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Abstract: Global navigation satellite system (GNSS)-based synthetic aperture radar interferometry
(InSAR) employs GNSS satellites as transmitters of opportunity and a fixed receiver with two
channels, i.e., direct wave and echo, on the ground. The repeat-pass concept is adopted in GNSS-
based InSAR to retrieve the deformation of the target area, and it has inherited advantages from
the GNSS system, such as a short repeat-pass period and multi-angle retrieval. However, several
interferometric phase errors, such as inter-channel and atmospheric errors, are introduced into GNSS-
based InSAR, which seriously decreases the accuracy of the retrieved deformation. In this paper,
a deformation retrieval algorithm is presented to assess the compensation of the interferometric
phase errors in GNSS-based InSAR. Firstly, the topological phase error was eliminated based on
accurate digital elevation model (DEM) information from a light detection and ranging (lidar) system.
Secondly, the inter-channel phase error was compensated, using direct wave in the echo channel, i.e.,
a back lobe signal. Finally, by modeling the atmospheric phase, the residual atmospheric phase error
was compensated for. This is the first realization of the deformation detection of urban scenes using
a GNSS-based system, and the results suggest the effectiveness of the phase error compensation
algorithm.

Keywords: GNSS-based InSAR; interferometric phase error; deformation retrieval

1. Introduction

Global navigation satellite system (GNSS)-based synthetic aperture radar (SAR) em-
ploys GNSS satellites as opportunity transmitters, and the receivers can be stationary or
mounted on a vehicle or aircraft [1,2]. For SAR interferometry (InSAR), the existing re-
search is about combining InSAR data with GNSS ranging data [3–5]. Cherniakov et al. [6]
introduced the concept of GNSS-based SAR interferometry (GNSS-based InSAR), and the
greatest potential application of such a system is surface deformation monitoring by using
repeat-pass interferometry.

GNSS-based InSAR has a series of advantages. On the one hand, the repeat-pass
period of the proposed system with the Beidou Inclined GeoSynchronous Orbit (IGSO)
satellite is 1 day, which is much shorter than that of the traditional InSAR system (for
example, the repeat-pass periods of TerraSAR-X, Sentinel-1, COSMO-SkyMed (single
satellite) and Radarsat are 11 days, 6 days, 16 days and 24 days, respectively) [7–11].
Thus, the system is better for some rapid deformation scenarios, such as landslides and
mining collapses. On the other hand, multiple GNSS transmitters (between four and eight)
simultaneously illuminate the target area and guarantee multi-angle deformation retrieval.
Moreover, the cost of the GNSS-based system is low, due to the fact that it only requires
a receiver to continuously complete deformation retrieval, i.e., there are no costs at the
transmitter. In the existing research, deformation retrieval of the transponder based on the
GNSS system was realized [12], but there is no retrieval result of the actual scene.
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Due to the specific characteristics of GNSS-based InSAR, some novel problems are
faced during deformation retrieval processing. First, the two inevitable independent chan-
nels in GNSS-based InSAR introduce an inter-channel phase difference, which decreases
the retrieval accuracy, in the interferometric phase.

Second, the space baseline of repeat-pass in GNSS-based InSAR is much larger than
that of the traditional system since the GNSS satellites are not dedicated SAR transmitters.
In this case, the derived phase error is very large since uncertainty in the elevation error of
the imaging area is inevitable. Similarly, for the repeat-pass period, based on the navigation
message, the orbit information can be obtained. The precise orbit ephemerides of Beidou
IGSO and medium Earth orbit (MEO) satellites from January 2017 to December 2018 were
analyzed, and it was found that there is a second-order deviation between the actual
and nominal repeat-pass periods of the Beidou IGSO satellite, which is caused by orbit
perturbation. The detailed statistical results are shown in Table 1. Both factors cause spatial
decoherence [13].

Table 1. Repeat-pass period statistics of Beidou-2 satellite.

Type IGSO MEO

Nominal repeat-pass period 23 h 56 min 0 s
(1 sidereal day)

6 d 23 h 32 min 0 s
(7 sidereal days)

Real repeat-pass period 23 h 55 min 56–59 s 6 d 23 h 31 min 40–44 s

Third, the atmospheric phase is related to the atmospheric refractive index and the
propagation path, which greatly affect the system accuracy. The GNSS-based system
takes the Beidou IGSO satellite as the transmitter, and the receiver is fixed on the ground.
The propagation path is from the satellite to the scene and then to the ground receiver. At
the same time, the atmospheric phase parameters are different at different times, so it is
necessary to compensate for the atmospheric phase for different image results. In general,
there are many phase errors that cannot be ignored in the GNSS-based system.

For traditional InSAR systems, there are many studies on interferometric phase error
compensation. First, for channel errors, common compensation methods include calibra-
tion and echo-based error estimation. Zhang et al. [14] corrected the gain-phase error
and the range sampling time error by calibration processing in the range frequency do-
main. Zhou et al. [15] established a practical azimuth ambiguity-to-signal ratio model of a
multi-channel SAR system, and the channel phase errors were estimated by reducing the
minimum mean square error of the signal subspace. Hu et al. [16] presented a new method
based on calibration processing, and the channel phase error was further estimated and
compensated for, through a small amount of echo data. Yang et al. [17] made the error
compensation based on digital beam forming. The channel errors were directly estimated
from steering vectors and antenna patterns. Guo et al. [18] proposed an improved channel
error calibration method for the under-sampled data of the individual azimuth channel,
and the computing efficiency was improved. Zhang et al. [19] proposed a robust chan-
nel phase error calibration algorithm, maximizing the minimum variance distortionless
response (MVDR) beamformer output power. There is no redundancy of channels required
to estimate the subspaces in the proposed algorithm. Liang et al. [20] estimated channel
phase errors by maximizing the image intensity. The existing channel error compensation
is based on the system characteristic, and the error phase is estimated and compensated
according to the relationship between channels. However, these algorithms cannot be used
to eliminate channel errors in the differential interferometric phase, due to the different
forms of error influence.

For the spatial decoherence, Tian et al. [21] discussed it based on the GNSS signal. In a
monostatic system, some compensation methods were proposed [22–26]. However, in a
GNSS-based system, the bistatic configuration and the poor resolution make the impact of
spatial decoherence different. Zhang et al. [13] analyzed the impact of spatial decoherence
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of the GNSS system and indicated that a GNSS system is more robust to the phase error
caused by the spatial decoherence. Thus, the spatial baseline just needs to be reduced
during the experimental design.

Atmospheric errors, in early research on the Persistent Scatter-InSAR (PS-InSAR),
were estimated by modeling various errors [27–29]. Then, subsequent improvements
were made to the atmospheric phase error compensation. Mohr et al. [30] outlined and
investigated a simple framework for the prediction of the error standard deviation by using
ground control points. The framework can be modified using additional information on
the atmospheric state. Basili et al. [31] showed an accurate reconstruction of the trend
parameters estimated from radiometer brightness temperature images, established the
atmospheric phase model, and verified the accuracy. Pipia et al. [32] proposed a coherence-
based technique for atmospheric artifact removal in ground-based zero-baseline SAR
acquisitions. For GNSS-based systems, the signal-to-noise ratio (SNR) is low, so directly
compensating for the atmospheric phase error through parameter estimation will introduce
a deviation in the accuracy [33]. Secondly, the propagation path of the GNSS system is
different from the traditional InSAR system [12]. The compensation model needs to adapt
to this condition.

Compared with traditional InSAR systems, a GNSS-based system has two main
problems. One is that the resolution of the system is very low, so the image can be
considered a superposition of multiple point spread functions (PSF) [34]. The second is
that the transmission power of the GNSS is low, so the SNR of the image is low [33]. Both
the factors mean that the traditional error compensation algorithms for ground-based SAR
and low Earth orbit (LEO) SAR would introduce a large deviation in GNSS-based system.
Therefore, it is necessary to propose an interferometric phase error compensation method
to improve the accuracy of the error phase estimation of the proposed system and apply it
to an actual scene experiment.

In this study, a case of urban area monitoring was carried out, and a corresponding
compensation method for interferometric phase error in GNSS-based InSAR was pro-
posed. The GNSS-based system can realize multiple-angle deformation retrieval with
short detection intervals and high precision at a small cost so that it can be widely used in
areas prone to landslide disasters. This is the first time a GNSS-based system was used to
perform deformation inversion in urban scenes. The experiment proved the deformation
retrieval capability of the GNSS-based system in urban areas, which provides a basis for
the subsequent deformation retrieval experiment of natural scenes.

2. Experimental System And Scene

To achieve deformation monitoring, this section focuses on the entire test bed and
the basic experimental design. In this experiment, Beidou-2 IGSO satellites were selected
as the transmitters, and the receiver was fixed on a roof to form a bistatic configuration.
The system parameters are shown in Table 2. Since the repeat-pass period of Beidou IGSO
satellites is around 1 day, multiple images can be obtained in a short time. An omnidirec-
tional antenna was used to receive the direct wave and a horn antenna was used to receive
the scene echo. The system configuration is shown in Figure 1.

There are two main considerations in the experiment design. First, the relative posi-
tions of the imaging scene and the receiving antenna need to be considered. The bistatic
configuration was designed based on the satellite trajectory. Second, it should be ensured
that as many satellites as possible can illuminate the target area. Using the generalized
optimization model [35], the optimal time for repeat-pass data acquisition was determined.

The experiment was located in Beijing Institute of Technology, Haidian District, Beijing
(39◦57′22.84′′N, 116◦18′47.59′′E). The three selected IGSO satellites were all located to the
east of the receiver. The experimental scene is shown in Figure 2. The imaging scene is
a campus and the two main targets were named “Building 1” and “Gym”. The receiver,
real-time processing board, and other equipment were deployed in a neighboring building,
which is marked in Figure 2.
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Table 2. System parameters.

Parameter Value

Nominal repeat-pass cycle 1 sidereal day
Carrier frequency 1268.52 MHz (B3I)

Wavelength 0.2365 m
Transmitted signal C/A code

Effective signal bandwidth 10.23 MHz
Equivalent PRT 1 ms

Orbit height About 36,000 km
Horn antenna gain 11 dB

Horn antenna main lobe width 47◦

Figure 1. Concept of GNSS-InSAR with a stationary receiver.

Figure 2. Experimental scene. Beijing Institute of Technology, Haidian District, Beijing (39◦57′22.84′′N, 116◦18′47.59′′E).

The whole experiment lasted from 7 to 23 May 2019, during which 17 groups of valid
data were acquired (here, all satellite signals obtained in one acquisition time are called a
group). The data are named (M01 · · ·M17). The acquisition time of the experiment was
around 2 o’clock in the afternoon, and based on the analysis of the orbit, the acquisition
time needed to be advanced 4 min each day.

In this experiment, a transponder was used to improve the accuracy of the structural
monitoring; its position is also shown in Figure 2. In this experiment, it was used to
compensate for the atmospheric phase error, which will be described in detail in the
next section.
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3. Signal Processing for Deformation Retrieval

In this section, the signal processing for deformation retrieval is proposed: First
the spatial decoherence is compensated for. Then, the BP algorithm is used to obtain
the SAR images, and the PS points are selected and correlated. Next, the topological
phase, inter-channel phase error and atmospheric phase error are also compensated in turn.
Finally, the deformation can be calculated. A flowchart of the signal processing is shown in
Figure 3.

Figure 3. The flowchart of the deformation retrieval processing.

3.1. Spatial Decorrelation Compensation

For the best spatial correlation of the timing charts, data needed to be collected in the
repeat-pass period of the navigation satellite to reduce the impact of spatial decoherence.
In general, repeat-pass data acquisition takes slightly longer to ensure a valid data length,
as shown in Figure 4, where Tsys is the synthetic aperture time, Tcol is the collection time,
and ∆T is the time offset.

Figure 4. Experiment data collection strategy of GNSS-based InSAR.

Spatial decoherence compensation was used to eliminate errors introduced by artificial
data acquisition. The spatial coherence ρsp of the GNSS-InSAR system can be expressed as
follows [28]:
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ρsp =

∫∫
exp

[
−j

2π

λ
(r(x, y; Pm)− r(x, y; Ps))

]
|W(x− x0, y− y0; Pm)|2dxdy∫∫

|W(x− x0, y− y0; Pm)|2dxdy
(1)

where W(·) represents the PSF, and Pm and Ps correspond to the aperture center position
vectors of the reference image and the secondary image, respectively. j is the imaginary
unit and λ is the wavelength. r(x, y; P) presents the range from (x, y, 0) to P. (x0, y0, 0)
is the position of the scene center. Based on (1), the spatial decoherence optimization
compensation model can be obtained:

∆T = arg max

{∫∫ ∣∣∣ ∼W(x, y; Pm)
∣∣∣2 exp

[
−j

2π

λ

(
r(x, y; Pm)

−r(x, y; Ps(tm + ∆t))

)]
dxdy

}
−

Tsys

2
(2)

where
∼
W (·) is the equivalent normalized PSF, and tm is the time of the aperture center of

the reference dataset.
Performing spatial decoherence compensation on the collected three satellite datasets

and taking the first two observation datasets of IGSO1 as an example, the minimum
spatial decoherence model was optimized and solved. The results are shown in Figure 5a.
The time offset was 7.636 s. Furthermore, from the system coherence noise corresponding
to the spatial coherence shown in Figure 5b, when the system spatial coherence reached a
maximum of 0.9996, the mean square error of the phase noise corresponding to the system
was about 0.01969 rad, and the corresponding deformation inversion error was 0.72 mm.
It can be seen that spatial decoherence compensation can effectively reduce the effect of
signal decoherence on the subsequent retrieval accuracy. The same processing method was
used to perform spatial decoherence compensation on the remaining data groups; the time
offsets after data alignment are listed in Table 3. The maximum offset was above 10 s.

(a) (b)

Figure 5. Spatial decoherence compensation results based on the proposed method: (a) spatial coherence coefficient;
(b) phase noise.

Table 3. Space decoherence compensation results for Beidou IGSO1.

Interference Pair ∆T Interference Pair ∆T

M01, M02 7.636 s M09, M10 3.681 s
M02, M03 −1.863 s M10, M11 4.681 s
M03, M04 2.335 s M11, M12 8.354 s
M04, M05 1.101 s M12, M13 17.108 s
M05, M06 −7.873 s M13, M14 11.199 s
M06, M07 2.552 s M14, M15 4.325 s
M07, M08 −6.231 s M15, M16 5.432 s
M08, M09 7.198 s M16, M17 2.135 s
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3.2. Bistatic PS Selection and Multi-Angle Correlation

After spatial decoherence compensation, the image can be obtained based on the BP
algorithm [36–38]. In this experiment, IGSO1, IGSO2, and IGSO4 satellites were used.
Taking the data from 7 May 2019 as an example, the corresponding imaging results for
the three satellites are shown in Figure 6a–c. The position of the antenna is the origin
point, i.e., (0, 0). It can be seen that there is a strong target at the origin point, which is
because the echo antenna can receive the direct wave signal through the back lobe. Even if
the gain of the antenna back lobe is not high, the amplitude of the origin point imaging
result is still high because the signal is not reflected by the scene. From the comparison
result with the optical image, it can be seen that the transponder and Gym both correspond
to strong points in the three imaging results. However, for Building 1, it can only be
seen in the image of IGSO1. This is because the radar cross section (RCS) of the target is
different under different bistatic configurations, and for regular buildings, the RCS is small
at some bistatic angles. In addition, in Figure 6b,c, due to the high elevation angle of the
satellite and small bistatic equal-range ring radius, a strong image point appears in the
non-observation area in the imaging plane, but the strong point will not affect subsequent
interferometry processing.

(a) (b)

(c)

Figure 6. Comparison of radar imaging results and optical images: (a) the result of IGSO1 satellite; (b) the result of IGSO2
satellite; (c) the result of IGSO4 satellite.

The PS selection was based on the algorithm in [39]. Amplitude dispersion processing
was performed on the image series with a threshold of 0.2, and the results for the three
satellites are shown in Figure 7. It is obvious that the response of the transponder is one of
the PSs, and large buildings in urban areas exhibit stable scattering characteristics, which
is consistent with the expectations.
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(a) (b) (c)

Figure 7. PS points distribution under threshold 0.2 of three IGSO satellites. (a–c) are the PS points selection results of IGSO
1, 2 and 4 satellites.

Due to the different incident angles of the different satellites, the deviation of the focus
position caused by DEM error and noise is different, so the focus position of the same target
in different images will be different; it is necessary to correlate the selected PS points with
multiple angles. This process comprises the following steps.

1. Select a sub-image for which the number of PS points is the most as the reference
image, and the point set of PSs can be written as PS0 =

[
P01, P02 · · · P0N0

]
N0

, including N0

PS points, where the points are arranged in order of amplitude from largest to smallest.
At the same time, the PS points in M sets of secondary images can be expressed as follows:

PS1 =
[
P11, P12 · · · P1N1

]
N1

...

PSM =
[
PM1, PM2 · · · PMNM

]
NM

. (3)

2. For each point in PS0, find its correlated point in the remaining point sets PS1 · · · PSM
according to the proximity principle, that is, the closest point within the distance threshold
is considered the correlated point. If there is no point within the threshold, it is supposed
that the present PS point cannot be correlated with any points of the present secondary
image. The diagram is shown in Figure 8. When a PS point in PS0 has correlated points in
all of other PS point sets, it is considered that the association is successful. Then, delete all
the associated PS points from each point set to prevent duplicate associations.

Figure 8. Multi-angle PS point association diagram.
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3. The condition for the loop to end is when all the PS points in PS0 have been operated
or one of the point sets in PS1 · · · PSM becomes a null set.

Points with high amplitude usually have high SNR and a stable phase, which are
more likely to appear in those secondary images and can thus be correlated successfully, so
the point sets are arranged in amplitude order to improve the efficiency and effectiveness
of the algorithm. The DEM error in this experiment is 2 m. Based on [12], considering the
influence of noise on the focus position, the threshold is set to 3 m.

According to the result of the correlation, Gym is in the image results from the three
satellites, while Building 1 is only in the result from the IGSO1 satellite.

3.3. Differential Interferometric Phase and Accurate Topological Phase Compensation

For a target point P (x, y) in the scene, the phase obtained in the echo channel is as
follows [12]:

φec(x, y) = 2π

(
RSP + RAP

)
λ

+ φatm(x, y) + φnoise_e (4)

where RSP is the range between the satellite and the target P, and RAP is the range between
the receiver and the target P. φatm(x, y) is the atmosphere phase at point (x, y) and φnoise_e
is the noise phase in the echo channel.

The phase of the direct wave channel is the following:

φdc = 2π
RSA

λ
+ φatm(0, 0) + φnoise_d (5)

where RSA represents the range between the transmitter and the receiver. φatm(0, 0) is the
atmosphere phase at the origin and φnoise_d is the noise phase in the direct wave channel.

In the synchronization processing of the bistatic SAR signal, the direct wave phase
was used as a reference for error cancellation. Thus, the final phase model at target (x, y) is
the following:

φ(x, y) = φec(x, y)− φdc = 2π

(
RSP + RAP − RSA

)
λ

+ φch + φatm(x, y)− φatm(0, 0) + φnoise (6)

where φch is the inter-channel phase introduced by the multi-channel receiver and φnoise =
φnoise_e − φnoise_d. The phase of the corresponding target needs to be extracted for interfer-
ometry processing according to the selection of the PS points. The interferometric phase is
written as follows:

∆φ(tm, ts, x, y) = φ(tm, x, y)− φ(ts, x, y)
= φde f o + φtopo + ∆φch + ∆φatm(tm, ts, x, y)− ∆φatm(tm, ts, 0, 0) + ∆φnoise

(7)

where φ(tm, x, y) is the phase in the reference image and φ(ts, x, y) is the phase in the
secondary image. The interferometric phase ∆φ(tm, ts, x, y) is mainly contributed by the
following parts: The first term φde f o is the target deformation phase, which is exactly
what needs to be finally extracted. The second term φtopo indicates the system topology
phase, which is introduced by the system topology configuration. ∆φnoise represents noise
errors, such as thermal noise, which cannot be avoided for the entire system. ∆φch is the
inter-channel phase error and ∆φatm is the atmospheric phase error.

During deformation retrieval processing, first, φtopo is compensated [12]. In order to
obtain higher-precision deformation estimation results, it is necessary to compensate for
the terrain phase with high accuracy. The DEM data of the current scene were acquired
through lidar to achieve high-precision compensation. Figure 9 presents the lidar results
where the DEM is labeled.

After φtopo is compensated, the channel phase error and atmospheric phase error need
to be further compensated.
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Figure 9. Lidar image of the target area. DEM information can be obtained through the lidar result.

3.4. Inter-Channel Phase Error Compensation

For traditional DInSAR systems, the systems are all single-channel and do not need
to be synchronized, so there is no inter-channel error. However, in a GNSS-based system,
the inter-channel phase error cannot be ignored. In this work, an algorithm is proposed to
compensate for this phase error.

In our experiment configuration, the direct wave can be received by the back lobe of
the receiving antenna. Because of the high power of the direct wave, even if it is received
by the back lobe, a higher SNR focus point can be obtained in the image result. Based on
this, a method for compensating for the inter-channel phase error is proposed.

For the phase at the origin, based on (6), it can be expressed as the following:

φ(0, 0) = 2π

(
0 + RSA − RSA

)
λ

+ φch + φatm(0, 0)− φatm(0, 0) + φnoise = φch + φnoise. (8)

When there is no deformation at the origin and φtopo is compensated for, the interfero-
metric phase at the origin can be expressed as the following:

∆φ(tm, ts, 0, 0) = ∆φch + ∆φnoise ≈ ∆φch. (9)

Thus, the inter-channel phase error can be compensated for through the phase at
the origin. Figure 10a present the results for the three satellites and the average phase
of the origin point. The average phase was used to compensate for the scene phase.
The interferometric phase before and after inter-channel phase error compensation of
the typical building area were extracted. Figure 10b,c present the results for Gym, and
Figure 10d,e present the results for Building 1. It can be seen that after inter-channel error
compensation, the phase change is reduced, which proves that the algorithm can be used
for urban scenes.

After compensating for the inter-channel phase error, the interferometric phase can be
written as the following:

∆φ(tm, ts, x, y) = φde f o + ∆φatm(tm, ts, x, y)− ∆φatm(tm, ts, 0, 0) + ∆φnoise. (10)
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(a)

(b) (c)

(d) (e)

Figure 10. Extracted inter-channel phase error and compensation results: (a) interferometric phase at the origin point;
(b) interferometric phase of Gym before inter-channel phase error compensation; (c) interferometric phase of Gym after inter-
channel phase error compensation; (d) interferometric phase of Building 1 before inter-channel phase error compensation;
(e) interferometric phase of Building 1 after inter-channel phase error compensation.
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3.5. Atmospheric Phase Compensation

In this section, the atmosphere phase error is discussed to further compensate for the
interferometric phase error. The influence of the atmosphere on the radar interferometric
phase is mainly caused by temporal and spatial variation in the atmospheric refractivity.
According to the electromagnetic wave propagation theory, the echo phase can be expressed
as the following [26]:

ϕ(t) =
2π f

c

∫
n(r, t)dr (11)

where n is the atmospheric refractive index, r is the position, f is the carrier frequency, c is
the speed of light and t is the moment of the signal transmission. The calculation of n can
be referred to in [40].

Since the direct wave phase is used as a reference for error cancellation during the
synchronization processing, the part of the interferometric phase that is affected by the
atmosphere can be modeled as the following:

∆ϕatm(tm, ts, x, y) = ∆φatm(tm, ts, x, y)− ∆φatm(tm, ts, 0, 0)

=
2π f

c
[n(tm)− n(ts)]∆r

(12)

where ∆r is the difference in propagation path.

∆r = RSP + RAP − RSA. (13)

The atmospheric phase can be coarsely compensated for based on this model. Due to
the inaccuracy of the atmospheric refractivity model and the measured parameters, there
is still a residual atmospheric phase error that cannot be ignored. The atmospheric phase
error is caused by the calculation error of the atmospheric refraction. Thus, the residual
atmospheric phase error can be expressed as the following:

∆ϕatm_res(tm, ts, x, y) =
2π f

c
∆n∆r (14)

where ∆n is the error of atmospheric refractive index.
In this experiment, the residual atmospheric phase can be calibrated by the transpon-

der. Transponders have stable scattering characteristics, so they can be used to extract the
residual atmospheric phase, i.e., to calculate ∆n. The residual phase extraction result of the
transponder is shown in Figure 11.

Figure 11. Residual phase of the transponder from three IGSO satellites and the average resid-
ual phase.
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Based on the ∆r shown in Table 4, the residual atmospheric phases of the two target
buildings were compensated for, and the residual atmospheric phase compensation results
are shown in Figure 12. Figure 12a shows the results for Gym corresponding to the three
satellites, while Figure 12b shows the results for Building 1.

Table 4. ∆r of different targets.

Target Transponder Building 1 Gym

∆r 172 m 216 m 410 m

(a) (b)

Figure 12. Interferometric phase after compensation of typical buildings: (a) the compensation result of Gym; (b) the
compensation result of Building 1.

3.6. Deformation Retrieval And Evaluation

After a series of error compensation, the interferometric phase only contains φde f o and
∆φnoise.

∆φ(tm, ts, x, y) = φde f o + ∆φnoise. (15)

The influence of noise is ignored and the calculation formula for deformation ∆R is
the following:

∆R =
λ

2π
φde f o. (16)

The deformation obtained under a single satellite is along the direction of the bistatic
angle bisector [41]. Next, to evaluate the deformation retrieval accuracy, the root mean
square error (RMSE) is always used. The calculation formula is the following:

σ(i) = RMSE
(

∆R(i) − ∆R(i)
theory

)
(17)

where ∆R(i)
theory is the theoretical deformation value, and i indicates the index of the visi-

ble satellite.

4. Structural Monitoring Experiment Results

In this section, the deformation retrieval value and accuracy for an urban scene are
obtained and compared with the results before phase compensation. For the experimental
scene, the same area was monitored using ground-based SAR [42]; the results are shown in
Table 5. The largest deformation for typical targets is 0.57 mm and the RMSE is 1.33 mm.
The accuracy of the ground-based SAR is about 1 mm. So, it can be considered that there
was no deformation in the scene during the experiment. The deformation retrieval for Gym
was performed, using the data from the IGSO1, 2, and 4 satellites, and the deformation
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retrieval for Building 1 using the data from IGSO1 satellite. The accuracy of the deformation
retrieval is shown in Table 6, and the deformation values are shown in Table 7.

Table 5. Deformation retrieval results of the typical buildings from ground-based SAR system.

Building 1 Gym

Deformation value 0.57 mm 0.42 mm

Accuracy 1.33 mm 1.32 mm

Table 6. Deformation retrieval accuracy results of the typical buildings from a GNSS-based system.

Gym

IGSO1 IGSO2 IGSO4
Traditional PS-InSAR

processing
20.94 mm 18.34 mm 28.11 mm

Proposed PS-InSAR
processing

10.61 mm 11.64 mm 17.26 mm

Building 1

IGSO1
Traditional PS-InSAR

processing
24.03 mm

Proposed PS-InSAR
processing

15.82 mm

Table 7. Deformation values of the typical buildings from GNSS-based system.

IGSO1 IGSO2 IGSO4

Gym −4.66 mm −5.21 mm −3.33 mm

Building 1 −1.23 mm

According to the experimental results, after the interferometric phase error compensa-
tion, the accuracy of deformation retrieval was significantly improved. By considering the
characteristics of the GNSS-based InSAR, the spatial decoherence is reduced and the inter-
channel phase error, and residual atmospheric phase error are compensated for. The results
show that the RMSE of the interferometric phase is reduced, which suggests that the error
compensation model proposed in this paper is suitable for urban scenes. At the same time,
based on the deformation value, the experiment also suggested that the system has urban
scene monitoring capabilities. However, some problems were also reflected in the experi-
ment. As the distance between the target and the receive antenna increased, the SNR of the
target decreased significantly, resulting in a decrease in the deformation retrieval accuracy.

5. Discussion

GNSS-based InSAR is different from ground-based InSAR and LEO InSAR; for ex-
ample, the bistatic synchronization introduces an inter-channel error, the low resolution
makes the PS point distribution greatly different from the traditional InSAR system, etc.
Therefore, as the traditional algorithm cannot be directly applied to a GNSS system, it is
necessary to develop specific algorithms for this system.

Existing studies on GNSS-based InSAR use a translation stage to simulate the defor-
mation of transponder. The real deformation value can be obtained by the translation
stage [12]. IGSO1, 2, 4 and 5 satellites are used to achieve deformation retrieval. The 3D
deformation retrieval results are shown in Figure 13, and the accuracy is shown in Table 8.
Due to the actual deformation being known in the experiment, the deformation phase can
be calculated and removed. The residual phase errors after deformation phase removal are
shown in Figure 14a. The RMSE of the residual phase error is 0.128 rad, corresponding to
the 4.82 mm deformation error.
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(a) (b)

Figure 13. Estimated deformations with transponder displacement in all directions: (a) the result along the upward direction;
(b) the result along east and north directions.

(a) (b)

Figure 14. The residual phase error of the transponder: (a) the result of the previous experiment; (b) the result of the
proposed experiment.

Table 8. The accuracy of the deformation retrieval of the transponder.

Direction RMSE (mm)

East 1.68
North 2.82

Up 4.22

In this experiment, the error phase of the transponder was also extracted and compared
with the previous experiment. After phase error compensation, the residual phase errors
of the transponder are shown in Figure 14b. The RMSE of the residual phase error is
0.0243 rad, corresponding to the 0.91 mm deformation error. Compared with the previous
transponder deformation retrieval accuracy, it is greatly improved. So, the applicability of
the proposed error compensation algorithm can be proven.

This paper mainly introduces the deformation detection experiment for the actual
urban scene and the compensation process for the error phase. The main considered factors
include spatial incoherence, inter-channel phase error and atmospheric phase error; the er-
ror compensation algorithm is proposed based on their characteristics. After compensation,
the deformation detection accuracy of the target buildings in the scene is about 17 mm.
This result has a difference from the result of the transponder, which is partly because
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of the low SNR; on the other hand, the image registration and association also introduce
errors. These problems will be further studied in the future.

Based on the urban scene experiment, the later experiment will be extended to the
natural scene. Compared with the urban scene, the natural scene is irregular and the
scattering characteristics of the target are greatly different from that of the urban target.
The imaging and deformation detection experiments will be carried out for such scenes as
iron ore and soil slope to prove the adaptability of the proposed system to the natural scene.

6. Conclusions

A GNSS-based InSAR system is used to achieve deformation retrieval in an urban
scene. Compared with the traditional InSAR system, the GNSS-based system has a series of
advantages. First, the repeat-pass period is only one day, which is much shorter than that
of traditional InSAR systems, such as TerraSAR. Second, the number of Beidou satellites
that can be used in InSAR is 37, making the configuration design very flexible and easier to
achieve high-precision multi-angle deformation retrieval. Finally, the cost of the system
is low since only the receiver needs to be considered. So, GNSS-based InSAR has high
research value.

In this paper, the processes of deformation retrieval and compensation of the interfer-
ometric phase error were studied. Aiming at the spatial decoherence error, a model based
on spatial coherence was proposed. Then, the information of the direct wave received
by the back lobe was used to compensate for the inter-channel phase error, and the echo
information from the transponder was used to compensate for the residual atmospheric
phase error. The final deformation retrieval accuracy for the urban scene reached the cen-
timeter level. This is the first realization of the deformation detection of urban scenes using
a GNSS-based system, and the effectiveness of the compensation method was verified by
an improvement in the deformation retrieval accuracy.
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