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Society is increasingly aware of the important role of forests and other woodlands
as cultural heritage and as providers of different ecosystem services, such as biomass
provision, soil protection, hydrological regulation, biodiversity conservation and carbon
sequestration, among others. The use and management of forest resources should guarantee
the sustainability of both environmental and economic roles. Sustainability can be ensured
by optimizing forest management practices, which in turn require quality information
about the available resources. In this respect, the appropriate characterization of forest
ecosystems and the precise monitoring of the spatiotemporal distribution of forest stocks
at local, regional and global scales is crucial for facing current hazards such as biodiversity
loss, diseases and pests, forest fires and global climate change through better management
plans and mitigation policies.

Forest fieldwork has traditionally been a robust, reliable and necessary basis for
estimating forest attributes from easy-to-measure variables. However, it remains expensive
and time-consuming and is usually limited to small forest areas and low sampling intensity.
In addition, traditional fieldwork is often highly dependent on the skills of the operator,
and careless measurements can lead to large errors. In this respect, Earth observation (EO)
and Remote Sensing (RS) data can provide accurate, robust and spatially explicit data over
large areas through economic and relatively rapid surveys.

Urban forests and isolated urban trees also provide important environmental, eco-
nomic, health and social benefits. Thus, urban forests and trees are able to mitigate the
impact of urban heat islands, to trap dust, ash, pollen and smoke, provide shade, reduce
the impact of high winds and storm water run-off, reduce noise pollution, enhance wildlife
and plant diversity, increase home and business value, promote mental health and physical
activity, etc. As in forest management, urban forest and garden management requires
accurate and up-to-date knowledge of the condition and status of urban trees and forests.
Here, too, RS data can provide up-to-date, key information to guide maintenance and
silvicultural treatments, enabling the better design of green urban areas.

Active LiDAR (Light Detection and Ranging) systems mounted on a variety of plat-
forms (e.g., aerial, satellite, terrestrial, mobile) have become the preferred means of remote
sensing forest and tree attributes. Advances in passive sensor technology and image pro-
cessing, particularly the application of structure from motion (SfM) techniques, which
enable rapid extraction of three-dimensional (3D) data based on feature matching with
overlapping images, have led to the creation of dense digital photogrammetry (DP)-based
point clouds of similar densities to those provided by LiDAR.

In the last few decades, active and passive RS techniques have been used to acquire
spatially accurate 3D point clouds that represent the shape of the surveyed objects. This
has brought about a revolution in the forestry sector. Rapid advances in capturing georef-
erenced point clouds and in computing and data processing methods have also increased
the availability of high-resolution 3D data, making the use of such data for retrieving tree
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and forest stand attributes (which can be used for forest and urban tree management and
monitoring) feasible, affordable and operational.

The aim of the Special Issue “3D Point Clouds in Forest Remote Sensing” (hereinafter
SM, Supplementary Materials) was to gather scientific studies applying novel approaches
to collecting and analyzing 3D point clouds captured in forest and urban tree environ-
ments. The studies included use different technologies (e.g., LIDAR, photogrammetry),
platforms (e.g., static- and mobile-terrestrial platforms, unmanned aerial vehicles and
manned airplanes), scales (tree, stand, regional and country level) and analytical methods
(e.g., StM, 3D modelling, forest modelling, machine learning, point filtering and automated
classification) and include case studies distributed globally and covering a large variety of
forest and urban tree environments (see Table 1). Finally, we provide discussions of current
trends and future perspectives on this research topic. Table 1 provides an overview of the
research articles included in the SM, summarizing the country of the study area, the RS
data type, the scale, the variable of interest and the main methods used.

Table 1. Overview of the research articles included in the Special Issue “3D Point Clouds in Forest Remote Sensing” in the

journal Remote Sensing.

Study Area

Article 1 RS Data 2 Scale 3 Variable of Interest 4 Methods 5
(Country)
Pimont et al.,
2019 [1] SD TLS, UAVL ITL LAD MLE, VBM
Hosoi et al., VI, data fusion, 3D
2019 [2] Japan TLS, MuC, ThC ITL ChL reconstruction
Kuo et al 3D reconstruction,
2019 [3] v Japan TLS ITL LADi segmentation,
g k-means algorithm
Pascual 2019 [4] Spain ALS ITL/SL V, BA, Ho ’Zﬁgéfﬁ;iﬁff’
Holmgren et al tTee position, stem Segmentation, calibration,
2019 [5] v Sweden MLS ITL/SL diameters, BA, PC A !
BA-weighted mean DBH
Nepomuceno
Cosenza et al., Spain ALS SL Diameter distributions ABA, PDF modelling
2019 [6]
Pascual et al., . ABA, model transferability,
2020 [7] Spain ALS SL V. BA, Ho data co-registration
Duanmu and . 3D reconstruction, ANPDA,
Xing 2020 [8] China MLS ITL DBH point-distribution analysis
Deep-learning, CNN,
Wu etal., 2020 [9] China TLS ITL FWC h%%"'tgfzr;gzﬁer
intensity calibration
Region growing,
Ma et al morphology segmentation,
2020 [1 0']’ China ALS ITL Crown shape, tree position 2D hull convex area,
correlation, Gaussian fitting,
k-means segmentation
Deep-learning,
Windrim and . - segmentation, 3D
Bryson 2020 [11] Australia ALS ITL Tree position, cw, h, v reconstruction, R-CNN,
3D-CNN, VBM, RANSAC
Comparison, density-based
6(2)2)120(1)3 [eltz?l" Austria MLS, TLS ITL Tree position, DBH clustering, co-registration,
3D reconstruction
.. . Comparison, ABA, ITD,
Vieira Leite etal, Brazil ALS ITL/SL Vv ANN, RE, SVM,

2020 [13]

statistical modelling
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Table 1. Cont.

Article Study Are? RS Data 2 Scale 3 Variable of Interest 4 Methods 5
(Country)

Gajardo et al., . Comparison, VBM,
2020 [14] Spain TLS, SHI ITL CGF 3D reconstruction
l;ggoet%l]" China TLS ITL FWC, v, h, DBH 3D reconstruction
Zhu et al., CANUPO classification,
2020 [16] Germany TLS ITL FWC k-means clustering

CSF, region growing,
tree segmentation,
Xu etal., . ALS, HyC, histogram-based forest
2020 [17] United States DHC, TLS SL LAL overstorey stratification,
SACA, statistical
modelling, VI
Santz%g‘éo[ll‘g al, Ttaly ALS SL TreeMh RF

Thgé\fgflgt] al, Japan ALS, DP ITL Tree species, h, DBH OBIA, RF
Fan et al., Indonesia, Peru, .

2020 [20] Cuiana TLS ITL DBH, v, h, FWC, AGB 3D reconstruction

Almeida et al., . Fourier transform,
2020 [21] Brazil bP SL AGB, TD, BA, DBH, h statistical modelling

e?;?nz((;—z%e[%g] Spain TLS SL Shrub fuel load Statistical modelling

Lamprecht et al., Tree position, tree stem Point filtering,
2020 [23] Germany ALS ITL delineation statistical modelling
Nevalainen et al Simultaneous location and
2020 [24] v Finland TLS ITL Tree position mapping using GO-LOAM
and Go-ICP algorithms
Transfer learning, PCA,
Hui et al., . Tree position, tree stem kernel density estimation
2021 [25] Finland TS ITL delineation Gaussian mixture
model separation
Local point density
Laztg;lla[eztéz]al., Italy ALS ITL Tree position, h maxima, Fourier transform,
Point filtering
Buian et al Point filtering, OBIA,
2(])21 [27] v Spain ALS SL Land cover classification Decision tree
classification, RF
Przewozna et al Tree position, crown Point filtering, OBIA,
v Poland ALS, OPM ITL, SL X . ’ segmentation, Decision
2021 [28] delineation, tree cover e
tree classification
Tian et al., . Sunlit/Shaded leaves, 3D Statistical modelling,
2021 [29] China TLS, UAVL SL forest PAR mapping Point filtering
Perez-Cruzado Germany TLS ITL HDB Statistical modelling, SHC

et al., 2021 [30]

1 8D: Simulated data. 2 TLS: terrestrial laser scanning; UAVL: unmanned aerial vehicle for LIDAR; MuC: multispectral cameras; ThC:
thermal cameras; ALS: airborne laser scanning; MLS: mobile laser scanning; SHI: simulated hemispherical images; HyC: hyperspectral
cameras; DHC: digital hemispherical cameras; DP: digital photogrammetry; OPM: orthophotomaps. 3 ITL: individual tree level; SL:
stand level. 4 LAD: leaf area density; ChL: chlorophyll distribution; LADi: leaf angle distribution; V: growing stock volume; BA: stand
basal area; Ho: dominant height; DBH: diameter at breast height; FWC: foliage and woody components; LAI: leaf area index; Cw:
crown width; h: individual tree height; v: stem volume; CGP: canopy gap fraction; AGB: above ground biomass; TreMh: tree-related
microhabitats; TD: tree density; PAR: photosynthetically active radiation; HBD: horizontal distribution of individual tree biomass. > MLE:
maximum likelihood estimator; VBM: voxel-based methods; VI: vegetation indexes; ABA: area-based approach; ITD: individual tree
delineation; EABA: enhanced area-based approach; PCA: principal component analysis; PDF: probability density functions; ANPDA:
annular neighboring point distribution analysis; CNN: convolution neural network; R-CNN: region-based convolution neural network;
3D-CNN: 3D-based convolution neural network; RANSAC: random sample consensus; ANN: artificial neural network; RF: random forest;
SVM: support vector machine; SACA: scan angle correction algorithm; CSF: cloth simulation filter; OBIA: object-based image analysis;

SCH: standardized composite histogram.
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The SM include 30 published manuscripts (see Table 1): 28 research papers [1,2,4-15,17-30],
one letter [16] and one technical note [3]. Among these, only one paper exclusively uses pas-
sive RS data [21], while 29 papers use at least one LiDAR dataset in the analysis [1-20,22-30].
Ten papers exclusively use airborne laser scanning (ALS) data [4,6,7,10,11,13,18,23,26,27],
nine papers exclusively use terrestrial laser scanning (TLS) data in the analysis [3,9,15,16,20,
22,24,25,30], two papers exclusively use mobile laser scanning (MLS) data [5,8] and three
papers combine data from different LiDAR platforms [1,12,17,29]. Finally, five papers use
combined active and passive remote sensing data sets [2,14,17,19,28]. Regarding the scale
of the analysis, 18 of the studies perform individual tree level (ITL) analysis [1-3,8-12,14—
16,19,20,23-26,30], eight papers report stand level (SL) analysis [6,7,17,18,21,22,27,29] and
four report a combination of ITL and SL [4,5,13,28]. Tree position, diameter at breast height
(DBH) and individual tree height (h) are the most common variables of interest, analyzed
in nine, six and six papers, respectively, while the most commonly used methods are 3D
reconstruction, point filtering and statistical modelling, which are used in eight, five and
five papers, respectively (see Table 1).

The pictorial word cloud in Figure 1 combines the thematic keywords (Figure 1a) and
titles (Figure 1b). The most repeated individual words (excluding connective words and
commonly used verbs) in the thematic keywords are Forests, LIDAR, Tree, Laser and Point,
while the most repeated concepts are LiDAR (13 repetitions), followed by Forest Inventory
(FI) (seven repetitions), Individual Tree Crown (ITC) and Terrestrial Laser Scanning (TLS)
(six repetitions each) and Airborne laser scanning (ALS) and Remote sensing (RS) (four
repetitions each) (Figure 1a). Within the titles, the most repeated individual words (exclud-
ing connective words and commonly used verbs) are Tree, Laser, Forest, Estimating and
Scanning (Figure 1b).

IMENMTOI
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Scaning . SRS
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Figure 1. Pictorial word clouds showing the main thematic topics of the 30 research papers included in the Special Issue
“3D Point Clouds in Forest Remote Sensing” of Remote Sensing (created with https://wordart.com/create, accessed on 17
June 2021): (a) Keywords; (b) Titles.

The SM were edited by two Guest Editors (GEs): Dr. Ramén Alberto Diaz Varela
(University of Santiago de Compostela, Spain) and Dr. Eduardo Manuel Gonzalez Ferreiro
(University of Ledn, Spain). Both GEs contributed by co-authoring three scientific papers in
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the SM [6,22,27] and handling a total of 44 manuscripts over 20 months, between May 2019
(when the call for papers was opened and disseminated) and the end of December 2020
(the deadline for submissions). In addition to the GEs, five Associate Editors intervened in
the SM, handling a total of five manuscripts [6,19,22,27,30] to prevent conflicts of interest
in the evaluation of the manuscripts submitted by the GEs and colleagues.

In total, 142 authors contributed to the manuscripts published in the SM. The inter-
national impact of the SM is positive, as the scientists belong to institutions spread over
19 countries and the analyzed forest areas extend across 16 countries. The number of
authors per manuscript ranges from 1 to 10, with an average of four to five authors per
article. Furthermore, a large team of 81 anonymous international experts in the field of
forest remote sensing was involved in the peer-review process to help the GEs ensure the
rigorous assessment of the scientific studies. A minimum of two and a maximum of four
reviewers provided feedback on each manuscript. The average time from submission to
publication was approximately 39 days.

The strong impact of the topic of the SI in the RS community is indicated by the fact
that “3D Point Clouds in Forest Remote Sensing” is the first of two Special Issues on the
topic in the journal Remote Sensing. The second part (“3D Point Clouds in Forest Remote
Sensing: Part II”) [31], open for submissions between January 2021 and June 2022, will
be edited by GEs Dr. Sandra Bujan (University of Santiago de Compostela, Spain) and
Dr. Andrea Hevia (University of Huelva, Spain). Furthermore, the previously published
Special Issue “3D Point Clouds in Forests” [32], edited by Prof. Peter Krzystek, included
12 closely related scientific papers published between November 2018 and July 2019.

The papers for the present SM were published between 3 July 2019, and 9 March
2021. MDPI citation metrics (Google Analytics [33]) were used to analyze the visibility of
the SM across the journal readers in the first five months after the deadline (31 December
2020). The citation metrics for the 30 articles in the SM show that up to 1 June 2021, the SM
received a total of 29,682 views and 83 citations, i.e., a rate of 1291 views and 3.6 citations
per month in the period analyzed (23 months between the publication and the beginning
of June 2021). The most frequently viewed paper was the study by [12], which received
a total of 1888 views and seven citations. The most frequently cited paper is the study
by [11], which received a total of nine citations and 1350 views. The highest rate of views
per month after publication corresponds to the study by [28], while the highest monthly
rate of citations after publication corresponds to the study by [11].

The contributions included in these SM are representative of current trends in this
topic, highlighting the potential value of 3D point clouds as highly reliable databases for
characterizing the vertical and horizontal structure and other key parameters of trees and
forests. The different authors selected a wide variety of objective variables for the various
studies, using different platforms, data sources and processing methods in a wide range
of forest environments. Together with the past related special numbers [32] and related
special numbers in progress [31], the SM “3D Point Clouds in Forest Remote Sensing”
contributes to the scientific and technical knowledge of the use of 3D point clouds in forest
environments by disseminating novel findings to the readers of Remote Sensing.

Supplementary Materials: The following are available online at https://www.mdpi.com/journal/
remotesensing/special_issues/3D_Point_Clouds_Forest_Remote_Sensing, accessed on 1 June 2021.

Author Contributions: Conceptualization, R.A.D.-V. and E.G.-F; formal analysis, R.A.D.-V. and
E.G.-F,; data curation, R.A.D.-V. and E.G.-F; visualization, R.A.D.-V. and E.G.-F.; writing—original
draft preparation, E.G.-F. and R.A.D.-V.; writing—review and editing, R.A.D.-V. and E.G.-F. All
authors have read and agreed to the published version of the manuscript.
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