
remote sensing  

Article

An Efficient Method for Estimating Wheat Heading Dates
Using UAV Images

Licheng Zhao 1,2 , Wei Guo 2 , Jian Wang 3, Haozhou Wang 2 , Yulin Duan 1, Cong Wang 1, Wenbin Wu 1

and Yun Shi 1,*

����������
�������

Citation: Zhao, L.; Guo, W.; Wang, J.;

Wang, H.; Duan, Y.; Wang, C.; Wu, W.;

Shi, Y. An Efficient Method for

Estimating Wheat Heading Dates

Using UAV Images. Remote Sens.

2021, 13, 3067. https://doi.org/

10.3390/rs13163067

Academic Editor: Shawn C. Kefauver

Received: 21 May 2021

Accepted: 30 July 2021

Published: 4 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Key Laboratory of Agricultural Remote Sensing (AGRIRS), Ministry of Agriculture and Rural Affairs,
Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences,
Beijing 100081, China; zhaolicheng@caas.cn (L.Z.); duanyulin@caas.cn (Y.D.); wangcong01@caas.cn (C.W.);
wuwenbin@caas.cn (W.W.)

2 Institute for Sustainable Agro-Ecosystem Services, Graduate School of Agricultural and Life Science,
The University of Tokyo, Tokyo 188-0002, Japan; guowei@g.ecc.u-tokyo.ac.jp (W.G.);
haozhou-wang@g.ecc.u-tokyo.ac.jp (H.W.)

3 Institute of Cotton Research, Shanxi Agricultural University, Yuncheng 044000, China;
wangjianmhs@sxau.edu.cn

* Correspondence: shiyun@caas.cn

Abstract: Convenient, efficient, and high-throughput estimation of wheat heading dates is of great
significance in plant sciences and agricultural research. However, documenting heading dates is
time-consuming, labor-intensive, and subjective on a large-scale field. To overcome these challenges,
model- and image-based approaches are used to estimate heading dates. Phenology models usually
require complicated parameters calibrations, making it difficult to model other varieties and different
locations, while in situ field-image recognition usually requires the deployment of a large amount
of observational equipment, which is expensive. Therefore, in this study, we proposed a growth
curve-based method for estimating wheat heading dates. The method first generates a height-based
continuous growth curve based on five time-series unmanned aerial vehicle (UAV) images captured
over the entire wheat growth cycle (>200 d). Then estimate the heading date by generated growth
curve. As a result, the proposed method had a mean absolute error of 2.81 d and a root mean
square error of 3.49 d for 72 wheat plots composed of different varieties and densities sown on
different dates. Thus, the proposed method is straightforward, efficient, and affordable and meets
the high-throughput estimation requirements of large-scale fields and underdeveloped areas.

Keywords: heading date; UAV images; plant height; growth curve; wheat

1. Introduction

Climate change affects agriculture and food production in complex ways [1]. It is
estimated that double the present rate of crop production will be needed to meet the
needs of the growing population globally by 2050 [2]. The rapid increase in global food
production over the past 60 years has been one of the greatest public health achievements
in modern history, partly because of technological innovations, including the development
of high-yielding crop varieties, production and use of chemical fertilizers and pesticides,
as well as agricultural mechanization [3]. Although global food production has increased
rapidly, a significant component of the population remains undernourished. Two billion
individuals experience micronutrient malnutrition; 161 million children under 5 years
of age are stunted, 51 million are wasted, and 794 million individuals are estimated to
be calorie deficient [4]. Therefore, identifying and monitoring the phenological stages of
crops is essential for breeding new varieties, selecting dominant species, and determining
reasonable cultivation methods and accurate field management strategies (irrigation and
fertilization) to improve grain yield and quality and promote food security. The heading
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stage is one of the most critical periods during wheat growth, which is significantly
correlated with final yield [5]. Therefore, efficient and high-throughput observations and
recordings of wheat heading dates are of great importance.

The heading date is usually recorded through field observations by agronomists. The
observer selects a suitable plant sample from a large field and then visually evaluates the
wheat growth period. However, there are several challenges with this approach: (i) field
observations are labor-intensive; (ii) the time required for data collection increases with
the distance between the observation station and the sampling sites, which are situated at
different locations; (iii) interpretations of observation criteria increase human error; and
(iv) frequent observations are required to evaluate the transition time to a new stage, which
can damage crops and the growing environment. Therefore, an automatic, continuous, and
non-destructive crop observation method is required [6].

Phenological model-based approaches provide another way to estimate the head-
ing dates of crops. Kawakita et al. developed three winter wheat phenology models
with different structures, namely the Agricultural Production System Simulator Model
for wheat, the Wang and Engel model, and the model based on sigmoid and exponential
functions [7]. These models were calibrated using three parameterization methods to pre-
dict wheat heading dates: augmented Lagrange multiplier method, Nelder–Mead method,
and Bayesian optimization with Gaussian process. Six-fold cross-validation of nine com-
binations of model calibration (three models × three parameterizations) showed that the
accuracy of the root mean square error (RMSE) ranged from 2 to 7 d [7]. Furthermore,
Velumani et al. parameterized models for nine wheat varieties based on daily tempera-
tures, vernalization, and photoperiod characteristics observed in the field experiments for
four years (2016–2019). The RMSE and the mean absolute error (MAE) using the calibrated
ARCWHEAT crop model were 4.24 d and 3.11 d, respectively [8]. Although crop phenol-
ogy models can be used to predict the heading dates of wheat and other crops at an early
stage, model calibration for each species is time-consuming, requires periodic observations
throughout the crop growth cycle (including cumulated temperature, vernalization, and
photoperiod), and needs replicates at multiple locations over many years [8]. Additionally,
the differences in model structure and parameterization methods cause parametric and
predictive uncertainties, limiting the widespread use of phenological models [7].

Previous studies also have proven that ear detection based on digital images can be
used to estimate heading dates. Zhu et al. proposed a two-step coarse-to-fine wheat ear
detection method. Subsequently, the estimation of the heading date was based on the
number of wheat ears, and an MAE of 1.14 d was reported [9]. Similarly, Bai et al. used a
new multi-classifier cascade method for rice ear detection, whose numbers were used to
evaluate the heading dates. The difference between the proposed multi-classifier cascade
method and the manual method was 2 d [10]. These methods accurately estimated the
heading dates by detecting wheat or rice ears based on image recognition. However, both
studies used empirical thresholds (i.e., number of spikes) to determine the heading dates,
with Zhu et al. using the number of spikes in patches as a threshold in an a priori dataset
and Bai et al. directly calibrating the threshold at 200, which may vary depending on the
variety and the study area. Desai et al. proposed a simple method to detect candidate rice
ear regions using red-green-blue (RGB) images, which were used to estimate the heading
dates for five datasets containing three different rice varieties with an MAE of <1 d using
convolutional neural network-based image classification [11]. In comparison, Velumani
et al. proposed an automatic method based on a series of RGB images captured daily
using an RGB camera fixed in the field. In this method, the convolutional neural network
recognized the presence or absence of wheat ears in small plots, and the heading dates were
then estimated based on the ear dynamics observed in the images over time. The method
was extensively applied and validated over three years at 47 test sites and nine wheat
varieties in different regions of France. Moreover, with an RMSE of approximately 2 d,
the method outperformed the ARCWHEAT crop model calibrated to local conditions [8].
Similarly, Wang et al. used digital images captured using a mobile vehicle-mounted DSLR
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camera to detect the wheat heading rate and combined it with a logistic curve to estimate
wheat heading dates, with an MAE and RMSE of 0.99 d and 1.25 d, respectively [12].
Model- and image-based approaches help record heading dates for breeding and cultivation
experiments that require a lot of plots [13].

Rapid advances in unmanned aerial vehicle (UAV) technology have been applied to
many areas of agricultural research, including estimation of plant height with the RMSE
of 0.02–0.07 m using digital surface model (DSM) [14], estimation of canopy cover with a
determination coefficient R2 = 0.99 using a decision-tree-based segmentation model [15,16],
estimation of canopy temperature using a miniature longwave infrared camera [17], eval-
uating the water status of soybean plants via thermal images [18], estimation of leaf
chlorophyll content using a hyperspectral line scanner and random forest models [19],
estimation of nitrogen content using multispectral data [20], estimation of biomass with
an R2 = 0.71 using DSM [21], and estimation of soybean and potato yield using RGB,
multispectral, hyperspectral, and thermal data [22,23], identification of pests and diseases
of potato using object-based image analysis method and random forest model [24], and
cotton seedling detection and counting with an R2 = 0.98 using a deep-learning-based ap-
proach [25]. Furthermore, previous studies on crop characteristics have used UAV images
to fit sigmoid functions to simulate crop growth. Borra-Serrano et al. used beta and Gom-
pertz functions to fit canopy cover and canopy height, which were then used to calculate
crop parameters, including maximum absolute growth rate, early vigor, maximum height,
and senescence for different genotypes of soybean [26]. In addition, Chang et al. compared
the sorghum canopy height measured using UAV images and sigmoidal curves with those
measured on-site to reveal the efficiency of UAV-based methods [27].

However, few studies have estimated the wheat heading dates using UAV images.
Despite a large observational range and high efficiency, it is inconvenient for UAVs to
take high-frequency images at the daily level. Therefore, it would be of special interest
to determine whether and how UAV-acquired wheat images can be used for heading
date estimation when only a few UAV images are available throughout the growth cycle.
The overall goal of this research was to develop a high-throughput wheat heading date
estimation method over a large area based on UAV images. We monitored wheat canopy
cover and height changes using UAV images and fit continuous growth curves using crop
growth functions to estimate the heading dates. We also compared the estimated results
of nine crop growth curves and three plant height estimation methods and analyzed the
causes of errors and possible methods to improve accuracy. It is proven that UAV images
can be used to estimate wheat heading dates. We also provide a feasible solution to estimate
the wheat heading dates on a large scale.

2. Materials and Methods
2.1. Study Area

The study site was located at Nanhua Farm of the Institute of Cotton Science, Shanxi
Agricultural University, Yuncheng City, central China (34◦ N 110◦ E, Figure 1). This site
has a temperate continental monsoon climate, and the yearly radiation value of 2019
was 4777.03 MJ/m2 (recorded by the nearest station data of the China Meteorological
Radiation Data International Exchange Stations). The average annual rainfall in this region
is 559.3 mm, the average annual sunshine duration is 2247.4 h, the annual frost-free period
is approximately 208 d, and the average annual and accumulated temperatures are 13.6 ◦C
and 513.8 ◦C, respectively, which are suitable for the growth of wheat [28].
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Figure 1. Study area and experimental design. (a) Location of the study area; (b) Orthomosaic; (c) Cultivation plots for each
sowing date; (d) Magnified image of the orthomosaic; (e) Measurements of a ground control point.

A total of 75 experimental wheat plots, observed from October 2018 to June 2019, were
set up using three wheat varieties (Jimai 22, Zhoumai 18, and Xinong 529) sown on five
different dates (5 October, 20 October, 5 November, 15 November, and 25 November) with
five plant densities (1.5 million, 3 million, 4.5 million, 6 million, and 7.5 million plants/ha)
(Figure 1, Table 1). The dimensions of one plot are about 1.15 m × 9 m (10.35 m2).

Table 1. Plot designs for field experiments and heading date records.

Sowing Date Varieties
Densities 1.5 Million

Plants/ha
3 Million
Plants/ha

4.5 Million
Plants/ha

6 Million
Plants/ha

7.5 Million
Plants/ha

5 October
Jimai 22 20 April 21 April 22 April 23 April 23 April

Zhoumai 18 20 April 22 April 22 April 23 April 23 April
Xinong 529 12 April 12 April 14 April 16 April 17 April

20 October
Jimai 22 23 April 23 April 24 April 24 April 26 April

Zhoumai 18 21 April 21 April 23 April 23 April 23 April
Xinong 529 16 April 17 April 17 April 19 April 19 April

5 November
Jimai 22 23 April 23 April 23 April 23 April 25 April

Zhoumai 18 22 April 22 April 23 April 23 April 23 April
Xinong 529 21 April 21 April 21 April 22 April 22 April

15 November
Jimai 22 24 April 24 April 24 April 24 April 24 April

Zhoumai 18 23 April 23 April 23 April 23 April 23 April
Xinong 529 23 April 23 April 23 April 23 April 23 April

25 November
Jimai 22 29 April 29 April 30 April 30 April 1 May

Zhoumai 18 2 May 28 April 28 April 29 April 29 April
Xinong 529 27 April 27 April 28 April 28 April 29 April
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2.2. Data Collection

Field images were captured using a DJI Phantom 4 Advanced UAV (DJI Innovations,
Shenzhen, China) with a 1-inch 20-megapixel image (RGB) sensor on 6 March, 28 March,
24 April, 21 May, and 6 June, when the weather was clear. The field data were collected
with the lens shooting vertically downward and the flight altitude set to 30 m. The interval
for taking pictures was 2 s/image, the heading and side overlap rates were >60% and
>80%, respectively, and the sizes of the acquired images were 5472 × 3648 and 5472 × 3078
in the JPG format for 6 March and other sowing dates, respectively (Table 2). The spatial
resolutions of the orthomosaic and DSM are shown in Table 2. A slightly larger resolution
was used on 6 March than those on the other dates at the same flight altitude owing to the
larger image size setting of the UAV.

Table 2. UAV data (orthomosaic and digital surface model) information.

Number of GCPs Flying Height (m) Speed (m/s) Resolution (cm)

6 March 15 30 5 0.79
28 March 18 30 5 0.82
24 April 19 30 5 0.83
21 May 22 30 5 0.83
6 June 20 30 5 0.82

Real-time kinematic GNSS (Unistrong Industrial Co. Ltd., Beijing, China) and posi-
tioning service (Qianxun SI, Shanghai, China) with centimeter-level accuracy (<10 cm) were
used to measure the geographical locations of the ground control points (GCPs) before
UAV data acquisition (Figure 1e). The GCPs were evenly distributed in the study area,
with 15–22 GCPs at each time (Table 2).

2.3. Determination of Heading Date

According to the definition of heading date [29], i.e., approximately 50% of the stalks
are expected to have ears after entering the heading stage; the heading stage was ob-
served daily by two agronomists and the heading dates were recorded for 75 experimental
plots (Table 1).

2.4. Canopy Coverage Estimation

The training sample files were generated in *.csv format using collectTrainJS_v2
software to divide the farmland into positive samples (wheat) and negative samples
(others) [15]. The training samples have nine features composed of red (R), green (G), blue
(B), lightness (L), color-opponent dimensions (a and b), hue (H), saturation (S), and valve
(V). The EasyIDP package of Python was used to calculate the median axis in the raw
UAV images of each plot [30]. Support vector machine method has been proved to be a
powerful tool for problems of classification, regression for many previous studies [9,10].
Support vector machine use nonlinear functions to map the original feature to a higher-
dimensional space and find hypersurfaces that can divide the positive samples (wheat)
and negative samples (others). Five equal interval sampling strategies were implemented
along the central axis (Figure 2e), and a trained support vector machine model was used
for each sample to calculate canopy coverage by the proportion of wheat pixels to the total
pixels [15]. Then the average of each five samples was used as the plot canopy coverage.
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2.5. Plant Height Estimation

A DSM was generated using the UAV images of the study area to calculate the wheat
plant height, which included two components: UAV image processing and estimating
plant height.

2.5.1. UAV Image Processing

Using the Pix4Dmapper software (Pix4D SA, Lausanne, Switzerland), the UAV im-
ages were processed, aligned, and matched and dense point clouds, orthomosaic, and
DSMs were generated. Additionally, GCPs were included in data processing to obtain
geographically accurate orthomosaic and DSMs in Geo-tiff format.

The boundaries (shapefile format, Figure 2a) of the study plot were extracted using
ArcGIS 10.2 (ESRI, Redlands, CA, USA) and the orthomosaic of 6 March.

2.5.2. Plant Height Estimation Using UAV Images

Based on the shapefile and time-series DSM files, plot DSM images were cropped
using the EasyIDP package of Python [30]. A linear regression model was obtained using
the RKT-measured elevations and the corresponding corrected DSM values to further
calibrate the DSM value. Wheat plant height was estimated as the difference between the
canopy height (95th percentile of the plot DSM) and the ground height (5th percentile of
the plot DSM) (Equation (1)). To calculate canopy height, the following sampling methods
were used: (1) whole region calculation; (2) random sampling; (3) equal interval sampling.

In the whole region calculation method, all DSM values for the plot (all pixels within
P0, P1, P2, and P3, Figure 2c) were ranked and the 95th percentile was used as the canopy
height. In random sampling, five random square samples were selected on the plot axis P4,
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P5, and the length of each sample was calculated as half the length of the shorter side of
the plot. Then, the average of the 95th percentile of the five samples was calculated and
used as the plot canopy height (Figure 2d). For the equal interval sampling method, five
square samples were identified on the central axis, each with a point at its center, which
divided the central axis into six equal parts. Thereafter, the 95th percentile of each sample
was determined separately as the canopy height (Figure 2e).

Plant height = DSMCanopy − DSMground (1)

where DSMCanopy and DSMground are the canopy and ground height, respectively.

2.6. Growth Curve Fitting
2.6.1. Sigmoidal Curve

Nine sigmoidal functions were selected to fit the wheat growth curves based on plant
height and canopy coverage obtained from the UAV data collected during the wheat
growth period (Equations (2)–(9)). The initial phase of model growth was approximately
exponential, but the growth rate linearized as saturation began. At maturity, growth
completely stopped. This progression was used to model the continuous growth in wheat
plant height and the changes in canopy coverage.

P(t) =
KP0ert

K + P0(ert − 1)
(2)

where t represents the number of days after UAV image acquisition (6 March), P(t) is the
plant height or canopy coverage, P0 is the initial value, K is the final value, and r is the rate
of change of the curve [31].

f (d) =
L

1 + e−k(d−d0)
(3)

where d represents the number of days after UAV image acquisition (6 March), f (d) is the
plant height or canopy coverage, L is the maximum value, k is the growth rate, and d0
represents the number of days that wheat requires to reach half its final value [8].

y(x) =
a(

1 + e(−
x−c

b )
) (4)

where x represents the number of days after UAV image acquisition (6 March), y(x)
represents the crop height or canopy coverage, a is the maximum, 1

b is the growth rate, and
c is the half of the final value [27].

CC(t) = CC_Cmax × ee−k(t−CC_tm)
(5)

where t represents the number of days after UAV image acquisition (6 March), CC(t) is the
canopy coverage or plant height, CC_Cmax is the maximum value, k is the growth rate, and
CC_tm is the inflection point at which the growth rate reaches the maximum [26].

y(x) = A× e(−e(−
(x−Tu)

b )
) (6)

where x represents the number of days after UAV image acquisition (6 March), y(x) is the
plant height or canopy coverage, A is the maximum value, Tu is the time required to reach
the maximum growth rate, and b is the curve parameter [32].

CH(t) = CH_Hmax

(
1 +

CHte − t
CHte − CH_tm

)(
t

CH_te

) CH_te
CHte−CH_tm

(7)
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where t represents the number of days after UAV image acquisition (6 March), CH(t)
is the plant height or canopy coverage, CH_Hmax is the maximum value, CHte is the
time corresponding to the maximum value, and CH_tm is the time required to reach the
maximum growth rate [26].

y(x) =
a

1 + be−kx (8)

where x represents the number of days after UAV image acquisition (6 March), y(x) is
the plant height or canopy coverage, a is the maximum value, and b and k are curve
parameters [33].

y(t) =
K

1 +
(

K
y0
− 1
)

e−rt
(9)

where t represents the number of days after UAV image acquisition (6 March), y(x) is the
plant height or canopy coverage, K is the maximum value, r is the growth rate, and y0 is
the initial value [34].

yi(day) =
phi1

1 + e−(phi2+phi3×day)
(10)

where day is the number of days after UAV image acquisition (6 March), yi is the canopy
coverage or plant height, and phi1, phi2, and phi3 are curve parameters [12].

2.6.2. Curve Fitting

We used five-time series for wheat plant height and canopy coverage to fit the growth
curves and the Scipy package of Python to solve the parameters in Equations (2)–(10) [35].
The continuous plant height and coverage growth curves of wheat were obtained using
the fit growth curve models.

2.7. Estimation of Heading Date

The second derivatives of the continuous growth curves of wheat plant height, which
represent the acceleration in wheat plant height, were calculated. We then estimated the
number of days at which the minimum value of the second derivative was located, based
on the curves, to determine the heading date.

2.8. Accuracy Evaluation of the Proposed Model

To evaluate the accuracy of the proposed method, we calculated the error between
the estimated values and the field values recorded by the agronomists, along with the
maximum and minimum error values, MAE, and RMSE. The smaller the error, the higher
the accuracy of the estimation.

MAE =
1
m

m

∑
i=1
|(HDr − HDe)| (11)

RMSE =

√
1
m

m

∑
i=1

(HDr − HDe)
2 (12)

where HDr is the heading date recorded by agronomists in the field, HDe is the heading
date estimated using wheat plant height, and m is the number of plots.

3. Result
3.1. Plant Height Growth Curve

We calculated the plant height of 72 experimental plots (three plots affected by the
experimental sampling frame were excluded, Figure 3) of five different UAV images based
on the whole region calculation method (Table S2). We used nine sigmoidal functions
(Equations (2)–(10)) to fit the growth curves of wheat plant height, calculated their second
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derivative minima, and compared them with the heading dates recorded in the field
(Table 3).
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Table 3. Estimated results of nine sigmoidal functions.

Functions 2 3 4 5 6 7 8 9 10

Number of
estimated plots 71 6 72 0 71 0 0 70 70

MAE (days) 2.90 4.50 2.92 \ 6.48 \ \ 2.86 2.86
RMSE (days) 3.51 4.60 3.52 \ 7.17 \ \ 3.46 3.46

The results revealed that Equations (5), (7) and (8) could not fit the growth curves of
wheat plant height and could not be used to estimate the wheat heading dates. Equation (3)
could only fit the growth curves of plant height in six plots, while Equations (2) and (6) fit
the height growth curves of plants in 71 plots, and Equations (9) and (10) fit the growth
curves of plants in 70 plots. Equation (4) was the most consistent and fit the growth
curves of plant height in all 72 plots to provide accurate wheat heading dates. Moreover,
Equations (2), (4), (9) and (10) had similar estimation accuracies. Equations (3) and (6)
had lower estimation accuracies, whereas Equations (9) and (10) had the highest
estimation accuracies.

3.2. Growth Curves of Canopy Coverage

We estimated the wheat canopy coverage of each plot using raw UAV images and
fit the canopy coverage growth curves using Equation (4). The growth curves of the
72 plots are shown in Supplementary Material. Figure 4 shows the canopy coverage
growth curves for early sowing-low density (sowing date: 5 October; variety: Zhoumai 18;
density: 1.5 million plants/ha), early sowing-high density (sowing date: 5 October; vari-
ety: Zhoumai 18; density: 7.5 million plants/ha), late sowing-low density (sowing date:
25 November; variety: Zhoumai 18; density: 1.5 million plants/ha), and late sowing-high
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density (sowing date: 25 November; variety: Zhoumai 18; density: 7.5 million plants/ha)
plots, wherein the wheat canopy coverage was saturated at the heading stage, and no
apparent changes in wheat canopy coverage were observed. Therefore, it was difficult to
estimate the wheat heading dates based on the changes in canopy coverage.
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1.5 million plants/ha), (d) late sowing-high density plot (sowing date: 25 November; variety: Zhoumai 18; density:
7.5 million plants/ha). Gray dashed line indicates the heading date recorded in the field.

3.3. Sampling Methods of Plant Height Estimation

To calculate plant height from UAV images, the plant height of wheat was obtained
using Equation (1). Five linear regression models were obtained using the RKT-measured
elevations and the corresponding corrected DSM values to further calibrate the DSM value
(Figure S1). However, different sampling methods gave different results, and a large
sampling area increased computing cost. Therefore, the random sampling method, which
used the average values of five samplings, could reduce computational costs (the sum of
calculated pixels number for five samplings is about 1/5 of the whole plot). Furthermore,
the equal interval sampling allowed each sample to be used as a separate time series
to estimate the heading date, and the heading dates estimated from five samples were
averaged to be the estimated heading date for each plot. It is beneficial to reduce the
computational costs and consider the crop heterogeneity.

The plant height estimated by the three sampling methods are shown in Tables S2–S8.
The growth curves of plant height estimated using UAV images were fit using Equation
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(4). The growth curves and second derivatives for the minimum error plots (sowing date:
20 October; variety: Xinong 529; density: 1.5 million plants/ha) and maximum error plot
(sowing date: 5 November; variety: Zhoumai 18; density: 7.5 million plants/ha) derived
using the whole region calculation method are shown in Figure 5, respectively. The growth
curves and second derivatives for other plots are shown in Supplementary Materials. The
heading dates were calculated using the minima of the second derivatives (Table S9), where
the wheat heading date of the equal interval sampling method was estimated by the mean
of the heading dates calculated for the five-time series (Table S10).
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Figure 5. Figure showing plant height growth curve and the second derivative of the minimum error
and maximum error plots derived using the whole region calculation method. (a) the minimum error
plot (sowing date: 20 October; variety: Xinong 529; density: 1.5 million plants/ha), (b) the maximum
error plot (sowing date: November 5; variety: Zhoumai 18; density: 7.5 million plants/ha). The black
dots represent plant height obtained using UAV images, the black curve represents the plant height
growth curve, and the gray dashed line represents the observed heading date.

3.4. Evaluation of the Accuracy of the Estimated Heading Dates

The accuracy of UAV image-based estimates of heading date was evaluated using the
field records (Table 4). MAE and RMSE were the maxima for sampling method 2, i.e., the
random sampling method. The minimum MAE and RMSE were observed for the equal
interval sampling method.
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Table 4. Accuracy of heading dates estimated using UAV images (days).

Minimum Maximum MAE RMSE

Sampling method 1 0 8 2.92 3.52
Sampling method 2 0 18 3.22 4.32
Sampling method 3 0 12 2.81 3.49

The error distribution of the three sampling methods is shown in Figure 6. Except for
some large errors, most of the estimation errors were within 5 d.
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3.5. Interference in the Field

Among the 75 plots, three plots had square sample frames (height greater than wheat,
Figure 3) because of the field experiment requirements. These plots affected plant height
estimation and accurate simulation of wheat growth, resulting in erroneous estimates of
the heading dates. Thus, to overcome the frame effects in heading date estimation, i.e., to
estimate plant height accurately, we manually removed the DSM data of the affected area
to calculate the DSM percentile values. The results showed a significant improvement in
the estimation accuracy (Table 5), indicating the importance of plant height accuracy in
determining wheat heading dates. Moreover, removing the abnormal data based on the
identification of wheat lodging can improve the estimation accuracy.

Table 5. Accuracy of heading date estimation of the plots affected by sample frame. Plot 1: sowing date: 5 October; variety:
Xinong 529; density: 1.5 million plants/ha, plot 2: sowing date: 20 October; variety: Jimai 22; density: 1.5 million plants/ha,
plot 3: sowing date: 25 November; variety: Jimai 22; density: 3 million plants/ha.

Plot Reference
Heading Date

Estimated Heading Date
(Sampling Method 1)

Estimated Heading Date
(Sampling Method 2)

Estimated Heading Date
(Sampling Method 3)

Estimated Heading Date
(after Removing Affected Area for

Sampling Method 1)

1 12 April 11 April 11 April 9 April 11 April
(−1) (−1) (−3) (−1)

2 23 April 13 April 14 April 11 April 17 April
(−10) (−9) (−12) (−5)

3 29 April 7 April 6 April 16 April 27 April
(−22) (−23) (−13) (−2)
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3.6. Error Analysis

We analyzed the data with large errors and observed abnormal growth curves with
multiple second derivative minima. Moreover, the growth curves did not match the plant
height growth patterns, and the heading dates could not be accurately estimated owing to
the following situations:

(1) Decreased or negative plant height in the early and middle growth periods

The leaves primarily determine the height of wheat plants in the early growth stage.
Although the plants could grow taller for the next 22 d, plant height measured on 28 March
was lower or negative than that measured on 6 March for the plots with sowing dates
5 November and 25 November because the plots were irrigated on these dates and the
water droplets on the leaves caused them to droop or stick to the ground due to gravity. On
the other hand, the DSM was calibrated by the Real-time kinematic GNSS and positioning
service, whose accuracy was better than 10 cm, suggesting that the negative plant height for
some plots occurred because of lower plant height in the pre-sowing period and insufficient
data precision.

(2) A sharp decrease in wheat plant height at the late growth stage

Some plots showed a sharp decrease in plant height at a later growth stage compared
to the previous UAV measurements. The plant height in the plot (sowing date: 5 October;
variety: Xinong 529; density: 4.5 million plants/ha) decreased markedly on 21 May and
6 June because of lodging, resulting in an abnormal fit of the growth curve (black line) and
causing an error in the second derivative (blue line), eventually leading to the largest error
(18 d) in the estimated heading date (Figure 7).

Remote Sens. 2021, 13, x FOR PEER REVIEW 14 of 19 
 

 

 

 
Figure 7. Abnormal data (lodging) for the plot: sowing date: 5 October; variety: Xinong 529; density: 
4.5 million plants/ha. (a) The orthomosaic of 21 May, (b) the orthomosaic of 6 June, and (c) plant 
height growth curve and second derivative. 

3.7. Estimation of Heading Dates before the End of the Growth Period 
To test whether the proposed method can estimate wheat heading dates earlier than 

the end of the growth period, we analyzed 15 plots with sowing date 5 October using the 
data of the first four-time series (i.e., 6 March, 28 March, 24 April, and 21 May) and the 
whole region calculation method. Figure 8 shows the growth curves (black lines) for plot 
(sowing date: 5 October; variety: Jimai 22; density: 4.5 million plants/ha) determined using 
UAV images of all the time series and the first four-time series, the second derivatives 
(blue lines), and the heading dates recorded by the experts (the gray dashed lines). We 
observed heading dates 16 d earlier using the image data for the first four-time series and 
similar estimation accuracy. 

Figure 7. Abnormal data (lodging) for the plot: sowing date: 5 October; variety: Xinong 529; density: 4.5 million plants/ha.
(a) The orthomosaic of 21 May, (b) the orthomosaic of 6 June, and (c) plant height growth curve and second derivative.
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3.7. Estimation of Heading Dates before the End of the Growth Period

To test whether the proposed method can estimate wheat heading dates earlier than
the end of the growth period, we analyzed 15 plots with sowing date 5 October using the
data of the first four-time series (i.e., 6 March, 28 March, 24 April, and 21 May) and the
whole region calculation method. Figure 8 shows the growth curves (black lines) for plot
(sowing date: 5 October; variety: Jimai 22; density: 4.5 million plants/ha) determined using
UAV images of all the time series and the first four-time series, the second derivatives (blue
lines), and the heading dates recorded by the experts (the gray dashed lines). We observed
heading dates 16 d earlier using the image data for the first four-time series and similar
estimation accuracy.

The four-time series data for the 15 plots with sowing date 5 October had an MAE of
3.20 d and an RMSE of 3.78 d, which were slightly lower than the estimates obtained from
the UAV images of all the five-time series (Table 6). Although the estimation accuracy was
lower, the proposed method used less data (the growth curve function had three unknowns,
which were solved using four datasets).
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Table 6. Comparison of estimation accuracy of data obtained from the first four- and all five-time series.

MAE (days) RMSE (days)

5 time-series data 2.40 3.52
4 time-series data 3.20 3.78

4. Discussion

The heading stage is a critical growth period for wheat [36]. Therefore, easy, fast, and
high-throughput recordings of wheat heading dates are of great importance for cultivation
and breeding research. The proposed UAV image-based method estimated heading dates
over 72 plots of three varieties at five sowing dates and five densities. The MAE for the
wheat heading date estimation based on the plant height was 2.81 d, which was closer to
the dates observed by the experts in the field. Compared to the optimized wheat phenology
model (RMSE = 2–7 d) [7] and the adjustment model based on the observations of daily
temperatures, vernalization, and photoperiod characteristics for four years (RMSE = 4.24 d;
MAE = 3.11 d) [8], our method is simpler and achieves comparable accuracy. Moreover,
the MAE of the images taken each day by the field IoTs to estimate the heading date of
wheat was 1.34–1.60 d [8]. In addition, in another study, the MAE of the images taken every
5 min by the digital cameras deployed in the field to estimate the heading date of rice was
0.8 d [11]. Although the estimation accuracies of these studies were higher than that of
our proposed method, these studies required at least one image [8] or multiple images
per day [9–11], while only five-time series images were captured and analyzed during the
whole wheat growing period (>200 d) in our proposed method (Table 7). Increasing data
density (number of observations) in the proposed method is likely to improve the accuracy
of heading date estimation. Furthermore, some previous studies estimated the heading
dates by detecting wheat or rice ears based on image recognition. However, those studies
used empirical thresholds (i.e., number of spikes) to determine the heading dates, with Zhu
et al. using the number of spikes in patches as a threshold in an a priori dataset and Bai
et al. directly calibrating the threshold at 200, which may vary depending on the variety
and the study area [9,10]. Compared to those studies, our proposed method could be used
directly in different areas.

Table 7. The accuracy and the data used compared to previous studies.

MAE (days) RMSE (days) Data

Velumani et al. 3.11 4.24 4 years of data to calibrate the model
Velumani et al. 1.34–1.60 1.91–2.11 One image per day

Desai et al. 0.8 Take pictures every 5 min
Zhu et al. 1.14 One image per hour
Bai et al. <2 Three images per day

proposed methods 2.81 3.49 5 time-series UAV data within the entire
wheat growth cycle (>200 days)

In addition, our UAV image-based heading date estimation method has the following
two advantages: (1) The method enables simultaneous observations over a large area,
whereas the methods proposed in the previous studies have a limited observational range.
The proposed method can also be applied with a fixed-wing drone which could capture
images for more than 2 h and cover more than 1500 ha [37]. So, if one plot is 10 m2,
1,500,000 plots could be surveyed simultaneously. (2) The method is more cost-effective,
which is important in economically underdeveloped areas. The number of experimental
plots for genetic breeding and cultivation research is ordinarily very large [13], making
the deployment and maintenance of IoTs a considerable capital investment. Moreover,
Camera malfunction can also result in erroneous estimates of the crop growth stage [8]. In
addition, these methods usually require organ detection and continuous high-frequency
and high-resolution acquisition of images, making the images computationally intensive.
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In the case of fixed camera angle, low spatial resolution, and natural lighting or complex
environment, the estimation of heading dates becomes more complicated [9].

In some cases, the proposed method may not work properly. Firstly, some field events
(e.g., lodging, Figure 7) will cause underestimating the canopy height, generating the
error in crop growth curve fitting and heading dates estimation. Secondly, some field
experiment facilities (e.g., sample frame, Figure 3) will cause overestimating the canopy
height, influencing the wheat growth curve fitting and heading dates estimation. So,
recognizing and removing the abnormal data is helpful for the proposed method. On the
other hand, the quantity of the data is also critical. If little data collection is performed
for the thousands of experimental plots, the late-developing plots might not be enough
to fit a curve because they have fewer valuable data than in the rest of the trial. If n
parameters are in the curve fitting function, at least n points are needed [38]. However, just
meeting the number of points may not be enough. A common way for an estimate of the
parameters is the least-squares method [38,39]. However, it is still challenging to answer
whether a least-squares estimate exists [38,40,41]. The distribution of points should be as
representative as possible. For example, tightly clustered five points may not be able to
estimate the model parameters well. In our study, we used five points to fit the growth
curves of 75 plots successfully because of the relatively dispersed time distribution of those
points. For sure, more observing points (conducting more UAV flights, although three
times is enough for curve fitting, we still recommend five times to avoid fitting failure
caused by abnormal data) and making dispersed distribution will help improve the curve
fitting and heading dates estimation accuracy for the proposed method.

5. Conclusions

Our study provides a method for estimating high-throughput wheat heading dates
based on UAV images with an MAE of 2.81 d, RMSE of 3.49 d. Since our method does
not require information about wheat variety, soil, or climate, it has a universal appeal
and can directly be used in different areas. In addition, our proposed method is more
affordable than the present expert field records and field IoT equipment used to determine
heading dates, which is of great significance to promote agricultural research, especially in
economically underdeveloped areas. The proposed method can also be applied to other
crops or other growth periods associated with changes in plant height. In addition, the
different growth periods of crops may be related to other phenotyping parameters such as
cover and volume, which can be measured using UAVs and can provide a reference for
crop growth monitoring.

There may be some possible limitations in this study. Because the data were collected
only five times during the entire wheat growth period and the growth curve function had
three unknowns, the temporal resolution of the data was low. We further aim to study and
analyze the effects of time density of data acquisition on prediction accuracy and improve
the accuracy of heading date estimation.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/rs13163067/s1 and https://doi.org/10.5281/zenodo.4777563. Folder S1: growth curve of
nine functions, Folder S2: wheat coverage growth curves, Folder S3: wheat plant height growth
curves and second derivatives of sampling methods 1, 2, and 3, Folder S4: wheat plant height
growth curve by four-time data, Figure S1: value correction of Digital Surface Model, Table S1: Plot
designs for field experiments, Table S2: Wheat plant height estimated by full region sampling, Table
S3: Wheat plant height estimated by random sampling, Table S4: Wheat plant height estimated of
sample 1 by equal interval sampling, Table S5: Wheat plant height estimated of sample 2 by equal
interval sampling, Table S6: Wheat plant height estimated of sample 3 by equal interval sampling,
Table S7: Wheat plant height estimated of sample 4 by equal interval sampling, Table S8: Wheat
plant height estimated of sample 5 by equal interval sampling, Table S9: Heading dates obtained by
experts and estimated by sampling methods 1, 2, and 3, Table S10: Estimated heading date of equal
interval sampling.

https://www.mdpi.com/article/10.3390/rs13163067/s1
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