stick-breaking
representation [49] to take advantage of the bound. Therefore, we take λM = 1 and πj = 0
when j > M which leads to ∑M

j=1 πj = 1.

4.1. Prior Distributions for Parameters

To complete the probabilistic formulation, we have to place proper conjugate priors
over the parameters λ, α and β. In particular, the Beta distribution is selected for the
parameter λ (referring to Equation (3)) as follow

p(λ | ψ) =
∞

∏
j=1

Beta(1, ψj) =
∞

∏
j=1

ψj(1− λj)
ψj−1 (12)

Here, the hyperparameters of the Beta distribution is denoted by ψ = (ψ1, ψ1, . . . ) [52].
Moreover, it is possible to assign a conjugate Gamma prior to ψ:

p(ψ) = G(ψ | a, b) =
∞

∏
j=1

b
aj
j

Γ(aj)
ψaj−1e−bjψj (13)
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For α and β, a prior Gamma distribution is imposed for them as suggested in [8] which is
reasonable given that α and β are positives and also Gamma density is assumed to be too
flexible and simple distribution to be selected as prior.

p(~α) = G(~α | ~u,~v) =
∞

∏
j=1

D

∏
d=1
G(αjd | ujd, vjd) (14)

p(~β) = G(~β |~s,~t) =
∞

∏
j=1

D

∏
d=1
G(β jd | sjd, tjd) (15)

Following the graphical model in Figure 1, the resulting joint distribution is expressed as

p(Y , Θ) = p(Y ,Z |~α,~β)p(Z | ~λ)p(~λ | ~ψ)p(~ψ)p(~α)p(~β)

=
N

∏
i=1

∞

∏
j=1

[
λj

j−1

∏
s=1

(1− λs)

]zij(
p(~Yi | αj, β j)

)zij

×
∞

∏
j=1

ψj(1− λj)
ψj−1

×
∞

∏
j=1

b
aj
j

Γ(aj)
ψaj−1e−bjψj

×
∞

∏
j=1

D

∏
d=1
G(αjd | ujd, vjd)

×
∞

∏
j=1

D

∏
d=1
G(β jd | sjd, tjd)

(16)

4.2. Learning Algorithm

As explained at the beginning, the objective of this work is to approximate the true
posterior p(Θ | Y) with a new tractable approximation denoted by Q(Θ). Furthermore,
the optimal solution of variational learning is reached while maximizing the lower bound
w.r.t Θ = {Z, λ, α, β}. The factorization of Q(Θ) (while taking into account the truncation
M) leads to following parametric form which optimal solution is presented in Appendix A:

Q(Θ) =

[
N

∏
i=1

M

∏
j=1

Q(Zij)

][
M

∏
j=1

Q(λj)Q(ψj)

][
M

∏
j=1

D

∏
d=1

Q(αjd)Q(β jd)

]
(17)

Once the optimal variational factors are in hand, the calculation of the lower bound
L(Q) is then straightforward. Figure 2 presents a graphical model of the proposed infinite
Gamma mixture model (inGaMM). Random variables are denoted by circles and hyperpa-
rameters are represented by rounded boxes. Then, the different steps of the implemented
method are summarized in Algorithm 1.
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Figure 2. Graphical model of the developed variational infinite inGaMM. Random variables are
denoted by circles and hyperparameters are represented by rounded boxes . Y is observed variable,
Z is latent variable, large boxes are used for repeated process and the arrows show the conditional
dependence between variables.

Algorithm 1: Batch variational learning approach for the inGaMM

1 Choose initial truncation for M.
2 Set initial values for hyperparameters u, v, s, t, a, b, c, d.
3 Initialize rij via k-means algorithm.
4 repeat
5 Variational E-step :
6 Estimate the expected values according to Equations (A5), (A9), (A12),

and (A15).
7 Variational M-step :
8 Update the variational solution for the factor Q(Z) using Equation (A1).
9 Update the variational solution for the factor Q(ψ) using Equation (A6).

10 Update the variational solution for the factor Q(λ) using Equation (A7).
11 Update the variational solution for the factor Q(α) using Equation (A10).
12 Update the variational solution for the factor Q(β) using Equation (A13).
13 until Until convergence is reached
14 Calculate the expected value of λj using Equation (A9). Then estimate the mixing

coefficients according to Equation (3).
15 Return the optimal number of components Mopt by eliminating the components

with small mixing coefficients close to 0.

5. Online Variational Bayesian Learning

Early warning and immediate detection of oil spills has many advantages such as
immediate response and reducing damage to the environment. The development of real-
time monitoring and detection system is of great importance in order to minimize the
volume of oil spilled. To address this problem, we propose to develop an online learning
approach which is being commonly used in many other areas especially when data points
are continuously arriving over time [53]. The online setting is particularly useful for
incrementally training the system by feeding instances of data sequentially. It also has the
benefit of making the learning process easier and faster than batch mode.

In what follows, we extend the batch variational method (presented in previous
section) for unsupervised SAR images classification to an online setting. This process
requires updating the model’s parameters incrementally without degrading its efficiency
and flexibility. To determine the lower bound, we suppose that we have at time t a fixed
set of observed data. At time t + 1, a new SAR image YN+1 comes out and is added to the
dataset, hence, the mixtures’ parameters have to be updated accordingly. Thus, in online
setting, the lower bound at time t is expressed as in [54]:

Lt(Q) =
N
t

t

∑
i=1

∫
Q(Ω)dΩ ∑

Zi

ln

[
p(~Yi, ~Zi | Ω)

Q(~Zi)

]
+
∫

Q(Ω)ln
[

p(Ω)

Q(Ω)

]
dΩ (18)
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where Ω = {α, β}.
Let’s suppose that we already observed {~Y1, . . . ,~Y(t−1)} and then a new data point ~Yt

is coming. Therefore, Lt(Q) is maximized w.r.t Q(~Zt), such that Q(α), Q(λ) and Q(β) are
set to Qt−1(α), Qt−1(λ) and Qt−1(β), respectively. We adopt a truncation technique with
value M which gives [49]:

Q(~Zt) =
M

∏
j=1

r
Ztj
tj (19)

rtj =
ρtj

∑M
j=1 ρtj

(20)

Then, Lt(Q) is maximized w.r.t Q(α), Q(λ) and Q(β) while keeping Q(~Zt) fixed.

Q(t)(~α) =
M

∏
j=1

D

∏
d=1
G(α(t)jd | u∗(t)jd , v∗(t)jd ) (21)

Q(t)(~β) =
M

∏
j=1

D

∏
d=1
G(β

(t)
jd | s∗(t)jd , t∗(t)jd ) (22)

Q(t)(λ) =
M

∏
j=1

Beta(λ(t)
j | c(t)j , d(t)j ) (23)

where

u∗(t)jd = u∗(t−1)
jd + ρt∆u∗(t)jd

v∗(t)jd = v∗(t−1)
jd + ρt∆v∗(t)jd

s∗(t)jd = s∗(t−1)
jd + ρt∆s∗(t)jd

t∗(t)jd = t∗(t−1)
jd + ρt∆t∗(t)jd

c∗(t)jd = c∗(t−1)
jd + ρt∆c∗(t)jd

d∗(t)jd = d∗(t−1)
jd + ρt∆d∗(t)jd

(24)

∆ is the natural gradient of each hyperparameter in the previous equation. ρt denotes the
learning rate [55] expressed by following equation:

ρt = (η0 + t)−ε (25)

where ε ∈ [0.5, 1] and η ≥ 0. This helps to guarantee convergence [55]. Please note that
the expectation in the above mentioned equations are obtained with same manner as for
the case of batch setting in the previous section and as in [56]. Since the online learning
framework can be considered as a stochastic approximation algorithm, the convergence
is ensured as prove in [53]. The proposed and developed online variational algorithm is
presented in Algorithm 2.
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Algorithm 2: Proposed online algorithm for inGaMM

1 Select initial truncation level M.
2 Set initial values for hyperparameters
3 Initialize rtj via k-means algorithm.
4 repeat
5 Variational E-step :
6 Update the variational solution for Equation (19).
7 Variational M-step :
8 Compute the learning rate using Equation (25).
9 Calculate the hyperparameters using Equation (24).

10 Update the variational solutions for all factors Q(t)(α), Q(t)(β) and Q(t)(λ)
using Equations (21)–(23).

11 Repeat the variational E-step and V-step until new data is observed
12 until for t = 1 to N

6. Experimental Results
6.1. Data Sets

The main objective of this section is to investigate our developed online extended
variational learning framework of Dirichlet process mixture of Gamma distributions to
detect oil spills in several SAR images. The second objective is to compare the performance
of the proposed statistical framework with other methods from the state-of-art. First,
it should be noted that one of the challenges is the lack of already common data sets
for oil spill detection and this problem has been addressed by many relevant research
communities such as [57,58]. Very limited data sets have been proposed in the literature,
and therefore, it is too difficult to compare between published results since each method
uses different data sets with different settings. In this work, we are essentially concerned
with two challenging SAR databases. The first data set is the SAR images containing oil
spills collected via the European Space Agency (ESA) database [40] which is composed
of 1112 images with 5 different classes: Land, Look-alike, oil-spill, ships, and sea surface.
The second one is a labelled SAR dataset taken from Sentinel-1 wave mode (TenGeoP-
SARwv) [59] which includes 40,553 images with 10 different geophysical phenomena such
as Pure Ocean Waves (F), Wind Streaks (G), Micro Convective Cells (H), Rain Cells (I),
Biological Slicks (J), Sea Ice (K), Iceberg (L), Low Wind Area (M), Atmospheric Front (N),
and Oceanic Front (O). Figures 3 and 4 show examples of images from these two datasets,
respectively. For experiments, we randomly select half of the dataset as the training set
and the rest for testing. In order to quantify how well SAR images are classified, we report
the results in terms of average accuracy metric and false positive rate (FPR).

Modeling and classifying SAR requires powerful statistical models to represent their
content (ex. color, texture). In this work we shall focus on the problem of SAR images
modeling and classification via extracting local features that describe accurately input
images. Indeed, feature extraction step is a part of the dimensionality reduction process
that has been broadly studied in the past. It has an important role in many computer vision
applications since it helps identifying the most discriminating characteristics, reducing
ambiguity and enhancing the performance. However, the presence of speckle noise in
synthetic aperture radar (SAR) images, as well as low-resolution between regions (surfaces)
and poor contrast, make extracting relevant features too difficult. Thus, if the representative
features are well extracted, then we can correctly interpret and classify images. Extracting
local features from grey-scale images is a well-studied step in the fields of image processing
and computer vision and various comparative measures have been studied for many
years. The study of prior techniques is not within the scope of this paper. However, we
suggest applying two successful methods of features extraction. The first one is based
on imageNet pretrained deep learning model (resnet50) [60]. The flowchart diagram
for extracting features using resnet50 is given in Figure 5. For each SAR image in the
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flowchart, we first apply different image processing operations like adjusting contrast
value, thresholding, object edge detection by blurring noise and small objects. After this
step, based on the number of detected dark spots, we extract different features including
geometrical characteristics and texture of the object. Finally, we store the extracted features
for the model evaluation. In the second approach, we extract a number of features based
on geometrical characteristics, physical behavior, and those related to oil spill context of
the dark formations as described in [61]. After extracting features, we applied principal
component analysis (PCA) to reduce dimensionality of extracted datasets features.

(a) Oil Spill (b) Look-alike

(c) Land (d) Ship

Figure 3. Dataset-1: Samples of SAR images from the European Space Agency (ESA) dataset [40]. (a) OilSpill, (b) Look-alike,
(c) Land, (d) Ship.

6.2. Results and Discussion

Next, we apply our online extended variational algorithm (Section 5) over the extracted
features. Thus, each image is represented by an infinite Gamma mixture model. We average
the results over 30 runs to evaluate and compute the final performance. Tables 1 and 2
show the average classification accuracy and false positive rate (FPR) of our InGaMM-
eV model. They are obtained with different classes in both datasets and by using two
features extraction methods. Indeed, we considered a first experiment where the goal
was to distinguish between oil spills versus the rest and a second one where the goal is
to categorize some classes from each data set (4 categories are taken from the first data
set and 9 from the second one). The testing data is assumed to arrive sequentially in an
online mode.
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(a) Pure Ocean Waves (F) (b) Wind Streaks (G)

(c) Micro-Convective Cells (H) (d) Rain Cells (I)

(e) Biological Slicks (J) (f) Sea Ice (K)

(g) Iceberg (L) (h) Low Wind Area (M)

(i) Atmospheric Front (N) (j) Oceanic Front (O)

Figure 4. Dataset-2: Samples of SAR images from Sentinel-1 wave mode (TenGeoP-SARwv)
dataset [59]. (a) Pure Ocean Waves, (b) Wind Streaks, (c) Micro-Convective Cells, (d) Rain Cells, (e) Bi-
ological Slicks, (f) Sea Ice, (g) Iceberg, (h) Low Wind Area, (i) Atmospheric Front, (j) Oceanic Front.
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Figure 5. Flowchart diagram for extracting features using first feature extraction approach (ImageNet
pretrained (resnet50) features).

Figures 6 and 7 present the confusion matrices for SAR images classification computed
by the proposed InGaMM-eV using the two features extraction methods, respectively. It
is noted that these matrices are used to describe the performance of the proposed model
since they record true positives, false positives and false negatives. In fact, each matrix
summarizes the prediction results on a classification problem and it offers a clear idea of
what the proposed model is working correctly and what kinds of errors it commits. Each
entry of index (u, v) represents the number of images in class u that are affected to class
v. According to these results, the average classification accuracy is very promising and is
equal to 90.57% (error rate of 9%) for the first dataset and 95.16% (error rate of 4%) for the
second dataset.

Table 1. Results for both dataset with different number of classes using first feature extraction
approach (ImageNet pretrained (resnet50) features).

Datasets No of Class Accuracy (%) FPR

ESA-SAR dataset 2 97.96 0.02
ESA-SAR dataset 4 90.57 0.09
Sentinel-1 wave mode SAR dataset 2 94.53 0.05
Sentinel-1 wave mode SAR dataset 9 95.16 0.04

Table 2. Results for both dataset with different number of classes using second feature extraction
approach (Dark spots, geometrical, physical, and characteristics features).

Datasets No of Class Accuracy (%) FPR

ESA-SAR dataset 2 89.94 0.09
ESA-SAR dataset 4 85.13 0.12
Sentinel-1 wave mode SAR dataset 2 88.68 0.11
Sentinel-1 wave mode SAR dataset 9 82.22 0.14

Figures 6 and 7 present additional results obtained by changing the way visual fea-
tures are extracted as well as the number of classes. Indeed, for the case of ESA-SAR
dataset, InGaMM-eV provides high average accuracy of 97.96% using imageNet pretrained
deep learning model (resnet50), and 89.94% using Dark spots, geometrical, physical char-
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acteristics features. In both cases, the false positive rate is very low. For Sentinel-1 wave
mode SAR dataset, the average accuracy to classify SAR images is 95.16% using resnet50,
which is better than the second method for extracting features (only 88.68%). According to
these results, we notice that the overall average classification accuracy is very encouraging,
taking into account the complexity of treated images. It is noteworthy that, due to low
resolution of images in the second dataset (Sentinel-1 wave mode), it was very difficult to
extract features using the second feature extraction method (i.e., detecting dark objects).
Thus, we have low accuracy than expected for this dataset.

Figure 6. Average rounded confusion matrix (in terms of percentage) for SAR classification using
InGaMM-eV for ESA-SAR dataset.

Figure 7. Average rounded confusion matrix (in terms of percentage) for SAR classification using
InGaMM-eV for Sentinel-1 wave mode SAR dataset.

In this experiment, our second goal is also to demonstrate the advantages of using
extended variational framework over the maximum likelihood (via EM-algorithm), as well
as the merits of infinite mixture model over its finite counterpart. Therefore, we compared
the classification results using the following mixture models: InGaMM-eV (our infinite
Gamma model using extended variational inference), GaMM-eV (finite Gamma model
using extended variational learning), GaMM-EM (finite Gamma mixture model using
expectation maximization learning), InGMM-eV (infinite Gaussian model using extended
variational learning), and GMM-EM (finite Gaussian mixture model using expectation
maximization learning). The average performances of all tested learning approaches, using
the two features extraction methods, are depicted in Tables 3 and 4. We can see clearly
that the extended variational approach provides better results than the EM. Furthermore,
the merits of using a Dirichlet process mixtures of Gamma distributions (i.e. infinite
mixture model ) over a finite mixture model is clear by noting that better result was found
with the infinite mixtures. In particular, in Table 3, the InGaMM-eV (90.05%) outperforms
GaMM-eV (88.33%) in terms of classification accuracy rate for both datasets. On the other
side, it is worth mentioning that our approach provides better results than the implemented
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frameworks based on Gaussian mixtures. We can then deduce that the infinite Gamma
model has better modeling and classification capability than the Gaussian when dealing
with SAR images analysis.

Table 3. Overall oil spill detection rate of different models for 2 datasets using the first feature extraction approach (ImageNet
pretrained (resnet50) features) .

Dataset InGaMM-eV (Our Approach) GaMM-eV GaMM-EM InGMM-eV GMM-EM

ESA-SAR 90.05 88.33 86.07 83.21 83.11

Sentinel-1 wave SAR 91.12 89.40 87.02 84.14 83.99

Table 4. Overall oil spill detection rate of different models for 2 datasets using the second feature extraction approach (Dark
spots, geometrical, physical, and characteristics features).

Dataset InGaMM-eV (Our Approach) GaMM-eV GaMM-EM InGMM-eV GMM-EM

ESA-SAR 88.18 87.09 85.11 82.13 82.01

Sentinel-1 wave SAR 89.12 88.11 86.00 83.77 83.07

Next, The proposed learning approach (InGaMM-eV) is compared with some methods
from the literature and the comparative study is presented in Table 5. As we can see,
the proposed online algorithm performs better than other algorithms. Accordingly, it is
important to emphasize the advantage of our developed extended variational formalism
for infinite Gamma mixture, which can provide interesting results. It is also important
to underline the merit of the online learning process, which is able to maintain high
performance of oil spill prediction as well as handling data faster as they arrived. Moreover,
it has the capacity to update the model incrementally without the need for retraining.
All these results confirm that the proposed infinite Gamma mixture using the extended
variational learning mode is a better choice thanks to the flexibility of the infinite Gamma
mixture over the finite models. All these benefits make it more appropriate especially for
SAR images classification especially in the case or large scale data sets.

Table 5. Comparative study between different methods from the literature on two datasets.

Method Dataset Feature Selection Accuracy

InGaMM-eV (our approach) ESA-SAR ImageNet pretrained (resnet50) 97.96%
InGaMM-eV (our approach) ESA-SAR Dark spots, geometrical, physical features 89.94%
Fuzzy classification [62] ESA-SAR Georeference, Land masking, and Filtering 88%

InGaMM-eV (our approach) Sentinel-1 SAR ImageNet pretrained (resnet50) 94.53%
InGaMM-eV (our approach) Sentinel-1 SAR Dark spots, geometrical, physical features 88.68%
Convolutional neural network Sentinel-1 SAR Inception v3 CNN 93%
Articial neural network [34] Sentinel-1 SAR Dark spot, shape features 87%
Method in [63] Sentinel-1 SAR Dark spot features 81%
Method in [64] Sentinel-1 SAR Dark spot, shape features 82.61%

7. Conclusions

In this paper an effective online nonparametric Bayesian analysis method based on
Dirichlet process mixture of Gamma distributions (i.e., infinite Gamma mixture model)
is developed to deal with the challenging problem of oil spill detection in SAR images.
The Gamma distribution is considered because of its flexibility for semi-bounded data
modelling. This framework is learned using an extended version of conventional vari-
ational inference in a flexible way which has certain advantages such as approximating
the posteriors effectively in a closed form, easy assessment of convergence and easy opti-
mization by offering a trade-off between frequentist techniques and MCMC-based ones.
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An important property of our approach is that it does not need the specification of the
number of mixture components in advance. The proposed online algorithm has also the
benefit to allow data instances to be treated in a sequential manner, which is more attractive
than batch learning especially when dealing with massive and streaming data. Through
the challenging application of oil spill detection in SAR images, we have demonstrated
the performance of our statistical framework, which is able to provide very encouraging
results in terms of SAR images modeling and classification capabilities. As future work,
we plan to integrate a feature selection mechanism into the proposed framework in order
to improve more the classification accuracy. It is our hope that many other real-world
applications related to image processing and machine learning can be addressed via our
developed framework.
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Appendix A

(1) Optimal solution to Q(Z).

Q(Z) =
N

∏
i=1

M

∏
j=1

r
Zij
ij (A1)

where the responsibility rij can be calculated as:

rij =
ρij

∑M
j=1 ρij

(A2)

such that:

ln(ρij) = ln(πj) +
D

∑
d=1

[Pjd + (〈αjd〉 − 1)ln(yjd)− 〈αjd〉〈β jd〉yjd] (A3)

and

Pjd = α∗jdln(α∗jd)− α∗jd − ln(α∗jd)− ln(Γ(α∗jd)) + 〈ln(αjd)〉+ 〈αjd〉+ 〈αjd〉〈ln(β jd)〉 (A4)

where 〈.〉 refers to an expectation w.r.t. the corresponding factor and α∗jd is any feasi-
ble point.

The expectation of Zij is determined as:

〈Zij〉 = rij (A5)
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(2) Optimal solution to Q(ψ) and Q(λ).

Q(ψ) =
M

∏
j=1
G(ψj | aj, bj) (A6)

Q(λ) =
M

∏
j=1

Beta(λj | cj, dj) (A7)

a∗j = aj + 1

b∗j = bj − 〈ln(1− λj)〉

c∗j = 1 +
N

∑
i=1
〈Zij〉

d∗j = 〈ψj〉+
N

∑
i=1

M

∑
s=j+1

〈Zis〉

(A8)

From the previous equations, we obtain the following expectations:

〈ln(λj)〉 = Ψ(c∗j )−Ψ(c∗j + d∗j )

〈ln(1− λj)〉 = Ψ(d∗j )−Ψ(c∗j + d∗j )

〈ln(ψj)〉 =
a∗j
b∗j

〈λj〉 =
cj

cj + dj

(A9)

where Ψ is Digamma function.
(3) Optimal solution toQ(~α).

Q(~α) =
M

∏
j=1

D

∏
d=1
G(αjd | u∗jd, v∗jd) (A10)

where

u∗jd = ujd +
N

∑
i=1
〈zij〉

v∗jd = vjd −
N

∑
i=1

[Sjd + ln(yid)− 〈β jd〉yid]〈zij〉

Sjd = 1 + ln(α∗jd)−
1

α∗jd
−Ψ(α∗jd) + 〈ln(β jd)〉

(A11)

From the previous equations, we obtain the following expectations:

〈αjd〉 =
u∗jd
v∗jd

〈ln(αjd)〉 = Ψ(u∗jd)− ln(v∗jd)

(A12)

(4) Optimal solution to Q(~β).

Q(~β) =
M

∏
j=1

D

∏
d=1
G(β jd | s∗jd, t∗jd) (A13)
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where

s∗jd = sjd + 〈αjd〉
N

∑
i=1
〈zij〉

t∗jd = tjd + 〈αjd〉
N

∑
i=1
〈zij〉yid

(A14)

From the previous equations, we obtain the following expectations:

〈β jd〉 =
s∗jd
t∗jd

〈ln(β jd)〉 = Ψ(s∗jd)− ln(t∗jd)

(A15)
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