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Abstract: Understory vegetation plays an important role in the structure and function of forest
ecosystems. Light detection and ranging (LiDAR) can provide understory information in the form of
either point cloud or full-waveform data. Point cloud data have a remarkable ability to represent
the three-dimensional structures of vegetation, while full-waveform data contain more detailed
information on the interactions between laser pulses and vegetation; both types have been widely
used to estimate various forest canopy structural parameters, including leaf area index (LAI). Here,
we present a new method for quantifying understory LAI in a temperate forest by combining the
advantages of both types of LiDAR data. To achieve this, we first estimated the vertical distribution of
the gap probability using point cloud data to automatically determine the height boundary between
overstory and understory vegetation at the plot level. We then deconvolved the full-waveform data
to remove the blurring effect caused by the system pulse to restore the vertical resolution of the
LiDAR system. Subsequently, we decomposed the deconvolved data and integrated the plot-level
boundary height to differentiate the waveform components returned from the overstory, understory,
and soil layers. Finally, we modified the basic LiDAR equations introducing understory leaf spectral
information to quantify the understory LAI. Our results, which were validated against ground-based
measurements, show that the new method produced a good estimation of the understory LAI with an
R2 of 0.54 and a root-mean-square error (RMSE) of 0.21. Our study demonstrates that the understory
LAI can be successfully quantified through the combined use of point cloud and full-waveform
LiDAR data.

Keywords: LAI; understory; overstory; LiDAR; full-waveform; point cloud; forest

1. Introduction

Vegetation in forests often displays distinct layering [1], which can be divided into
overstory and understory. The overstory refers to the uppermost layer made up of woody
plants, while the understory is located beneath the overstory, typically consisting of trees
stunted by lack of light, other small trees with low light requirements, saplings, vines, and
undergrowth [2]. Between the overstory and understory, a gap height interval often exists
(Figure 1).

In view of the great financial value and critical ecological functions, the retrieval of
overstory vegetation attributes has been advanced considerably with the help of remote
sensing techniques [3–5]. In contrast, the characteristics of understory vegetation remain
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poorly explored to date, despite its important impacts on a wide range of processes in forest
ecosystems. For example, it aids in soil nutrient cycling and soil structure maintenance,
protecting soil and water from erosion [1]. It provides wildlife with habitats and forage,
contributing to species diversity [6]. It affects overstory regeneration and thus changes the
rate and direction of forest succession [7]. It also contributes to carbon stocks, affecting
Aboveground biomass (AGB) and net primary production (NPP) estimation [8]. In addition,
it plays an important role in driving the transformation from a surface fire to a crown
fire, which can result in enormous economic losses [9]. Thus, quantifying understory
characteristics is of great significance.
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The leaf area index (LAI) has been an extensively studied indicator for the quantifi-
cation of vegetation [10–15]. Watson first defined it as the total one side leaf area per unit
ground surface area [10]. Later, Chen and Black proposed a more common definition that
LAI is half of the total leaf area per unit ground surface area [11]. LAI is a key vegeta-
tion structure parameter controlling the biological and physical processes of forests. It
regulates primary leaf physiological processes such as photosynthesis, respiration, and
transpiration [12]. LAI is highly correlated with carbon content, NPP, and the fraction of
absorbed photosynthetically active radiation (FPAR) [16]. Furthermore, LAI is critical to
the processes of carbon, water, and energy exchange between land and atmosphere [12,17].
It has been utilized as an important input or output parameter in many ecological, hy-
drological, and climate models [18–20]. However, failure to consider the understory LAI
contribution can lead to large uncertainties in assessing forest properties and modeling
surface processes [13,21]. Moreover, quantifying the understory LAI is vital for biodiversity
conservation since, motivated by the significant role of the LAI in ecosystem functioning,
the remote sensing and ecology communities have deemed it one of the crucial biodiver-
sity variables for tracking from space the progress toward meeting the Aichi Biodiversity
Targets [22]. For these reasons, it is critical to be able to accurately quantify the understory
LAI of forest ecosystems.

Despite its importance, quantifying the understory LAI has conventionally been
difficult. Traditional field surveys are very costly and limited to small areas. Passive remote
sensing techniques are also insufficient due to their inherently limited ability to penetrate
forest canopies and provide vertical structure information [23]. In contrast, more recently
developed active remote sensing techniques, such as light detection and ranging (LiDAR),
can penetrate forest canopies to varying degrees and capture a wide range of information
on the three-dimensional (3D) distribution of forest structural components, such as canopy
height, timber volume, and aboveground biomass [24,25].
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Generally, LiDAR data can be classified into point clouds and waveforms, depending
on how the reflected signals are recorded and processed. Discrete LiDAR systems (or
LiDAR system in discrete mode) record the exact location and intensity information of
the detected peaks, and the resulting point cloud LiDAR data have been widely used to
estimate forest structural properties, including mapping understory vegetation height [26],
discriminating vegetation strata [27], estimating understory cover [28], and characterizing
understory vegetation density [29]. Although these studies did not provide a direct method
for quantifying understory LAI, they strongly indicated that point cloud data can be
utilized to distinguish overstory and understory vegetation.

Compared with discrete LiDAR, full-waveform LiDAR usually records intensity at ev-
ery nanosecond, instead of the discrete peaks, of the returned pulse, which provides more
detailed information on the interaction between LiDAR pulse and canopy components.
Therefore, the resulting full-waveform data provide new possibilities for a comprehensive
understanding of the mechanism of pulse–vegetation interaction and for further inver-
sion of the vegetation parameters, provided that sophisticated models are established,
such as DART [30], HELIOS [31], and a waveform simulation model developed by Sun
et al. [32]. Based on these models, more detailed forest structural properties, such as the
vertical distribution of the foliage area volume density (FAVD), can be estimated from
full-waveform data [33]. The vertical distribution of gap probability of heterogeneous and
discrete canopies is the key concept modeling LiDAR waveforms, as it links the canopy
structure with the LiDAR waveforms through the lidar equation, which provides us with
the means to estimate the vertical gap probabilities from LiDAR full-waveform data, with
some knowledge of the foliage and ground reflectance ratio [34]. The LAI and the cu-
mulative vertical LAI profile over a tropical rainforest were retrieved by the vertical gap
probabilities using Laser Vegetation Imaging Sensor (LVIS) data [35]. Then the vertical
foliage profile (VFP) over the United States was further characterized on the basis of Geo-
science Laser Altimeter System (GLAS) data [36]. However, none of these studies separated
the understory LAI from the total LAI.

Notably, Li et al. [37] applied the basic LiDAR equations to retrieve both the understory
LAI and the overstory LAI of an orchard by combining full-waveform and point cloud
LiDAR data. The two layers were separated by acquiring the height boundary in a field
survey, which is time-consuming and laborious work. In addition, the differences in leaf
optical properties between the two layers were not considered in that study.

The aim of this study was to develop a new method for quantifying the understory LAI
in temperate forests by combining the advantages of both point cloud and full-waveform
LiDAR data. Specifically, we set out to (1) determine the height boundary between the
overstory and understory vegetation using point cloud data at the plot level; (2) integrate
the boundary information derived from point cloud data with full-waveform data to
distinguish the waveform components returned from the overstory, understory, and soil
layers; and (3) modify the basic LiDAR equations proposed by Ni-Meister for understory
LAI estimation using the discriminated waveform components.

2. Materials
2.1. Study Area and Field Data

The study area is located at the Saihanba National Forest Park (42.35◦ N, 117.32◦ E),
Chengde, Hebei Province, China (Figure 2). The park covers a total area of 94,000 hectares,
and its elevation ranges from 1100 m to 1900 m. The main soil types are aeolian sandy
soil, meadow soil, and swamp soil [38]. The park has a mean annual precipitation of
450 mm and an average temperature of −1.4 ◦C, with a short growing season (between
May and September) and a long winter (from November to March of the next year) [39].
The dominant overstory species are Mongolian pine (Pinus sylvestris var. mongolica Litv.),
Northern China’s larch (Larix principis-rupprechtii Mayr), and birch (Betula platyphylla). The
understory layer is dominated by Carex rigescens, Thalictrum aquilegifolium, Galium verum,
Geum aleppicum, Artemisia tanacetifolia, and Agrimonia pilosa [39].
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Field surveys, including LAI and spectrum measurements, were carried out from late
August to early September during the peak vegetation growing seasons in 2018 and 2019.
Here, we neglect the slight differences in forest properties between the two consecutive
years. LAI was measured in 16 plots (in Figure 1), each with the same area of 25 m × 25 m.
The sampling scheme within each plot was a cross formed by 5 measurement points:
two perpendicular 3-point transects, with the central one overlapping. The smartphone
positioning software Ovital Map (version 7.5.8) (https://www.ovital.com/download/
(accessed on 4 May 2018)) was used to record these points (with an accuracy of between 1
and 5 m). Considering the low accuracy of the positioning software, all the plots we chose
were relatively homogeneous within the range of error.

A Nikon fisheye camera was used to collect downward digital hemispherical pho-
tographs (DHPs) for the acquisition of the understory LAI. The camera was operated
by hand at 1.5 m above ground during overcast sky conditions or, alternatively, in the
very early morning or at dusk to avoid direct illumination from the sun. The hemi-
spherical photographs were processed using CAN_EYE software (version 6.4.91) (http:
//www6.paca.inra.fr/can_eye (accessed on 10 June 2018)). When using this software, users
can discriminate image pixels as belonging to either vegetation elements or background.
The background corresponds to soil pixels in downward images. The undesired parts of
the images, such as the feet of the operator, were interactively masked out before discrimi-
nation. Based on the classification results, gap fractions in different zenith and azimuth
directions were calculated to generate understory LAI values. The plot-level understory
LAI was calculated as the mean value derived from DHPs within each plot, holding a
distribution range of between 0.32 and 1.47 (Table 1). The mean value of the plot-level
understory LAI was 0.86, with a stand deviation value of 0.31.

https://www.ovital.com/download/
http://www6.paca.inra.fr/can_eye
http://www6.paca.inra.fr/can_eye
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Table 1. Statistics of in situ understory LAI measurements at the plot level (plot number = 16).

Understory LAI

Min 0.32
Max 1.47

Mean 0.86
SD 0.31

Range 1.15

Understory vegetation, overstory vegetation, and soil spectra were measured by using
a handheld SVC HR-1024 Spectroradiometer (Spectra Vista Corporation, Poughkeepsie,
NY, USA) during the survey. For the understory vegetation, seven samples of the dominant
species of Carex rigescens mixed with a few other species were measured, and the reflectance
was calculated to have an average value of 0.21 (s.d. = 0.04) at a wavelength of 1550 nm
(equal to the wavelength of the LiDAR system introduced in Section 2.2.). For the soil, only
three measurements were available (0.38, 0.40, and 0.33 at 1550 nm), and we used their
average value of 0.37 as the ground reflectance. The overstory reflectance spectrum was
measured using an ASD FieldSpec spectrometer (Analytical Spectral Devices, Boulder, CO,
USA) in combination with an ASD integrating sphere. Leaves from three dominant over-
story species were picked by an experimenter standing on a crane and were immediately
stored in zipper-close plastic bags before measurement in the laboratory; for each species,
nine leaves were collected separately from the upper, middle, and lower crowns of three
trees. The reflectance of each overstory species was calculated as the mean value of the
nine samples at 1550 nm; the value for Mongolian pine was 0.16 (s.d. = 0.02), the value for
Northern China’s larch was 0.25 (s.d. = 0.02), and the value for birch was 0.31 (s.d. = 0.02).

2.2. LiDAR Data

LiDAR data were obtained in the study area in early September 2018 using the LiCHy
system [40] by the Chinese Academy of Forestry (CAF). The full-waveform sensor (Riegl
LMS-Q680i) included in this system has a wavelength of 1550 nm and a laser pulse width
of 3 ns. The waveform data were recorded at intervals of 1 ns, resulting in approximately
15 cm per waveform bin. The flying altitude was approximately 1000 m above ground, and
the diameter of the footprint was approximately 0.25 m. Point cloud data were acquired at a
density of 4.8 pts/m2 without considering multiple returns. The corresponding processing
steps are described in the next section.

3. Methods

The main methodological workflow for our study is shown in Figure 3. It consisted of
the determination of the height boundary between the overstory and understory vegetation
at the plot level, the preprocessing of the full-waveform data, and the modification of basic
LiDAR equations for quantifying the understory LAI. Further details of each step are
described in the next subsections.
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3.1. Determination of the Overstory–Understory Height Boundary at the Plot Level

Since vegetation in forests often displays distinct layering, and a gap height interval
can often be found between the overstory and understory layers, the overstory and un-
derstory vegetation can be distinguished through the height gap interval. Assuming that
the vertical gap probability remains the same within the height interval but changes in
intervals with leaves, the profile of the vertical gap probability can be used to separate
the overstory and understory vegetation. However, when there is no distinct boundary
between the overstory and understory vegetation, a cutoff threshold can be set to separate
them. In our study, we set this threshold to 2 m according to [41].

The vertical gap probabilities at the plot level were estimated using the point cloud
data normalized with respect to the height above ground. First, the point cloud data
were classified as ground returns and nonground returns using an improved progressive
triangulated irregular network (TIN) densification filtering algorithm [42]. Next, the
elevation of each return was normalized by subtracting the elevation of the ground returns.
Then, a method of using the first returns to calculate the vertical gap probabilities [4]
was adopted:

Pgap(z) = 1− ∑zmax ∑
z n

N
(1)

where Pgap(z) denotes the gap probability at height z, N is the total number of emitted
pulses, and n is the total number of first returns that fall in the height strata between the
top of the canopy and the height z.
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To determine the optimal boundary height at the plot level, we took the derivative
with respect to the gap probability along the vertical direction, dp/dz. Since we assumed
that the vertical gap probability remained the same only at the height boundary between
overstory and understory vegetation, the values of dp/dz were supposed to be zero only
at the height gap interval.

Let Hb denote the height boundary between the overstory and understory vegetation,
and let Hb have a distribution range of between a and b (shown in Equation (2)). Near the
ground height, ground returns and low nonground returns are likely to be misclassified,
leading to the relatively low accuracy of the estimated the vertical gap probabilities. To
mitigate this effect, we set the value of a as 1 m. Except for the boundary height, gap
probabilities along the vertical direction are likely to remain the same near the height of
the canopy top (equal to 1), so we set the value of b as 4 m (according to [43]).

a m ≤ Hb ≤ b m (2)

3.2. Preprocessing of Full-Waveform Data
3.2.1. Waveform Deconvolution

The observed waveform is the sum of the convolutions of terms related to the system
and environment contributions [44]:

Pr(t) =
N

∑
i=1

D2

4πλ2Ri
4 Pt(t) ∗ ηsys(t)︸ ︷︷ ︸

system contribution

∗ ηatm(t) ∗ σi(t)︸ ︷︷ ︸
environment contribution

(3)

where “∗” denotes the convolution operation, t is the travel time of the transmitted laser
pulse, Pr(t) is the observed signal as a function of time, N is the number of targets that
contribute to the returned waveform, D is the aperture diameter of the receiver optics,
λ is the wavelength, and R is the distance from the LiDAR system to the target. Pt(t) is
the outgoing signal, which has a certain distribution function, while ηsys is the receiver
impulse response, which is typically assumed to be Gaussian (for the Riegl LMS-Q680i, the
outgoing pulse and a model of the system impulse response as calibrated in [45] are shown
in Figure 4). ηatm is the atmospheric factor, and σ(t) is the cross section of the illuminated
area. The system contribution is not a perfect delta function but rather an approximate
Gaussian function with a certain width. Consequently, the convolution of the system
and environmental contributions can result in a reduction of the temporal resolution of
the observed signal. The signal resolution can be restored after such a decrease through
waveform deconvolution algorithms.

The Richardson–Lucy (RL) algorithm [46] was employed to deconvolve the waveform
data. The RL algorithm has the following advantages: a small root-mean- square error
(RMSE) for recovering the true cross section, a low false discovery rate for detecting the
unobservable local peaks in the stretched raw waveforms, and high classification accuracy
for differentiating herbaceous biomass levels [47]. The RL algorithm was initially designed
for restoring an image by iteratively searching for solutions to the deconvolution problem.
Based on Bayes’ theorem, it aims to calculate the most likely value ft(x) given the observed
d(x) and the known point-spread function g(x). A LiDAR waveform can be seen as an
image with dimensions of 1 × N, and the solution from the tth iteration can be written as
follows in convolutional form:

ft+1(x) = ft(x)·
(

d(x)
ft(x) ∗ g(x)

∗ g(−x)
)

(4)

where d(x) is the observed value at location x, ft(x) is the most likely value at location x,
g(x) is the known point-spread function, and t is the number of iterations. One can solve
for f (x) by iterating Equation (4) until convergence is reached.
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3.2.2. Waveform Decomposition

Before waveform decomposition, the noise contained in the deconvolved waveform
should be removed. In our study, first, a noise threshold was defined as the mean value
of the last 5% of the raw waveform intensities. We subtracted this threshold from the raw
waveform. Then, Savitzky–Golay (S-G) filtering [48] was applied to smooth the waveform
and remove the remaining noise.

To discriminate the waveform components originating from the overstory, under-
story, and ground, it is essential to decompose the deconvolved waveform. Gaussian
decomposition is an effective way to decompose the waveform into a sum of sub-Gaussian
waveforms [49]. The corresponding analytical expression can be written as:

f (x) =
n

∑
i=1

Ai·exp(−
(
x− µi

2)
2σi

2 ) (5)

where n is the number of sub-Gaussian waveforms, Ai is the peak amplitude of the ith
sub-Gaussian waveform, σi is the standard deviation of the ith sub-Gaussian waveform,
and µi is the location of the peak in the ith sub-Gaussian waveform.

The deconvolved waveform was fitted as a mixture of sub-Gaussian waveforms using
the nonlinear least squares (NLS) method and the sequential quadratic programming (SQP)
as the optimization algorithm [50]. To ensure the quality of the decomposition, suitable
initial values of n, Ai, σi, and µi must be obtained. For this purpose, we calculated these
parameters by first finding the local maxima of the deconvolved waveform that exceeded a
certain threshold and then used the corresponding peak values as the initial amplitudes,
the half widths of adjacent peaks as the initial standard deviations, and the peak locations
as the corresponding initial locations.
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After waveform decomposition, we took the last sub-Gaussian waveform as the
ground return. Except for the ground return, the waveform components for which the
peak locations were below the boundary height were taken as understory returns, and the
rest were taken as overstory returns.

3.3. Retrieval of the Understory LAI

The understory LAI and overstory LAI were retrieved based on LiDAR equations [34]
and gap theory [51,52]. The LiDAR equations were used to build a link between the LiDAR
waveforms and the vertical gap probability distribution, while gap theory was used to
quantify the relationship between the gap probability and the LAI.

The LiDAR equations define the energy of a waveform received from the forest
environment as a function of the emitted pulse energy, the vertical distribution of the
gap probability, and the leaf and ground backscattering coefficients, as shown in the
following equations:

Rv(z) = J0·ρv·(1− P(z)) (6)

Rv(0) = J0·ρv·(1− P(0)) (7)

Rg = J0·ρg·P(0) (8)

where Rv(z) is the integrated laser energy returned from the top of the canopy to a height
z, with Rv(0) denoting the integrated laser energy returned from the top of the canopy to
the bottom of the vegetation layer; P(z) represents the gap probability at height z, with
P(0) representing the gap probability at the ground; J0 is the emitted pulse energy after
atmospheric correction; ρv is the backscattering coefficient of the vegetation, which is
related to the leaf spectral properties, the leaf angular orientation, and the phase function of
leaf scattering; Rg is the laser energy returned from the ground; and ρg is the backscattering
coefficient of the ground.

From Equation (8), we obtain:

P(0) =
Rg

J0 · ρg
(9)

Substituting Equation (9) into Equation (7), we obtain:

Rv(0) = J0 · ρv ·
(

1−
Rg

J0 · ρg

)
(10)

J0 =
Rv(0)

ρv
+

Rg

ρg
(11)

Substituting Equation (11) into Equation (6), we obtain:

P(z) = 1− Rv(z)
Rv(0)

· 1

1 + ρv
ρg
· Rg

Rv(0)

(12)

From the gap probability distribution in the vertical direction, the LAI can be calculated
using the method of Macarthur and Horn [15]. The LAI can be determined as the integrated
FAVD value between the desired height intervals if it is not too difficult to obtain the
continuous FAVD between these intervals. However, this process can be replaced with the
logarithmic transformation of the gap probabilities, which is easy to calculate as follows:

LAIcum(z) =
∫ z

z0
Fa(z)dz = − 1

G
·
∫ z

z0

dlnP(z)
dz

dz (13)

where LAIcum(z) is the cumulative LAI as a function of the height z; z0 is the bottom height;
Fa(z) is the FAVD, in units of m2/m3; and G is the projection coefficient, which was set to
0.5 here under the assumption of a random foliage distribution.
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Equation (12) does not consider the backscattering coefficient differences between
the overstory and understory vegetation, and from Equation (13), we cannot separate the
understory LAI from the total LAI.

To calculate the understory LAI, we introduced the understory leaf backscattering
coefficient and emphasized P(b), which is the gap probability at the boundary height
between the overstory and understory layers, as shown in the following three equations:

Ro = J0·ρo·(1− P(b)) (14)

Ru = J0·ρu·P(b)·(1− P
(
0)′
)

(15)

Rg = J0·ρg·P(b)·P(0)′ (16)

Combining Equations (14)–(16), we obtain:

P(0)′ =
1

Ru
Rg
· ρg

ρu
+ 1

(17)

P(b) =
1

Ro
Rg
· ρg

ρo
· P(0)′ + 1

(18)

P(0) = P(0)′·P(b) (19)

Ro, Ru, and Rg are the laser energy returns from the overstory, understory, and ground,
respectively. Their ratios, Ru/Rg and Ro/Rg, can be easily calculated from the decomposed
waveforms. J0 is the atmospherically corrected laser pulse energy, as previously defined.
P(0)′ denotes the gap probability that a laser pulse can penetrate from the boundary height
to the ground without hitting vegetation. P(0) denotes the gap probability that a pulse
can penetrate from the canopy top to the ground without hitting vegetation. ρo, ρu, and ρg
are the backscattering coefficients of the overstory, understory, and ground, respectively.
Here, we treated these coefficients in a simplified way, as has been done in previous
studies [14,35,53], by replacing them with the reflectance values of the overstory leaves,
understory leaves, and ground.

The understory LAI is the integrated value between the boundary height and the
ground height:

ULAI = − 1
G
·
∫ b

0

dlnP(z)
dz

dz = − 1
G
(ln(P(b))− ln(P(0))) (20)

3.4. Sensitivity Analysis of the Spectral Parameters

Leaf and soil spectral properties of the same species often differ in different periods,
and they also vary even within a small area [54–56]. In addition, leaf spectral properties are
affected by the vertical canopy position [57]. In our study, two spectral parameters, ρg/ρo
and ρg/ρu, were simply treated as the mean values of the measured reflectance, which may
cause large uncertainties in the quantification of the understory LAI. Thus, the influence of
these uncertainties on the modified LiDAR equation performance should be tested. On the
basis of our field measurement, the mean values of ρg/ρo and ρg/ρu were set to 1.48 and
1.76, respectively. Here we changed their corresponding values to range from 1 to 2 and 1.2
to 2.2, respectively, to evaluate their effects on the understory LAI estimation.

4. Results
4.1. Overstory–Understory Height Boundary

Two patterns of the gap probability distribution in vertical direction were observed,
representing with obvious gap stratum and without obvious gap stratum between the over-
story and understory vegetation, respectively (Figure 5). In both cases, the gap probability
increased from the ground to the top of the canopy. For the pattern with an obvious gap
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stratum, the gap probability remained the same over a height stratum between 2.1 m and
5 m, except in the height interval near the top. For the pattern without an obvious height
gap, the gap probability continue to increase until it reached the top height.
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Figure 6 displays the distribution of dp/dz along the vertical direction. For a plot with
obvious gap stratum, we determined the height boundary as the height corresponding to the
value of dp/dz that was equal to zero in the height interval between 1 and 4 m. For a plot
without an obvious gap stratum, we set the height boundary to the aforementioned 2 m.
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Table 2 lists the height boundary determined for each plot. Six gap height values of
the 16 plots fell between 1 and 2 m, while the remaining 10 plots had height gap values
greater than 2 m. The highest boundary value was 3.90 m, belonging to plots 2, 5, and 6. In
contrast, the lowest boundary value was 1.05 m, corresponding to plot 15. There was no
obvious gap stratum between the overstory and understory vegetation at plots 13 and 16.
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Table 2. Height boundaries at the plot level (unit: m).

Plot ID Height Boundary Plot ID Height Boundary

1 1.35 9 1.50
2 3.90 10 2.40
3 3.30 11 2.40
4 2.10 12 3.60
5 3.90 13 2.00
6 3.90 14 2.10
7 2.85 15 1.05
8 1.50 16 2.00

4.2. Waveforms after Deconvolution and Decomposition

A received waveform and its corresponding deconvolved and decomposed waveforms
are displayed in Figure 7. The results show that after deconvolution, the intensities become
higher, and the widths become narrower. Compared with those in the raw received
waveform, the peaks in the deconvolved waveform are much easier to find. This verifies
our assumption that deconvolution can improve the vertical resolution of the waveform
and help to more effectively distinguish waveform components from different targets. After
decomposition, the waveform components from the overstory, understory, and ground can
be explicitly discriminated.
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4.3. Sensitivity of the Method to Spectral Parameters

Figure 8 shows the estimated understory LAI values for a randomly selected plot. We
can see that the predicted understory LAI is not sensitive to ρg/ρo but that it increases with
increasing ρg/ρu; however, the variation is slight.
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4.4. Retrieved Understory LAI

The plot-level understory LAI and overstory LAI values were estimated by averaging
the corresponding retrieved values at the footprint level. Figure 9 shows the relation be-
tween the estimated understory and overstory LAIs and the corresponding field-measured
LAIs. We can see that the estimated understory LAI values were in good agreement with
the measured understory LAI values (R2 = 0.54, RMSE = 0.21, bias = 0.02).
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5. Discussion

Prior to this study, some understory structural parameters, e.g., height, cover, and
density, were estimated using discrete return LiDAR data [26,41]. Our study demonstrates
that the understory LAI can also be quantified through the combined use of discrete return
and full-waveform LiDAR data.

The agreement between the estimated understory LAI and the measured LAI is
very good, but still not ideal. A primary reason may be that the range of our measured
understory LAI values is relatively small. With this limitation, a bias of 0.5 in a plot could
lower the consistency between the predicted and measured values. Thus, experiments
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should be developed to acquire larger-range understory values to further validate the
effectiveness of our method.

The use of inaccurate input parameters in the modified LiDAR equations could also
impact the estimated results. In the modified LiDAR equations, there are three kinds
of parameters. The first is the overstory–understory height boundary parameter. This
parameter is crucial not only because of its key role in the LiDAR equations but also because
of its critical influence on waveform component discrimination. In our study, we set the
plot size used to determine the height boundary equal to the size of our investigated plots
(25 m). However, this value may not be appropriate since larger plots are more likely to be
heterogeneous. Smaller, more homogeneous plots are more suitable for use in determining
the boundary height. Smaller plot sizes, such as 10 m and 5 m, could have been tested to
determine a more accurate height boundary if the accuracy of our positioning software
had been sufficient. The second parameter type corresponds to the waveform-related
parameters, which were calculated in accordance with the full-waveform data. The third
parameter type corresponds to the spectral parameters, which are subject to uncertainty.
A sensitivity analysis of the spectral parameters showed that only the uncertainties of
ρg/ρu slightly affected the predicted understory LAI, which indicated the robustness of
our method in quantifying understory LAI.

The good agreement between the estimated and measured values is encouraging,
but there are still some limitations in this paper. First, the understory LAI estimation
was based on the extraction of the waveform components associated with the understory
vegetation, which may not be effective for certain understory vegetation types. For example,
it seems impossible to extract waveform returns from moss and low herbs. There are
two main factors contributing to this. One is that understory vegetation is rooted in
the soil. Unlike in the overstory–understory spatial distribution pattern, there is no gap
stratum between the understory vegetation and the soil, which leads to unavoidable
mixing of the understory and soil waveform components. The other factor is that the
heights of these understory species are often lower than the vertical resolution of the
LiDAR system. This increases the degree of mixing of the understory and soil waveform
components, making it more difficult to separate them. This limitation comes from the
height-based distinction strategy. In fact, except for height, the intensity of discrete LiDAR
data—especially for the single, first, and last return LiDAR data—is also a good indicator
for the distinction of forest components [27]. In the future, LiDAR intensity should be
considered to advance the research. Second, our method was developed for application to
a temperate artificial forest, and it may not be applicable to more complex forests. Both
the overstory and understory vegetation types are relatively simple in this man-made
forest, causing the spectral parameters in the modified LiDAR equations to have relatively
low uncertainty. Therefore, theoretically, the uncertainty of the estimated understory
LAI values is relatively low. For more complicated forests, such as tropical forests, the
uncertainty of these parameters will be larger, which will lead to higher uncertainty in the
estimated results. As analyzed in the previous paragraph, ρg/ρo and ρg/ρu can influence
the estimated LAI values. Thus, our method should be tested on more complex forests.

6. Conclusions

In this study, we proposed a new method for quantifying understory LAI in a temper-
ate forest, which combined the advantages of both point cloud and full-waveform LiDAR
data. The results of this study demonstrate that the gap probability distribution derived
from point cloud data is a good indicator of overstory and understory height boundaries,
and therefore, it is useful in overstory and understory waveform component discrimination.
Waveform deconvolution can restore the vertical resolution of the full-waveform data and
thus make it easier to find waveform components belonging to understory vegetation. Our
modified LiDAR equations provide a sensible solution for estimating the understory LAI
on the basis of the discriminated waveform components. This study indicates the feasibility
of our method for quantifying the understory LAI in temperate forests. Further studies
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should be developed to test its effectiveness in complex forests, where the understory is
composed of many types of vegetation, such as understory tree, shrub, herb, and moss.
In addition, the next study should check whether this method is suitable for spaceborne
LiDAR data.
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