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Abstract: Ground-based GNSS (Global Navigation Satellite System) reference stations lack the
capacity to provide data for ocean regions with sufficient spatial-temporal resolution, limiting the
detailed study of the equatorial ionization anomaly (EIA). Thus, this study collected kinematic multi-
GNSS data on the ionospheric Total Electron Content (TEC) during two research cruises across the
equator in the Western Pacific Ocean in 2014 (31 October–8 November) and 2015 (29 March–6 April).
The purpose of the study was to use sufficient spatial–temporal resolution data to conduct a detailed
analysis of the diurnal variation of the equatorial ionization anomaly in different seasons. The
two-year data collected were used to draw the following conclusions. During the test in 2014,
the EIA phenomenon in the Northern and Southern Hemispheres was relatively obvious. The
maximum values occurred at local time (LT) 15:00 (~136TECu) and LT22:00 (~107TECu) in the
Northern Hemisphere and at LT14:00 (100TECu) and LT22:00 (80TECu) in the Southern Hemisphere.
During the test in 2015, the EIA in the Southern Hemisphere reached its maximum level at LT14:00
(~115TECu) and LT20:00 (~85TECu). However, the EIA phenomenon in the Northern Hemisphere
was weakened, and a maximum value occurred only at LT 15:00 (~85TECu). The intensity contrast
was reversed. The EIA phenomenon manifests a strong hemisphere asymmetry in this region.

Keywords: equatorial ionization anomaly; Western Pacific Ocean; ionospheric total electron content;
diurnal variation; hemisphere asymmetry

1. Introduction

Equatorial Ionization Anomaly (EIA), as a unique ionospheric structure, was proposed
and explained by Appleton in 1946 [1]. Many scholars around the world have since
observed and studied this phenomenon for decades [2–4]. Various research has studied the
cause of this phenomenon, thus providing a theoretical basis for future research on this
topic [5–11].

The rapid development of GNSS technology has made it possible to observe the
ionosphere continuously over a long period of time. Compared with traditional ionospheric
observation methods, the global GNSS reference stations cover a wide area and can provide
continuous observation data with high temporal resolution. The above advantages are
the prerequisite for applying GNSS technology to the research of EIA phenomenon. The
research on the generation of EIA and the evolution of spatiotemporal distribution is also of
benefit to further improving the correction and modeling performance of the Ionospheric
TEC that is associated with precise satellite navigation and positioning [12–16].
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Many studies have confirmed the influence of solar cycle variations on EIA. The
spatial–temporal variation of the ionosphere is highly positive correlated with the number
of sunspots. Xu et al. [17] studied the seasonal and annual variations of the EIA north–
south crest near 120◦E based on the ionospheric TEC grid data released by the International
GPS Service (IGS). The long-term trend was characterized by a semi-annual anomaly and
winter anomaly. This indicates that the maximum crest intensity appears in the spring
and autumn and is greater in the winter than in the summer. Kumar et al. [18] used
observation stations located in India to study the change pattern of the EIA northern crest
during the low solar activity period. The EIA phenomenon in this region was observed
to have obvious “semi-annual anomaly” characteristics. In addition, good agreement
was observed between the GPS-TEC and IRI model TEC. Ouattara et al. [19] analyzed
the variability of the ionospheric F-region critical frequency (foF2) at two West African
equatorial ionization anomaly stations during three solar cycles. The diurnal, seasonal,
and annual variations of the EIA phenomenon under different solar activity cycles were
the focal points. Feng et al. [20] used ionospheric TEC grid data to analyze EIA law at a
global scale and summarize the spatiotemporal characteristics of the EIA crests. A positive
correlation between EIA and solar activity was found. Romero-Hernandez et al. [21]
conducted a daytime analysis of ionospheric TEC variations over Latin America in both
quality and quantity perspectives, introducing the first ground-based data-derived TEC
maps with the range of the whole of Latin America.

Another critical point in the past studies on EIA was the asymmetry in the hemisphere.
Due to the influence of the neutral wind, asymmetry across the magnetic equator in the
value of the north–south crests, latitude position, and time of appearance occurs. Tulasi
Ram et al. [22] studied variations of the EIA and its interhemispheric asymmetry in various
seasons and longitudes during the solar minimum period and documented the variations
in the EIA’s hemispheric asymmetry conditional on the local time. Huang et al. [23] studied
the asymmetry of the EIA in both hemispheres near 110◦E with regards to different solar
activity conditions, showing that the strength, latitudinal position, and occurrence time of
the EIA crest were asymmetric across the magnetic equator because of the transequatorial
neutral wind and auroral equatorward wind. Walker et al. [24] suggested that the distance
between the crest and the subsolar point might affect the asymmetry, establishing seasonal
and solar differences in the diurnal variations of the EIA. The seasonal changes are mainly
caused by daytime meridional wind, affecting the EIA diffusion of ionization from the
magnetic equator down the magnetic field lines towards the crests. The seasonal EIA
crests determined by the seasonal location of the subsolar point in relation to the magnetic
equator diffusion rates are increased or decreased. Chen et al. [25] and Lin et al. [26] found
that the seasonal variation of the subsolar point location might alter the plasma ambipolar
diffusion rates. The geomagnetic field configuration also may have an effect on transferring
plasma from one hemisphere to another by pushing the plasma up in one hemisphere and
down in the opposite. Huang et al. [27] analyzed the asymmetry transition between both
hemispheres in the EIA during the solstices, demonstrating the stronger EIA crest transits
from the winter hemisphere to the summer one.

By combining with the GIS (Geography Information System) method, Chou et al. [28]
examined the impact of ionospheric spherical asymmetry by using the entire available
electron density profiles in the Abel inversion named the Ne-aided Abel inversion, demon-
strating that it could lessen the systematic errors. Feng et al. [29] proposed a grid-based
global modeling pattern to deal with the uneven accuracy of the point-based Global
Ionospheric Maps (GIM) TEC model and the regional differences in the ionospheric TEC
variation characteristics, showing that it has a better description ability of the EIA phe-
nomena than traditional GIM models; Lin et al. [30] developed and validated two new
space weather data products based on the satellite-derived radio occultation soundings: a
Global Ionospheric Specification (GIS) Electron Density Structure and Aided Abel Electron
Density Profile.
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The above studies mainly analyzed the spatiotemporal characteristics of EIA from a
long time-scale. In these studies, the time interval of ionospheric TEC grid data was 2 h,
and the latitude and longitude intervals were 5◦ and 2.5◦, respectively. These data also
failed to meet the requirements for a detailed investigation on the EIA phenomenon. The
traditional observational data from ground-based GNSS reference stations calculate the
discrete spatial ionosphere distribution, making it difficult to simultaneously consider the
variations over time and space. However, GNSS datasets collected with ships crossing the
ocean regions could fill this gap, allowing for more accurate research on the EIA in ocean
regions. Therefore, this study used the data collected from a shipborne kinematic GNSS
receiver crossing the equator in 2014 and 2015 to analyze the spatiotemporal characteristics
of the EIA in the Western Pacific Ocean, describing day-to-day trends and the north–south
hemisphere asymmetry in detail.

2. Data and Processing Methods
2.1. Kinematic GNSS Data Acquisition

A Chinese research vessel equipped with dual-frequency multi-GNSS receivers was
used to collect kinematic data. The receiver Trimble NetR9, with the function of GPS signals
tracking and data transmission, which includes pseudorange (C1C and C2W) and carrier-
phase measurements (L1C and L2W), and antenna TRM57971.00, were simultaneously
utilized. Data in this test is sampled at 30 s. The GNSS data collected on the ships crossing
the equator from 31 October to 8 November 2014 (north to south) and from 29 March to
6 April 2015 (south to north) were used to analyze the EIA phenomenon. The experiment
was located in the EIA region between 120◦E and 150◦E. Compared with traditional data,
shipborne data has better spatiotemporal resolution, so it can analyze the EIA structure
in more detail. Static data from the IGS stations (BNOA, PIMO, and TWTF) near the
navigation route in 2015 were also collected for comparison. The route and location of the
selected IGS stations are shown in Figure 1.
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2.2. Ionosphere TEC Derived from Dual-Frequency GNSS Observations

A carrier-phase smoothed pseudorange method was adopted in this study to quantify
the ionospheric Total Electronic Content (TEC) derived from L1 and L2 GNSS observations.
The TEC can be calculated with the following equation [26,27,31,32]:

P1 − P2 =
40.3( f 2

2 − f 2
1 )

f 2
1 f 2

2
·F(α)·VTEC− c(DCBs+DCBr) (1)

where P1 and P2 are the pseudoranges at the L1 and L2 frequencies, respectively; f 1 and f 2
are the L1 and L2 frequencies for each GNSS constellation, respectively; F(α) represents
the projection function in the Ionospheric pierce point (IPP), playing the role of converting
the ionospheric TEC value direction to the ionospheric VTEC value (the function is largely
contingent on α, which is the zenith angle between the ionospheric pierce point and the
satellite, and DCBs is the differential code biases for the satellites, while DCBr represents
the differential code biases for a receiver; c is the speed of light in a vacuum.

Some big errors in the calculated ionospheric TEC values may be caused by incorrect
DCBs of the satellite and receiver. The generalized trigonometric series function (GTSF),
which evaluated the single-day DCB of the receiver as a constant, was used to describe
the ionospheric variation patterns above the GNSS stations to be monitored. How pre-
cisely to determine the ionospheric TEC using the GTSF model is discussed in detail in
references [15,28,29,33]:

VTEC(ϕ, λ) =
nmax

∑
n=0

mmax

∑
m=0
{Enm ϕnhm}+

kmax

∑
k=0
{Ck cos(k · h) + Sk sin(k · h)} (2)

where VTEC(ϕ, λ) is the VTEC value at the intersect pierce point; ϕ and λ are the latitude
and longitude for the ionospheric pierce point, respectively; h is the function dependent
upon the standard time t at the ionospheric pierce point; nmax and mmax are the maximum
orders of the polynomial function, while kmax is the maximum order for the trigonometric
function; and Enm, Ck, and Sk are the coefficients to be estimated from the model. Without
the fixed middle latitude of regional center, the function can be used to model the variation
of ionospheric TEC in a kinematic case, and the receiver DCBs are considered as constant
parameters during one day. It should be pointed out that the satellite DCBs are corrected
by the product from CAS (ftp.gipp.org.cn, accessed on 30 July 2021).

2.3. Comparison of Different Satellite System Combinations

The VTEC of each satellite IPP point observed simultaneously is calculated by the
height angle weighted average to obtain the VTEC of the receiver zenith direction. Figure 2
shows the zenith direction VTEC obtained from the different combinations of satellite
systems in 2015, with a time resolution of 30 s (In our analysis, the C1C and C2C measure-
ments of GLONASS are used, while the C2I and C7I measurements of BeiDou are used.).
As the number of satellites observed simultaneously increases, the observation data of
satellites with high-altitude angles increase. This increases the consistency of the VTEC
in the receiver zenith direction with that of the real situation, making the receiver zenith
direction VTEC obtained by different combinations of the satellite system more accurate.

In our experiment, the ionospheric TEC information was extracted from the shipborne
GNSS observation data for ten days from 29 March to 7 April 2015 according to the
method of the carrier-phase smoothing pseudorange, which is the TEC in the line-of-sight
direction—that is, STEC. Then, a generalized trigonometric series function was used to
model the variation of local ionospheric TEC, while the receiver DCBs are estimated and
the satellite DCBs are corrected by prior values from the CAS DCB product.

ftp.gipp.org.cn
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After removing the DCB errors, it can be transformed from Equation (1) into the new
equation below:

TEC =
f1

2 f2
2

40.3( f22 − f1
2)

[ (
P̃1 − P̃2

)
− c ∗ (DCBs + DCBr)

]
(3)

where P̃1 and P̃2 are the phase-smoothed pseudoranges.
It is converted to VTEC by the trigonometric projection function, and the VTEC of

each satellite puncture point observed at each time is obtained by the weighted average of
the height angle of the puncture point to obtain the VTEC in the direction of the zenith of
the receiver, and the time series diagram of the VTEC is drawn, as shown in Figure 2.
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(G: GPS, R: GLONASS, and C: BDS) in 2015.

It can be seen from the aforementioned discussions that the biases for different satellite
systems, i.e., the receiver and satellite DCBs, have been precisely corrected from the raw
ionospheric TEC observables, and the consistency of the ionospheric TEC extracted from
different satellite systems is very good.

3. Results and Analysis
3.1. Comparison of Different Satellite System Combinations

The accuracy of the shipboard kinematic-derived ionospheric TEC was verified by
the static one obtained from the IGS-based stations. Figure 3 demonstrates the variations
of two TECs over time in 2015. The resemblance in shape and magnitude between the
ionospheric TECs when the location of the ship and an IGS station were in proximity
proved the reliability of the kinematic ionospheric TEC data. However, the ground-based
stations can only observe the change in VTEC statically, which is spatially limited. The
scarcity of ocean regional observation stations has magnified this disadvantage, leading to
a large area of the ocean surface that cannot obtain the ionosphere TEC calculated using
ground-based station data. The shipborne GNSS data exhibited good spatiotemporal
continuity. The spatiotemporal characteristics of the EIA phenomenon can be analyzed in
more detail.
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3.2. Analysis of Spatiotemporal Characteristics of Kinematic Ionospheric TEC

In order to enhance the analysis of the spatiotemporal attributes of the EIA over the
ocean, the two-year kinematic ionospheric TEC with latitude and longitude was graphed
(Figure 4). In this study, we define March–May as the spring and September–November as
the autumn. It can be seen from Figure 4 that the ionospheric TEC of the EIA region in (a) is
higher than that in (b). Meanwhile, the ionospheric TEC in the Northern Hemisphere in the
autumn is generally higher than that in the Southern Hemisphere, while the ionospheric
TEC in the Southern Hemisphere in the spring is generally higher than that in the Northern
Hemisphere. The preliminary analysis showed that the intensity of the EIA in the autumn
is higher than that in the spring, and the EIA phenomenon in this area is asymmetrical
between the Northern and Southern Hemispheres. The intensity of the EIA in the Northern
Hemisphere in the autumn is greater than that in the Southern Hemisphere, and the
intensity of the EIA in the Southern Hemisphere in the spring is greater than that in the
Northern Hemisphere, and the EIA changes more drastically in the autumn.
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These results are in line with the conclusions obtained in many of the previous
studies mentioned in the Introduction section by analyzing the data of the land-based
stations—that is, the EIA phenomenon has asymmetry between the Northern and Southern
Hemispheres and an obvious seasonal change law, which shows the feasibility of analyzing
EIA phenomenon by shipborne dynamic data.

The changes of dynamic ionospheric TEC with the latitude and longitude calculated
from the shipborne data indicated that the EIA phenomenon presents a strong asymmetry
between the Northern and Southern Hemispheres, and the specific manifestation is that the
positions and sizes of the peaks appearing in the Northern and Southern Hemispheres are
inconsistent. The peak of the EIA phenomenon in this area is around 20◦N in the Northern
Hemisphere and around 10◦S in the Southern Hemisphere. In the spring, the peak value
of the EIA phenomenon in the Southern Hemisphere is higher than that in the Northern
Hemisphere, and in the autumn, the peak value of the EIA phenomenon in the Northern
Hemisphere is higher than that in the Southern Hemisphere.

As shown in Figure 5, the equatorial anomaly calculated by the GIM model also shows
that the EIA phenomenon has characteristics of asymmetry between the Northern and
Southern Hemispheres [34], but compared to the actual measurements, the peak is between
0◦ and 10◦ on both hemispheres. In addition, it also shows the inconsistency of the peak
values of the EIA phenomenon in the Northern and Southern Hemispheres.
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To study the regional EIA phenomenon more comprehensively, the four days of
November 1 and 8 in 2014 and 31 March and 6 April in 2015 were selected for a specific
analysis. Figures 6 and 7 were plotted, and through the analysis, the following conclusions
were obtained. During the test of 2014, the two maximums of the EIA phenomenon in
both hemispheres appeared at approximately LT14:00 (100TECu) and LT22:00 (80TECu)
and at approximately LT15:00 (136TECu) and LT22:00 (107TECu), respectively. During
the test of 2015, the EIA phenomenon had two maximums: LT14:00 (~115TECu) and
LT20:00 (~85TECu) in the Southern Hemisphere. In the Northern Hemisphere, only a
maximum of about 85TECu appeared at LT15:00. Based on a summary of the analysis
above, it was concluded that the hemispheres’ asymmetry of the EIA phenomenon has
seasonal variations.
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spheric TEC in the Western Pacific Ocean. The spatiotemporal characteristics of the EIA phe-
nomenon in this region were analyzed. The ionosphere TEC obtained by the ground-based
stations was discrete, while that from the shipborne kinematic data had spatiotemporal
continuity, which was favorable in the fine analysis of the EIA.

Based on the high spatiotemporal resolution data of 2014 and 2015, the diurnal
variation and the hemisphere asymmetry of the EIA phenomenon between 120◦E and
150◦E of the Western Pacific Ocean were analyzed comprehensively. The intensity and
occurrence time of the maximum of the EIA phenomenon in the Northern and Southern
Hemispheres were different during the test. In 2014, the Northern Hemispheric maximum
levels of 136TECu and 107TECu appeared at LT15:00 and LT22:00, respectively. The
maximums of the Southern Hemisphere appeared at about LT14:00 and LT22:00, and the
magnitudes were approximately 100TECu and 80TECu, respectively. In 2015, the Northern
Hemispheric crest weakened, and only one maximum appeared at about LT15:00 with
a magnitude about 85TECu. The maximums appeared in the Southern Hemisphere at
LT14:00 and LT20:00, and the magnitudes were about 115TECu and 85TECu, respectively.
The EIA phenomenon in both hemispheres exhibited strong hemisphere asymmetry.

Future research studies will involve the collection of more shipborne data to analyze
the interannual variability of the EIA phenomenon in the marine region and fill the gaps
in ionosphere research. The relationship between the ionosphere TEC and geographic
location in the equatorial region could also be investigated.
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