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Abstract: Remote sensing change detection (RSCD) is an important yet challenging task in Earth
observation. The booming development of convolutional neural networks (CNNs) in computer
vision raises new possibilities for RSCD, and many recent RSCD methods have introduced CNNs to
achieve promising improvements in performance. In this paper we propose a novel multidirectional
fusion and perception network for change detection in bi-temporal very-high-resolution remote
sensing images. First, we propose an elaborate feature fusion module consisting of a multidirectional
fusion pathway (MFP) and an adaptive weighted fusion (AWF) strategy for RSCD to boost the
way that information propagates in the network. The MFP enhances the flexibility and diversity of
information paths by creating extra top-down and shortcut-connection paths. The AWF strategy
conducts weight recalibration for every fusion node to highlight salient feature maps and overcome
semantic gaps between different features. Second, a novel perceptual similarity module is designed
to introduce perceptual loss into the RSCD task, which adds perceptual information, such as structure
and semantic information, for high-quality change map generation. Extensive experiments on four
challenging benchmark datasets demonstrate the superiority of the proposed network compared
with eight state-of-the-art methods in terms of F1, Kappa, and visual qualities.

Keywords: remote sensing change detection; feature fusion; attention mechanism; very-high-
resolution image pairs; perceptual loss

1. Introduction

Remote sensing change detection (RSCD) aims to identify important changes, such as
water-body variations, building developments, and road changes, between images ac-
quired over the same geographical area but taken at distinct times. It has a wide range of
applications in natural disaster assessment, urban planning, resource management, defor-
estation monitoring, etc. [1–9]. With the development of Earth observation technologies,
very-high-resolution (VHR) remote sensing images from various sensors (e.g., WorldView,
QuickBird, GaoFen, and high-definition imaging devices on airplanes) are increasingly
available, which has created new demands on RSCD algorithms [10,11]. To quickly and
robustly obtain the required change information from massive VHR images, deep learning
methods, especially convolutional neural networks (CNNs) with powerful deep feature
representation and image problem modeling abilities, have attracted significant research
interest [11–13].

Research on RSCD has been carried out for decades. In the early stages, medium- and
low-resolution remote sensing images were the common data source for RSCD and many
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relevant methods were proposed to establish a macro view of the surface [11]. Those meth-
ods can typically be classified into two categories: pixel-based methods and object-based
methods. Pixel-based methods generate change maps by comparing pairs of images at
different times on a pixel-by-pixel basis. For ease of application, algebra-based techniques
[7,14–17] are utilized in pixel-based methods to obtain rough change maps. Furthermore,
transform-based techniques [8,9,18–20] are adopted for robust feature extraction. Unlike
pixel-based methods, object-based methods regard image objects obtained from segmen-
tation algorithms as the basic analysis unit. Various image objects [21–23] are extracted
to compare image difference. Some features, such as spectral, textural, and contextual
information, can be embodied naturally in image objects to improve the performance
of RSCD.

Compared with medium- and low-resolution images, VHR images contain abundant
image details and spatial distribution information, such as colors, textures, and structure
information of the ground objects, which provides a solid guarantee for monitoring finer
Earth changes. However, complex scenes and vastly different scales of detected objects
conveyed in VHR images also introduce new challenges for RSCD. Pixel-based methods
may not work well on VHR images because spatial and contextual information are seldom
considered in their image change analysis process [24]. Although object-based methods
partially make up for the drawback of pixel-based methods, most of them use low-level
features (e.g., spectrum, texture, and shape) to extract change information, whereas these
features cannot represent the semantics information of VHR images well [25]. Furthermore,
both traditional pixel- and object-based methods are highly dependent on empirically de-
signed algorithms for feature extraction, which require abundant manual interference and
thus lack scalability and flexibility, failing to achieve satisfactory results for VHR images.

Recently, CNNs have shown their strong advantages in many tasks of computer
vision, such as image classification [26], super-resolution [27], and semantic segmenta-
tion [28]. Researchers have introduced CNNs such as VGG [26], UNet [29], Inception-
Net [30], and ResNet [31], to RSCD and achieved promising performance in terms of
high accuracy and strong robustness [32]. Compared with conventional RSCD algorithms,
CNN-based methods are data-driven and have great capabilities to extract high-quality
feature representations automatically, which meets the needs of large-scale change detec-
tion and could utilize spatial-context information in VHR images more efficiently [11,33].
The fundamental method of RSCD based on CNNs is to extract features from the input
image pair and combine these extracted features, and then RSCD is cast as a pixel-wise
classification task to generate change maps. Remote sensing images, especially VHR im-
ages, are easily affected by different atmospheric conditions and sensors, and thus have
abundant interfering factors and noise. Therefore, a strong and robust ability of feature
extraction is crucial for CNN-based RSCD to achieve high performance.

According to the feature extraction process for input image pairs, there are mainly two
types of CNN-based RSCD networks: single-stream networks and Siamese networks [33].
Single-stream networks fuse a pair of images as one input before sending them into the
model, and then generate change maps directly. Peng et al. [34] directly took concatenated
image pairs as the input and proposed a single-stream network based on UNet++ [35]
with nested dense skip pathways to learn multi-scale feature maps from different semantic
levels. Papadomanolaki et al. [36] integrated fully convolutional long short-term memory
layers into the skip-connection process of a simple U-net [29] architecture to compute
spatial features and temporal change patterns from the concatenated co-registered image
pairs. In [37], bi-temporal images were first preprocessed using MMR [38], and then a fully
convolutional network within pyramid pooling (FCN-PP) was applied to efficiently exploit
spatial multi-scale features from those preprocessed data. Unlike single-stream networks,
Siamese networks extract deep features from pre-change and post-change images, respectively.
In Siamese networks, powerful CNNs can be utilized as feature extractors naturally to improve
the quality of feature representations. For example, in [39], multi-level deep features of bi-
temporal images were extracted in parallel through a two-stream VGG [26] architecture
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and were then fused by subtraction and concatenation operations to generate final change
maps. Zhang et al. [40] exploited the DeepLabv2 [41] model for RSCD. Liu et al. [42] took
the SE-ResNet [43] network structure as the basic encoding module and used building
extraction as an auxiliary task to learn discriminative object-level features.

Although the existing CNN-based methods have achieved promising performance in
relation to RSCD, there are still two key challenges that need to be urgently addressed.

1.1. Challenge 1: Efficient Feature Fusion Strategy

As illustrated previously, most of the CNN-based methods focus on enhancing the
feature extraction ability of the model to detect changed features well, but they pay less
attention to the further improvement of feature fusion. Since the change map is jointly
determined by the input image pairs [44], the method of fusing the information from
different temporal images is also critical for RSCD. While fusing different extracted features,
many previous works [34,36,39,40,45] have tended to follow a one-way simple fusion
strategy, which results in two main limitations.

(1) The flexibility and diversity of information propagation are hindered by the one-
way fusion flow. It has been proved that low-level features, which are extracted by shallow
convolutional layers, are helpful for large instance identification [46,47]. However, one-way
fusion flow merges features in a top-down or bottom-up way, leading to a monotonous
and restricted path from low-level features to high-level features, and thus increases the
difficulty in aggregating accurate localization information of the changed areas. In this
case, several guidelines for improving feature aggregation, such as shortcut connection
[29,31], dense connection [48], and parallel paths [49], can be beneficial.

(2) Simple feature fusion operations, such as summation, subtraction, or concatena-
tion, ignore semantic gaps between high-level and low-level features, resulting in some
discrepancy and confusion for the network [12]. Besides, not all features extracted by
CNNs are useful for RSCD. Such irrelevant noise would increase the training difficulty
of the network and undermine the accuracy of predicted change maps if we fuse them
directly without filtering.

1.2. Challenge 2: Appropriate Loss Function

A good performance network needs a well-designed loss function. As a gold stan-
dard for pixel-wise classification, per-pixel cross-entropy (PPCE) loss is widely used in
RSCD [33,34,39,50,51]. Although PPCE loss measures the per-pixel difference between
predicted results and ground-truth images, which could provide per-pixel exact change
maps theoretically, we argue that it has two drawbacks in the RSCD task.

(1) The optimization objective of PPCE loss is too harsh for RSCD models to converge
well. For example, consider two identical remote sensing images offset from each other by
one pixel. Despite their visual similarity they would be very different as measured by PPCE
loss [27]. Remote sensing image pairs, especially VHR image pairs, usually have position
deviations (caused by alignment errors or geometric correction errors) and spectral differ-
ences (caused by the solar altitude angle, illumination conditions, or seasonal changes) [33].
These deviations result in inaccurate pixel-level mapping between two images and poor
representation of the changes of the same objects in two images, which limits the effective-
ness of PPCE loss in the RSCD task. In this case, some loss function optimization methods,
such as remapping [28] and joint training [39], could be beneficial.

(2) PPCE loss treats each pixel independently and thus cannot measure the perceptual
similarity between the predicted change map and its ground truth [27,52]. For example,
a pleasant visual change map should preserve the internal compactness and semantic
boundary of each object. Since PPCE loss does not take the neighborhood of each pixel into
account [52], it is unable to capture that similarity. As a result, change maps predicted by
the models trained with PPCE loss usually have missing parts in the structure of detected
objects and have incorrect geometric edges.
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In this paper, we present a CNN-based network named the multidirectional fusion
and perception network (MFPNet) for RSCD to address the above problems effectively.
The main contributions of this article are as follows.

(1) We propose a new multidirectional adaptive feature fusion module (MAFFM)
for RSCD, which consists of a multidirectional fusion pathway (MFP) and an adaptive
weighted fusion (AWF) strategy to perform cross-level feature fusion efficiently. The MFP
fuses different features in bottom-up, top-down, and shortcut-connection manners to over-
come the limitation of one-way information flow and improve the process of feature fusion.
The AWF strategy provides adaptive weight vectors for features from multidirectional
edges to consider their semantic relationship and emphasize vital feature maps.

(2) We propose a novel perceptual similarity module (PSM) for RSCD that allows
networks to benefit from perceptual loss in a targeted manner. In particular, the PSM mini-
mizes perceptual loss for changed areas and unchanged areas, respectively, which reduces
the distance between predicted change maps and their ground-truth images as well as
overcoming the drawbacks of PPCE loss.

(3) Comprehensive comparative experiments on four benchmark datasets demonstrate
that our proposed network outperforms eight state-of-the-art change detection networks
with considerable improvement. Furthermore, we discuss the rationality of our proposed
approaches and also port the proposed AWF and PSM to other CNN-based methods to
evaluate their versatility and portability.

The rest of the article is organized as follows. Section 2 introduces the related work.
Section 3 illustrates the proposed MFPNet in detail. Experimental results on the effec-
tiveness of the proposed method are presented and discussed in Section 4. Finally, the
conclusions of this paper are drawn in Section 6.

2. Related Work

In this section, different feature fusion strategies and varied loss functions used in
RSCD networks are briefly illustrated.

2.1. Feature Fusion Strategies

As presented in Figure 1, there are two main groups of feature fusion methods in
CNN-based RSCD: single-level fusion methods and multi-level fusion methods. Single-
level fusion methods, such as early-fusion [34,37,50], mid-fusion [53], and late-fusion [40],
combine the information from different temporal images at a specific fusion position.
However, single-level fusion methods can only exploit partial information for the change
detection task, which may hinder the detection performance [44].

As a hierarchical model, CNN converts input image pairs into multiple layers of
features. Many visualization works [54–57] indicate that high-level features, passing
through more layers and having smaller sizes, tend to contain more global information
(e.g., image content and semantic concept) but less local information, while low-level
features contain fine local object details (e.g., scene edge and object boundary) but lack
global information. To better leverage features from different levels, many RSCD mod-
els [13,34,37,39,40,42,45,53,58] adopt a multi-level fusion method, where bottom-up paths
with lateral connections are augmented to propagate hierarchical features of bi-temporal
images (shown in Figure 1b). For example, Daudt et al. [45] constructed a Siamese convo-
lutional network and fused extracted multi-level features in simple fusion manners like
concatenation and element-wise subtraction. To improve the effect of multi-level feature
fusion, attention mechanisms have been applied in fusion stages. For example, an en-
semble channel attention module [13] was proposed for deep supervision to aggregate
and refine features from different levels, which partially suppressed semantic gaps and
localization error. Zhang et al. [58] overcame the heterogeneity fusion problem between
multi-level features by introducing both channel and spatial attention [59] into bottom-up
paths. Although the above methods can take advantage of multi-level features, they only
fuse features in a one-way direction, i.e., bottom-up. The free flow of features between
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different layers is inherently limited by the one-way fusion path, which reduces the effect
of feature fusion. To address this problem, we propose an MAFFM to provide multi-level
fusion in bottom-up, top-down, and shortcut-connection manners. In the MAFFM, an AWF
strategy is adopted for every fusion node to enhance multi-level fusion.

(a) (b)

Figure 1. Feature fusion structures for CNN-based RSCD. (a) Single-level fusion: early-fusion (left), mid-fusion (middle),
late-fusion (right). (b) Multi-level fusion.

2.2. Loss Functions

The loss function is an indispensable part of CNN-based models, which determines
the optimization goal and plays a vital role in the performance of change detection models.
As analyzed in Section 1.2, two aspects restrict the improvement of PPCE loss in RSCD,
i.e., hard optimization target and lack of perceptual similarity.

For the first restriction, some RSCD researchers have combined PPCE loss with other
loss functions, such as dice loss [13,34,58] and change magnitude guided loss [39], to obtain
better performance. Other researchers discard PPCE loss and adopt the loss functions of
deep metric learning instead, such as contrastive loss [60] and triplet loss [61], to better
measure the (dis)similarity of image pairs and generate discriminative features between
two images. Deep metric learning enables the model to learn an embedded space in which
the distances between similar objects are smaller than those between different objects.
The idea of deep metric learning can be naturally applied to RSCD for measuring the
difference between a pair of images [62]. For example, Zhan et al. [63] proposed a weighted
contrastive loss to maximize the distance between the feature vectors of the changed pixel
and the ones of the unchanged pixel, and then used the distance to detect changes between
the image pair. In [40], an improved triplet loss was proposed for RSCD to learn the
semantic relationship of changed class and unchanged class to better pull the distance of
the pixels with the same label closer, and simultaneously push the distance of the pixels
with different labels farther from each other, in the learned space.

As for the perceptual similarity, its importance has been widely researched in im-
age synthesis and style transfer [27,64,65], where perceptual loss is proposed to embed
perceptual information (e.g., edge, content, and semantic) into a CNN model to generate
near-photorealistic results. By matching the predicted result with its ground truth in the
embedded spaces of the layers of a fixed pre-trained loss network, such as the ImageNet
pre-trained VGG [26], perceptual loss can optimize the CNN model in a deep feature
domain and transfer perceptual information from the fixed loss network to the CNN
model [65]. Recently, the idea of perceptual loss has been utilized to solve the RSCD prob-
lem. Lee et al. [66] proposed a local similarity Siamese network (LSS-Net) and predicted a
change attention map, which was later multiplied by pre-change images and post-change
images to calculate the perceptual loss of the ReLU1_2 layer of the VGG-16 [26] loss net-
work. Despite a promising performance, it relies heavily on the accuracy of the predicted
changed attention map and does not make full use of the perceptual information.
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Encouraged by the advantages of deep metric learning and perceptual loss, we propose
a novel module named the perceptual similarity module (PSM) to assist model training by
minimizing the distance between the changed (unchanged) areas and their ground truth
in multiple feature spaces, as well as exploiting perceptual information for high-quality
change map production.

3. Methodology

In this section, a brief description of the proposed network MFPNet is first presented.
The multidirectional adaptive feature fusion module (MAFFM), which integrates multi-
level features adaptively through bottom-up, top-down, and shortcut-connection paths, is
then elaborated in detail. Finally, the perceptual similarity module (PSM) is described.

3.1. Network Architecture

The overall architecture of the proposed MFPNet is shown in Figure 2.

Figure 2. Overall architecture of the proposed MFPNet. f 3×3 and f 1×1 denote 3 × 3 and 1 × 1 convolution operations,
respectively. The dimension of inputs is Channel × Height × Width. Note that the process with the dashed line only
participates in model training.

First, bi-temporal image pairs (T1 and T2) are fed into a Siamese feature extraction
backbone with two weight-shared SE-ResNet50s [43] to extract multi-level deep features.
Then, features from those two backbones are sent into the proposed MAFFM for cross-level
feature fusion. 1 × 1 convolutional layers in the MAFFM are used to unify the channel
number of features from different levels, which is set as 256 in this paper. For every
fusion node we conduct an AWF strategy, which aggregates different features (e.g., Fedge

1 ,

Fedge
2 , Fedge

3 ) from bottom-up, top-down, and shortcut-connection paths to generate weight
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refined fusion features Fedge
out . Afterwards, the final fusion features are upsampled by a

sub-pixel method [67] back to the size of input images to generate the discriminative map
D ∈ R2×Ho×Wo , where 2 is the number of classes (i.e., changed/unchanged), and Ho and Wo,
respectively, represent the original height and width of the input image. The main reason
to adopt the sub-pixel method is that this upsampling technique is capable of self-learning
contributing to a fine and complex mapping between low-resolution and high-resolution.
The proposed PSM measures the perceptual similarity between the discriminative map
D and its ground truth in feature spaces to shorten their distance. Finally, we apply an
Argmax operation on D to pick the class of maximum score for each pixel to generate the
change map M.

3.2. Multidirectional Adaptive Feature Fusion Module

To achieve cross-level feature aggregation sufficiently and efficiently, we propose
a MAFFM including a multidirectional fusion pathway and an adaptive weighted fu-
sion strategy.

3.2.1. Multidirectional Fusion Pathway

A conventional bottom-up multi-level fusion network is inherently limited by the
one-way information flow [68]. To address this issue, we construct the multidirectional
fusion pathway (MFP, shown in Figure 3), aiming at enriching the information flow of
feature fusion. More specifically, we build an extra top-down fusion path (i.e., the blue line
in Figure 3) to increase the flexibility and diversity of information paths. Extra shortcut
connections (i.e., the green line in Figure 3) are added between fusion nodes in the first and
third columns to shorten the information propagation and fuse more features. The feature
fusion strategy becomes crucial to the MFP, which is composed of many fusion nodes.
Simple multi-level fusion strategies, such as summation, subtraction, or concatenation
operations, are widely used in existing RSCD networks. However, they ignore the semantic
relationship between different features [44] and cannot exclude redundant information [12].
To overcome these issues, we introduce a novel feature fusion strategy named adaptive
weighted fusion in the following section.

Figure 3. Illustration of the proposed MFP.

3.2.2. Adaptive Weighted Fusion

Fusion nodes in the MFP accept features from two or three edges. Since the input
features of different edges come from different levels and periods, they usually contribute
to the output feature unequally. We thus propose an adaptive weighted fusion (AWF)
strategy for fusion nodes to fuse different features. The AWF strategy can be seen in
Figure 4, which aims to recalibrate the weights of every input feature map adaptively
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before adding them together. Taking a fusion node that receives features from three edges
as an example (shown in Figure 4a), it can be expressed as:

AWF
(

Fedge
1 , Fedge

2 , Fedge
3

)
=
(

w1 ·
(

Fedge
1

))
⊕
(

w3 ·
(

Fedge
3

))
⊕
(

w2 ·
(

Up
(

Fedge
2

)))
(1)

where ⊕ represents element-wise addition and Up means nearest interpolation upsam-
pling. Fedge

1 ∈ RC1×H1×W1 , Fedge
2 ∈ RC2×H2×W2 , Fedge

3 ∈ RC3×H3×W3 represent three input
features of the fusion node (C, H, W mean channel, height, width). w1 ∈ RC1 , w2 ∈ RC2 ,
w3 ∈ RC3 are three weight vectors that represent the importance of every channel of three
input features.

(a)

(b)

Figure 4. Illustration of the proposed AWF strategy. (a) Example of a fusion node with three inputs. (b) Detailed process of
obtaining a weight vector wi.

In order to provide appropriate and learnable weight vector wi, we utilize a channel
attention algorithm in each input edge of the fusion node to generate a channel-wise
attention map and take it as the weight vector. The channel attention algorithm is inspired
by a previous study [59]. Figure 4b shows the detailed process of obtaining a weight
vector wi. Given the input features Fin, we first perform global average pooling and
global max pooling on Fin along with the channel dimension to obtain two different
spatial context descriptors Favg

c and Fmax
c . Then, Favg

c and Fmax
c are separately sent into

two 1×1 convolutional layers to generate average-pooled feature Mavg
c and max-pooled
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feature Mmax
c . Afterwards, we fuse Mavg

c and Mmax
c together to generate wi by using a 1×2

convolutional layer. Formally, this process can be computed by:

Mavg
c = f 1×1

(
δ
(

f 1×1(AvgPoolc(Fin))
))

(2)

Mmax
c = f 1×1

(
δ
(

f 1×1(MaxPoolc(Fin))
))

(3)

wi = σ
(

f 1×2
(

Mavg
c c©Mmax

c

))
(4)

where f 1×1 and f 1×2 denote 1 × 1 and 1 × 2 convolution operations, respectively. σ(·) and
δ(·) represent Sigmoid and ReLU functions, respectively. c©means a concatenation opera-
tion.

The AWF strategy provides adaptive weight recalibration for feature fusion, which al-
lows the model to consider the semantic relationships between multi-level features and
focus on helpful feature maps as well as ignoring irrelevant feature maps.

3.3. Perceptual Similarity Module

The predicted change map is determined by two feature maps D1 and D2 of the
discriminative map D. By performing a SoftMax operation on D along the channel axis,
D1 and D2 are transferred to Ds1 and Ds2, respectively. The value of each pixel of Ds1
represents the probability that the pixel belongs to the changed class, while that of Ds2
represents the probability that belongs to the unchanged class. Therefore, to obtain an
accurate predicted change map, Ds1 should be consistent with the ground-truth changed
regions label GTc while Ds2 should match with the ground-truth unchanged regions label
GTuc. Based on this fact, we propose a novel perceptual similarity module to calculate
the perceptual loss of specific areas (i.e., the changed regions and the unchanged regions),
which could embed perceptual information into our network and shorten the distance
between Ds1 and GTc, as well as the distance between Ds2 and GTuc in high-dimensional
feature spaces. The detailed architecture of the PSM is shown in Figure 5. To compute
the perceptual loss for a specific region, we need to generate binary masks that have
a pixel value of 1 over the region of interest and 0 elsewhere. Since the ground-truth
change map GT has a pixel value of 1 in the changed area and 0 in the unchanged area,
it can be used as the binary mask Mc of changed regions and can also be regarded as
the ground-truth changed regions label GTc. The binary mask Muc of unchanged regions
and the ground-truth unchanged regions label GTuc can be made by 1− GT. Afterwards,
Ds1 (Ds2) is element-wise multiplied by Mc (Muc), so that Ds1 (Ds2) is converted to a black
and white masked feature map Dm1 (Dm2) where only the regions of interest are visible.
Now, all non-zero distances in the feature space between the masked feature map Dm1
(Dm2) and its ground-truth GTc (GTuc) correspond to the visible areas, i.e., the changed
(unchanged) areas. Following the guidance of previous works [27,64], we utilize a VGG-19
model pre-trained on ImageNet as our fixed loss network to compute the perceptual loss.
Low-level features of VGG-19 contain local information such as edges and textures, while
high-level features of VGG-19 contain abstract information such as semantic concept and
image content. Therefore, in order to obtain comprehensive information from the VGG-19
fixed loss network, we calculate distances in both low-level and high-level feature spaces of
VGG-19 to form our perceptual loss. The function ξ(·) to calculate the distances is defined
as:

ξ(I1, I2) = ∑
i,j

1
Ci,jHi,jWi,j

∥∥∥φi,j(I1)− φi,j(I2)
∥∥∥2

2
(5)

where I1, I2 are two inputs, φi,j is the output feature of the i-th group j-th ReLU layer of the
VGG-19 loss network when processing the input x, and here we set (i, j) as {(1, 2), (2, 2), (3, 4),
(4, 4), (5, 4)}. C, H, W are the Channel, Height, Width of the corresponding output feature,
respectively. ‖ · ‖2

2 calculates the squared Euclidean distance point by point.
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In summation, the process of the PSM can be formally expressed as:

PSM(D1, D2, GT)



(Ds1, Ds2) = S(D1, D2)
Mc = GTc = GT
Muc = GTuc = 1− GT
LP =ξc(Copy(Ds1 ⊗Mc, GTc))

+ ξuc(Copy(Ds2 ⊗Muc, GTuc))

(6)

where Ds1 and Ds2 are obtained by applying the SoftMax operation S(·) over two feature
maps D1 and D2 to each spatial location. ⊗ denotes element-wise multiplication. ξc(·) and
ξuc(·) are the functions to calculate feature space distances between any two given inputs for
changed regions and unchanged regions, respectively, which are defined in (5). Copy means
replicating input three times along the channel dimension to fit the input-shaped demand
of the loss network. LP is the proposed perceptual loss, which is the sum of the squared
Euclidean distance between ten feature representation pairs.

Figure 5. Detailed architecture of the PSM. The dimension of inputs is Channel×Height×Width. ξc(·) and ξuc(·) are the
functions defined in (5) to calculate feature space distances.

4. Experiments

In this section, we evaluate the proposed network MFPNet on four publicly available
benchmark datasets to demonstrate its effectiveness. First, we introduce details of the
four datasets, i.e., the Season-Varying dataset [69], the LEVIR-CD dataset [53], the Google
dataset [12], and the Zhang dataset [58]. Second, we present implementation details
including loss function and evaluation metrics. Third, eight state-of-the-art comparative
methods are introduced. Afterwards, we quantitatively and qualitatively compare our
results against those eight methods for four datasets. Finally, discussions are conducted to
show the effectiveness of the proposed modules.

4.1. Remote Sensing Change Detection Datasets

The Season-Varying dataset [69] has 7 pairs of VHR season-varying images with
4725 × 2200 pixels for manual ground truth creation, and 4 pairs of images with 1900 × 1000
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pixels for adding additional objects manually. This dataset considers objects of different
sizes (such as roads, buildings, and vehicles) while ignoring the changes caused by seasonal
differences, brightness, and other factors. The spatial resolution of images varies from 3 to
100 cm/pixel, and the weather and seasonal differences between bi-temporal images vary
largely. The dataset has been clipped into 256 × 256 nonoverlapping image patches by its
original author to generate 16,000 sub-image pairs of which 10,000 are for training, 3000
are for validation, and 3000 are for testing.

The LEVIR-CD dataset [53] consists of 637 VHR (50 cm/pixel) image pairs with a size
of 1024 × 1024 pixels. These bi-temporal images with a time span of 5 to 14 years cover the
changes of various buildings, such as garages, warehouses, and villas. Additionally, these
images are from 20 different regions that sit in several cities in Texas in the US, including
Austin, Lakeway, Bee Cave, Buda, Kyle, Manor, Pflugervilletx, Dripping Springs, etc. The
dataset has been divided into training, validation, and test sets by its author. Following
the illustration in the original literature [53], we cropped each sample to 16 small patches
of size of 256 × 256 to generate 7120 image patch pairs for training, 1024 for validation,
and 2048 for testing.

The third dataset, named the Google dataset [12], consists of 20 season-varying VHR
image pairs with a spatial resolution of 55 cm, and sizes ranging from 1006 × 1168 pixels to
5184 × 6736 pixels. This dataset covers the suburb areas of Guangzhou City, China, and is
used for building change detection. It is divided into 256 × 256 pixel nonoverlapping
patches with at least a fraction of changed pixels, where 1156 pairs of sub-images are
generated. The sub-image pairs were randomly divided according to a ratio of 7:2:1 to
generate training, validation, and test sets. Afterwards, the training set was rotated by 90◦,
180◦, and 270◦, and flipped in horizontal and vertical directions for data augmentation.
Finally, we obtained 4848 sub-image pairs for training, 232 for validation, and 116 for
testing.

The fourth dataset [58] consists of 6 large co-registered bi-temporal image pairs col-
lected from six different cities in China, denoted as the Zhang dataset. These season-varying
images provided by Google Earth were collected by a variety of sensors, resulting in a
dataset with varied image brightness and contrast. It focuses on the appearance and
disappearance of landcover objects, such as water bodies, roads, croplands, and buildings,
while ignoring the changes caused by seasons changing, image brightness, and other
factors. As illustrated in the relevant paper [58], this dataset, generated by cropping and
augmenting, contains 3600 bi-temporal sub-image pairs in the training set, 340 pairs in
the validation set, 48 pairs in the test set. The size of each sub-image is 512 × 512 pixels,
and the resolution is 200 cm/pixel. It is worth noting that the training set and validation
set of this dataset are from Beijing, Chengdu, Shenzhen, Chongqing, and Wuhan, while the
test set is entirely from another city (i.e., Xi’an), aiming to test the generalization ability of
change detection models.

4.2. Implementation Details

We implemented our proposed method with PyTorch, supported by an NVIDIA
CUDA with a GeForce GTX 1080Ti GPU. In the training phase, the Siamese feature extrac-
tion backbone and the PSM of the proposed MFPNet were respectively initialized from
the SE-ResNet50 [43] and the VGG-19 [26], which were both pre-trained on the ImageNet
dataset [70]. We adopted the Adam optimizer and set the base learning rate to 1 × 10−4.
The learning rate was decayed with a cosine annealing schedule [71]. The batch size was
set to 4, except for the Zhang dataset where the batch size was set to 2 for the benefit of
GPU training. Model training finished when the F1-score for the validation set did not
improve for 40 epochs.

4.2.1. Loss Function

In the training phase, we applied SoftMax PPCE loss LSM and the proposed perceptual
loss LP as our loss function. SoftMax PPCE loss is one of the most commonly used loss
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functions for RSCD. Let us consider a training sample
{(

XT1, XT2), Y
}

, where
(
XT1, XT2)

are the bi-temporal images, and Y is the ground-truth change map. LSM can be defined
as LSM = − 1

J ∑J
j=0 ∑1

c=0 log Pr
(
Yj = c |

(
XT1, XT2); θ

)
, where the sums run over the total

J pixels; Pr
(
Yj = c |

(
XT1, XT2); θ

)
presents the predicted probability of pixel j belonging

to the c-th class, which is obtained by the SoftMax function. Since there are only two
classes in our task, c is set to 1 or 0 to indicate the changed class or the unchanged class.
Our perceptual loss is computed by the proposed PSM and its detailed definition can be
seen in (6). In summary, the total loss function for our proposed framework MFPNet is
L = LSM + λLP, where λ denotes the weight of perceptual loss and is set as 1 × 10−4 in
this paper.

4.2.2. Evaluation Metrics

For quantitative assessment, two indices, namely F1-score (F1) and Kappa coefficient
(Kappa) are used as the evaluation metrics. These two indices can be calculated as follows:

F1 =
2× Precision× Recall

Precision + Recall
, Precision =

TP
TP + FP

, Recall =
TP

TP+FN
(7)

Kappa =
OA− PRE

1− PRE
(8)

OA =
TP + TN

TP + FP + TN + FN
(9)

PRE =
(TP + FN)× (TP + FP) + (TN + FP)× (TN + FN)

(TP + FP + TN + FN)2 (10)

where OA and PRE denote the overall accuracy and expected accuracy, respectively. TP,
FP, TN, and FN are the number of true positives, false positives, true negatives, and false
negatives, respectively. It is noteworthy that F1 is a weighted harmonic mean of precision
and recall, which balances the conflict by considering precision and recall simultaneously
and can better reflect the change detection ability of a model [33]. Higher F1-score and
Kappa represent better overall performance of the model [12].

4.3. Comparative Methods

Eight current networks specially designed for RSCD were selected as the comparative
methods. Their key characteristics are summarized in Table 1. Note that UNet++_MSOF [34]
and DSIFN [58] use deep supervision in their intermediate layers as a training trick to
accelerate the training process and enhance network performance. Because Fang et al. [13]
proposed six SNUNet-CD networks with different widths, here we take the “SNUNet-
CD/48” network, which has the best performance among the six SNUNet-CD networks,
as our comparative method.

Table 1. Key characteristics of comparative methods.

Networks Published Year Architecture Loss Function Feature Fusion Strategy

FC-Siam-conc [45] 2018 Siamese, FCN Weighted SoftMax PPCE loss Multi-level fusion, concatenation, skip-connection
FC-Siam-diff [45] 2018 Siamese, FCN Weighted SoftMax PPCE loss Multi-level fusion, subtraction, skip-connection
FCN-PP [37] 2019 Single-branch, FCN SoftMax PPCE loss Early-fusion, concatenation, skip-connection
UNet++_MSOF [34] 2019 Single-branch, UNet++ Weighted sigmoid PPCE loss, dice loss Early-fusion, concatenation, dense skip-connection
STANet [53] 2020 Siamese, ResNet Batch-balanced contrastive loss Mid-fusion, self-attention
DSIFN [58] 2020 Siamese, VGG Sigmoid PPCE loss, dice loss Multi-level fusion, channel and spatial attention
SNUNet-CD/48 [13] 2021 Siamese, UNet++ Weighted SoftMax PPCE loss, dice loss Multi-level fusion, channel attention, dense skip-connection
LSS-Net [66] 2021 Siamese, SE-ResNet SoftMax PPCE loss, perceptual loss Multi-level fusion, local similarity attention

4.4. Evaluation for the Season-Varying Dataset

The quantitative results for the Season-Varying dataset are shown in Table 2. It can be
seen that MFPNet achieves the best performance with the highest F1 (97.54%) and Kappa
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(97.21%). Compared with other methods, MFPNet exhibits significant improvements by at
least 1.24% and 1.4% in terms of F1 and Kappa, respectively.

Table 2. Quantitative results for the Season-Varying dataset. The best two results are in bold and
underline.

Methods Season-Varying Dataset
F1 (%) Kappa (%)

FC-Siam-conc [45] 68.25 65.27
FC-Siam-diff [45] 70.06 69.12

FCN-PP [37] 84.95 83.04
UNet++_MSOF [34] 89.93 88.63

STANet [53] 91.31 90.10
DSIFN [58] 90.65 89.45

SNUNet-CD/48 [13] 96.20 95.70
LSS-Net [66] 96.30 95.81

MFPNet (ours) 97.54 97.21

The Season-Varying dataset has changeable scenes and different change objects.
Figures 6 and 7 show several representative results for qualitative analysis. As one can
see, although there is significant noise between bi-temporal images T1 and T2 (such as the
disturbance of solar altitude, snow, and sensors), MFPNet successfully filters such irrele-
vant factors and identifies real changed areas. Regarding the thin and small areas, such as
narrow roads, vehicles, and small buildings, MFPNet can distinguish more tiny changes,
leading to high-quality change maps with good continuity and clear boundaries, as seen
in Figure 6. For large and complex area changes, MFPNet outperforms other methods
in object integrity maintenance and detail restoration, as seen in Figure 7. In summary,
the proposed MFPNet achieves the best visual performance on the Season-Varying dataset
and its change maps are more consistent with the ground truth.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

Figure 6. Qualitative results for small and thin area changes for the Season-Varying dataset. (a) T1 images. (b) T2 images.
(c) Ground truth. (d) MFPNet (ours). (e) LSS-Net. (f) SNUNet-CD/48. (g) DSIFN. (h) STANet. (i) UNET++_MSOF.
(j) FCN-PP. (k) FC-Siam-diff. (l) FC-Siam-conc. The changed areas are marked in white, while the unchanged parts are
in black.
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

Figure 7. Qualitative results for complex and large area changes for the Season-Varying dataset. (a) T1 images. (b) T2
images. (c) Ground truth. (d) MFPNet (ours). (e) LSS-Net. (f) SNUNet-CD/48. (g) DSIFN. (h) STANet. (i) UNET++_MSOF.
(j) FCN-PP. (k) FC-Siam-diff. (l) FC-Siam-conc. The changed areas are marked in white, while the unchanged parts are
in black.

4.5. Evaluation for the LEVIR-CD Dataset

Table 3 presents the quantitative results for different methods for the LEVIR-CD
dataset. We can conclude that the proposed MFPNet achieves the best performance against
other comparative methods, exhibiting the highest scores on both metrics. Specifically, the
F1 and Kappa values of the MFPNet are 91.69% and 91.25%, respectively. Compared with
the second-best model, DSIFN, the MFPNet yields improvements of 1.26% and 1.32% for
F1 and Kappa, respectively.

Table 3. Quantitative results for the LEVIR-CD dataset. The best two results are in bold and underline.

Methods LEVIR-CD Dataset
F1 (%) Kappa (%)

FC-Siam-conc [45] 81.44 80.58
FC-Siam-diff [45] 83.78 82.99

FCN-PP [37] 89.10 88.51
UNet++_MSOF [34] 88.94 88.36

STANet [53] 88.07 87.41
DSIFN [58] 90.12 89.60

SNUNet-CD/48 [13] 88.80 88.21
LSS-Net [66] 90.43 89.93

MFPNet (ours) 91.69 91.25

Note that only building changes are labeled in this dataset and the results obtained
on typical test samples are shown in Figure 8. It can be seen that our MFPNet is good at
capturing scattered as well as dense building changes. In particular, MFPNet can focus
on building changes and sufficiently overcome the interference of other changes such as
roads and trees, thus outputting finer details with less noise, e.g., rows 1–3 of Figure 8. In
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addition, MFPNet learns the characteristics of buildings accurately, and thus maintains the
integrity and geometric edges of buildings in the change maps, e.g., rows 4–6 of Figure 8.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

Figure 8. Qualitative results for the LEVIR-CD dataset. (a) T1 images. (b) T2 images. (c) Ground truth. (d) MFPNet (ours).
(e) LSS-Net. (f) SNUNet-CD/48. (g) DSIFN. (h) STANet. (i) UNET++_MSOF. (j) FCN-PP. (k) FC-Siam-diff. (l) FC-Siam-conc.
The changed areas are marked in white, while the unchanged parts are in black.

4.6. Evaluation for the Google Dataset

Table 4 shows the performance of different methods for the Google dataset. The com-
parison results show that MFPNet outperforms the other eight methods by 1.33–12.37% in
F1 and 1.79–15.11% in Kappa, yielding a result of 87.09% in F1 and 83.01% in Kappa.

Table 4. Quantitative results for the Google dataset. The best two results are in bold and underline.

Methods Google Dataset
F1 (%) Kappa (%)

FC-Siam-conc [45] 80.08 74.31
FC-Siam-diff [45] 78.43 71.62

FCN-PP [37] 82.69 77.27
UNet++_MSOF [34] 80.44 74.29

STANet [53] 74.72 68.38
DSIFN [58] 84.54 79.85

SNUNet-CD/48 [13] 76.26 67.90
LSS-NET [66] 85.76 81.22

MFPNet (ours) 87.09 83.01

For the purpose of qualitative comparison of different methods for the Google dataset,
some typical results are illustrated in Figure 9. It can be seen that all the methods can detect
the changed buildings with different sizes. The proposed MFPNet achieves the best visual
performance among all the algorithms by reducing false and missed detections, resulting
in finer change maps with more accuracy and less noise. In particular, while the other
algorithms exhibit false detections like mistaking road changes, shadow changes, or vehicle
changes as building changes, MFPNet can better remove those false alarms to produce
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more precision change maps, as presented in the first three rows of Figure 9. Further,
missed detections of building changes can be better overcome by MFPNet, as presented in
the last three rows of Figure 9.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

Figure 9. Qualitative results for the Google dataset. (a) T1 images. (b) T2 images. (c) Ground truth. (d) MFPNet (ours).
(e) LSS-Net. (f) SNUNet-CD/48. (g) DSIFN. (h) STANet. (i) UNET++_MSOF. (j) FCN-PP. (k) FC-Siam-diff. (l) FC-Siam-conc.
The changed areas are marked in white, while the unchanged parts are in black.

4.7. Evaluation for the Zhang Dataset

To further verify the generalization ability of the proposed MFPNet, we conducted
experiments on the Zhang dataset. Note that the samples used in the test set are from a
different city that is not used in the training or validation sets. The huge inconsistency of
data distribution between training/validation sets and the test set raises a big challenge
for RSCD algorithms. Nevertheless, our proposed MFPNet still obtains the highest F1
(68.45%) and Kappa (62.01%) with 0.69–18.37% and 0.53–24.12% improvements, respec-
tively, as shown in Table 5.

The visualization is shown in Figure 10. Due to the great challenge brought by this
dataset, all the algorithms perform poorly for small object change detection, but our
proposed MFPNet still outperforms the best methods by a small margin. For large area
change detection, the change maps of the MFPNet contain higher object compactness and
clearer boundaries.
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Table 5. Quantitative results for the Zhang dataset. The best two results are in bold and underline.

Methods Zhang Dataset
F1 (%) Kappa (%)

FC-Siam-conc [45] 50.08 37.89
FC-Siam-diff [45] 59.27 51.58

FCN-PP [37] 61.23 52.75
UNet++_MSOF [34] 62.69 54.52

STANet [53] 63.43 55.78
DSIFN [58] 67.76 61.01

SNUNet-CD/48 [13] 67.48 61.48
LSS-Net [66] 63.14 53.80

MFPNet (ours) 68.45 62.01

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

Figure 10. Qualitative results for the Zhang dataset. (a) T1 images. (b) T2 images. (c) Ground truth. (d) MFPNet (ours).
(e) LSS-Net. (f) SNUNet-CD/48. (g) DSIFN. (h) STANet. (i) UNET++_MSOF. (j) FCN-PP. (k) FC-Siam-diff. (l) FC-Siam-conc.
The changed areas are marked in white, while the unchanged parts are in black.

5. Discussion

The experimental results above show the potential of the proposed network MFPNet
in RSCD. In this section, we further discuss the rationality of the proposed approaches,
the limitations of the proposed network, and the plan for our future work.

5.1. Rationality of the Proposed Approaches

To demonstrate the benefits of our proposed approaches, we conducted an ablation
study by adding each proposed component individually to the baseline as well as incorpo-
rating all the components progressively, including the MFP, AWF, and PSM. The detailed
architecture of the baseline is presented in Figure 11, consisting of the Siamese SE-ResNet50
feature extraction backbone and three bottom-up feature fusion pathways. For every fusion
node, three convolutional layers perform 3 × 3, 1 × 1, and 3 × 3 convolutional operations.
The results are listed in Table 6. We also applied the proposed AWF and PSM to other
existing RSCD networks to explore their versatility and portability. Specific analysis is
as follows.
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Table 6. Ablation results for the proposed MFPNet for four dataset. The best two results are in bold and underline.

Framework MFP AWF PSM Season-Varying Dataset LEVIR-CD Dataset Google Dataset Zhang Dataset
F1 (%) Kappa (%) F1 (%) Kappa (%) F1 (%) Kappa (%) F1 (%) Kappa (%)

Baseline 96.16 95.65 87.15 86.45 78.02 71.90 60.87 53.79
Baseline_MFP X 96.79 96.36 89.04 88.47 83.65 78.82 64.29 57.34
Baseline_AWF X 97.01 96.60 88.82 88.25 82.28 77.02 65.40 56.81
Baseline_PSM X 96.90 96.48 90.90 90.42 81.84 76.36 63.98 56.54

Baseline_MAFFM X X 97.29 96.92 90.32 89.81 84.79 79.66 66.90 58.97
MFPNet (ours) X X X 97.54 97.21 91.69 91.25 87.09 83.01 68.45 62.01

Figure 11. Detailed architecture of the baseline.

5.1.1. Effect of the MFP

To verify the MFP, we added it to the baseline by changing the second path of
the bottom-up feature fusion from bottom-up to top-down and augmenting extra short-
connection paths. It is noteworthy that the above-mentioned operation only changes the
fusion pathway without introducing any additional convolutional layer. As shown in
Table 6, the MFP brings 0.63%, 1.89%, 5.63%, and 3.42% F1 improvements for the baseline
on the Season-Varying, LEVIR-CD, Google, and Zhang datasets, respectively. In addition,
the MFP gains 0.71%, 2.02%, 6.92%, and 3.55% in Kappa. These results confirm that the
conventional bottom-up multi-level fusion network is inherently limited by the one-way
information flow and prove the effectiveness of fusing features from multi-directional
pathways.

5.1.2. Effect of the AWF

The proposed AWF provides additional weights, which reflect the importance of
features, for each input before fusing them together. To evaluate the benefit of the AWF,
we applied the AWF strategy to each fusion node of the baseline and the baseline_MFP to
form the baseline_AWF and baseline_MAFFM, respectively. As shown in Table 6, the AWF
strategy gains 0.85%, 1.67%, 4.26%, and 4.53% in F1 and 0.95%, 1.8%, 5.12%, and 3.02% in
Kappa compared with the baselines of the four datasets. The baseline_MAFFM using both
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MFP and AWF achieves better performance than the networks using only MFP or AWF,
which shows that the advantages of the proposed MFP and AWF approaches are comple-
mentary and their coherent innovations contribute to a high-performance RSCD model.
Furthermore, the idea of AWF can be used directly in existing CNN-based techniques to
conduct weight recalibration. To explore the versatility and portability of the AWF strategy,
we applied it to FC-Siam-conc [45] and FC-Siam-diff [45] on the Season-Varying dataset. As
reported in Table 7, the models with AWF consistently outperformed the models without
AWF, which confirms the usefulness of the AWF strategy on other RSCD networks. The
above facts indicate that simple feature fusion manners like addition (provided by Baseline
and Baseline_MFP), concatenation (provided by FC-Siam-conc), and subtraction (provided
by FC-Siam-diff) are not effective for the RSCD task. It is more sensible to fuse different
features after weighted calibration, which can be achieved by our AWF strategy.

Table 7. Performance comparison of FC-Siam-conc and FC-Siam-diff with/without AWF on Season-
Varying dataset. The number in the brackets means the gain brought by adding the AWF strategy.

Methods F1 (%) Kappa (%)

FC-Siam-conc [45] (+AWF) 68.25 (+5.94) 65.27 (+5.98)
FC-Siam-diff [45] (+AWF) 70.06 (+3.73) 69.12 (+1.96)

5.1.3. Effect of the PSM

The proposed PSM introduces perceptual loss for changed regions and unchanged
regions to encourage predicted change maps to be perceptually similar to ground-truth
images. As shown in Table 6, the PSM boosts 0.74%, 3.75%, 3.82%, and 3.11% in F1 and
0.83%, 3.97%, 4.46%, and 2.75% in Kappa compared with the baseline. The introduction of
PSM to the baseline_MAFFM also enhances its performance. The above facts demonstrate
the effectiveness of the PSM. To explore the sensitivity of the proposed perceptual loss
gained by the PSM, we adapted the hyperparameter λ of the proposed perceptual loss from
1 × 10−6 to 1 for the Season-Varying dataset. As shown in Figure 12, when λ is set to 0, only
SoftMax PPCE loss is used for model training, resulting in low F1 and Kappa. With the
increasing number of λ, the values of F1 and Kappa increase gradually, showing the great
potential of perceptual loss in the RSCD task. The performance reaches the peak when λ
approaches 1 × 10−4, and then it decreases in a fluctuating way, implying that too much
perceptual loss can impair prediction results. To explore the versatility and portability of
the PSM, we applied it to FC-Siam-conc and FC-Siam-diff. Table 8 shows the quantitative
performance. We can see that PSM boosts the F1 of FC-Siam-conc and FC-Siam-diff by
3.34% and 3.86%, respectively. The PSM increases their Kappa values as well. This fact
further confirms that PSM is beneficial for the RSCD task.

Table 8. Performance comparison of FC-Siam-conc and FC-Siam-diff with/without PSM. The number
in the brackets mean the gain brought by the addition of PSM.

Methods F1 (%) Kappa (%)

FC-Siam-conc [45] (+PSM) 68.25 (+3.34) 65.27 (+3.63)
FC-Siam-diff [45] (+PSM) 70.06 (+3.86) 69.12 (+1.98)



Remote Sens. 2021, 13, 3053 20 of 24

97.25

97.30

97.35

97.40

97.45

97.50

97.55

0 1E-6 1E-5 1E-4 1E-3 1E-2 1E-1 1

96.90

96.95

97.00

97.05

97.10

97.15

97.20

97.25

F1
(%

)
K
ap
pa
(%

)

Figure 12. Effect of hyperparameter λ on the performance of the proposed MFPNet for the Season-
Varying dataset.

Viewing Table 6 as a whole, the best performance is delivered by our proposed
framework, MFPNet. Specifically, with all these components in MFPNet, improvements
on F1 are 1.38%, 4.54%, 9.07%, and 7.58%, and on Kappa are 1.56%, 4.80%, 11.11%, and
8.22% over the baseline on the Season-Varying, LEVIR-CD, Google, and Zhang datasets,
respectively. It is noteworthy that although our proposed network, MFPNet, is verified
on RGB images, the MFPNet itself is independent of raster data types, which means our
network can be extended to other forms of two-dimensional raster data (such as near-
infrared, spectral, or hyperspectral images) for RSCD.

5.2. Limitations of the Proposed Network

Although the proposed network, MFPNet, achieves promising performance, it has
some potential limitations. First, the computational complexity of the MFPNet is relatively
high, which is unfriendly to resource-constrained equipment and applications. As shown
in Table 9, the number of trainable parameters of the MFPNet is 60.05 million, which
is the largest one among comparative methods. As for the number of multiply–add
operations (MAdds), MFPNet is smaller than SNUNet-CD and larger than the other
models. Thus, some model compression techniques, such as pruning and knowledge
distillation, could be exploited for our network to reduce the model size. Second, the
proposed network is designed for monomodal change detection, which could be further
developed for multimodal change detection.
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Table 9. Model complexity. M: million. B: billion. MAdds: multiple-adds measured with regard to a
256 × 256 input.

Method Parameters (M) MAdds (B)

FC-Siam-conc [45] 1.55 5.32
FC-Siam-diff [45] 1.35 4.72

FCN-PP [37] 18.70 36.52
UNet++_MSOF [34] 9.06 26.03

STANet [53] 16.93 13.17
DSIFN [58] 35.73 82.35

SNUNet-CD/48 [13] 27.07 123.21
LSS-NET [66] 45.66 59.13

MFPNet (ours) 60.05 107.48

5.3. Future Work

As discussed in Section 5.2, we intend to exploit the potential of model compression
techniques to reduce the model complexity. In addition, we will explore the availability
of multimodal data fusion and adversarial training in RSCD, so as to further improve the
performance and robustness of change detection models to various types of noise (e.g.,
clouds and smoke occlusions).

6. Conclusions

In this paper, we proposed a novel deep learning network (MFPNet) for RSCD. To en-
hance the process of feature fusion, we proposed an MAFFM that consists of an MFP and an
AWF strategy. The MFP improves the diversity of information paths and eases information
propagation. The AWF strategy emphasizes important feature maps as well as suppressing
irrelevant feature maps for reliable information passing; thus, the comprehensive and
high-quality features can be aggregated at each fusion node. Furthermore, to compensate
for the drawbacks of PPCE loss, we proposed a PSM to calculate the perceptual loss for
changed and unchanged areas. The PSM provides perceptual information for the network
and minimizes the distance between the predicted change map and its ground truth in
high-dimensional feature spaces, thus making the output consistent with its ground truth.
The effectiveness and robustness of the proposed network were verified for four benchmark
datasets that have different change targets as well as imaging conditions. Experimental
results show that the proposed network (MFPNet) achieves the best performance in both
quantitative assessment and visual interpretation among state-of-the-art methods.
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