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Abstract: In order to deal with the problem that some existing semantic segmentation networks for
3D point clouds generally have poor performance on small objects, a Spatial Eight-Quadrant Kernel
Convolution (SEQKC) algorithm is proposed to enhance the ability of the network for extracting
fine-grained features from 3D point clouds. As a result, the semantic segmentation accuracy of small
objects in indoor scenes can be improved. To be specific, in the spherical space of the point cloud
neighborhoods, a kernel point with attached weights is constructed in each octant, the distances
between the kernel point and the points in its neighborhood are calculated, and the distance and the
kernel points’ weights are used together to weight the point cloud features in the neighborhood space.
In this case, the relationship between points are modeled, so that the local fine-grained features of
the point clouds can be extracted by the SEQKC. Based on the SEQKC, we design a downsampling
module for point clouds, and embed it into classical semantic segmentation networks (PointNet++,
PointSIFT and PointConv) for semantic segmentation. Experimental results on benchmark dataset
ScanNet V2 show that SEQKC-based PointNet++, PointSIFT and PointConv outperform the original
networks about 1.35–2.12% in terms of MIoU, and they effectively improve the semantic segmentation
performance of the networks for small objects of indoor scenes, e.g., the segmentation accuracy of
small object “picture” is improved from 0.70% of PointNet++ to 10.37% of SEQKC-PointNet++.

Keywords: spatial eight-quadrant kernel convolution; 3D point cloud; semantic segmentation;
indoor scene

1. Introduction

Since the semantic understanding and analysis of a 3D point cloud is the basis for
realizing scene understanding [1,2], the application of semantic segmentation of 3D point
cloud has been more and more extensive in recent years [3–5], such as augmented/virtual
reality [6] and intelligent robot [7]. Moreover, in the field of self-driving, the accurate
perception of the environment based on LIDAR point cloud data is the key to realize
information decision-making and driving safely in the complex dynamic environment.
Particularly, accurate segmentation of small objects can help self-driving vehicles make
correct decisions in time in some cases. Semantic segmentation of 3D point clouds aims to
predict the label of each point in the point clouds, making different classes of objects with
corresponding labels. The performance of semantic segmentation based on deep neural
networks depends on the strength of the feature extraction ability of the network [8–10],
especially for the small objects in the scene, which requires the network to be able to extract
more fine-grained local semantic information.

PointNet [11] was proposed to use raw point clouds as the input of the network
at the first time, which uses Multi-Layer Perception (MLP) [12] to learn features from
the point cloud adaptively. The core concept of PointNet is to approximate a general
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function defined on a point set by applying a symmetric function, so it can efficiently
extract information from the unordered point cloud. However, it is difficult for PointNet
to learn local features and the relationship between points in the point cloud. To address
this problem, PointNet++ [13] uses a sampling and grouping strategy to divide the point
cloud into several small local regions, so it can leverage the PointNet to extract local
features. Jiang et al. [14] proposed the Orientation-Encoding and Scale-Awareness module
in PointSIFT network to extract features. The orientation-encoding first integrates the
feature information of the points in each of the eight spatial directions in the point cloud
space, then performs a three-stage ordered convolution to encode these feature information.
Meanwhile, the network connects multi-scale features by stacking orientation encoding
in the process of propagation. For local regions of point clouds, Wu et al. [15] uses
inverse density-weighted convolution to capture local features. The method weights
the features of the points by inverse density and weight function which is generated by
kernel density estimation method [16] and the coordinates of the points. PointConv gains
great improvement in terms of the semantic segmentation, but the network tends to lose
the information of large object edges and small objects in the sampling process.

The semantic segmentation performance of the above methods for small objects
in 3D scenes is generally poor. All objects in the point cloud are composed of points
connected with each other, so that the semantic segmentation of each point depends on the
relationship of points. Using the MLP to extract features will treat all the points equally,
and the result may be biased toward the categories that account for a larger proportion of
the point cloud data. In contrast, objects with a smaller percentage of points in the scene
need to be distinguished using point-to-point associations. As mentioned above, the MLP
treats each point in the point cloud equally, neglecting the connection between points,
and thus the extracted features of the point cloud are not distinguishable enough, resulting
in low accuracy of the final 3D point cloud semantic segmentation results, especially for
small objects.

Different from previous methods that use the MLP to extract features directly, the pro-
posed Spatial Eight-Quadrant Kernel Convolution (SEQKC) algorithm generates eight
kernel points with coordinates and shared weights in the neighborhood space of point
cloud at first; Then, the distance between each kernel point and its neighbors are calculated,
and the inverse distance is used as the coefficient of the weight; Finally, the kernel point
weights are used to weight the features of each point, and all the weighted features are
aggregated and input into the MLP. As a result, the proposed method can effectively extract
the local fine-grained information of point clouds by modeling the relationship between
points in space, which can improve the semantic segmentation accuracy of small objects
in 3D scenes. Furthermore, we design a downsampling module based on the SEQKC
which is combined with the existing methods (e.g., PointNet++, PointSIFT and PointConv
networks) to do feature extraction for point clouds. In order to save computational time and
memory, the downsampling module consists of SEQKC module and set sbstraction module.
Moreover, to learn both global and local features well at the same time, the downsampling
module is similar to a residual network structure, so that multi-scale semantic information
of the point cloud can be extracted.

In summary, our contributions are:

• To capture point-to-point connections in point clouds for better local feature extraction,
the spatial eight-quadrant kernel convolution is proposed in this paper.

• A downsampling module based on spatial eight-quadrant kernel convolution is
designed, which can be combined with existing methods and further improve the
semantic segmentation performance.

• Extensive experiments have been conducted on ScanNet V2 dataset [17], the experi-
mental results show that our method can help the network effectively extract local
semantic information of point clouds and improve the semantic segmentation accuracy
of small objects.
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2. Literature Review

In this section, we briefly review the approaches of semantic segmentation for 3D
point clouds using deep learning network.

2.1. Projection-Based Semantic Segmentation Methods for Point Clouds

Some networks project 3D point clouds into 2D images, so they can use 2D convolution
to process the point clouds. Tatarchenko et al. [18] proposed the tangent convolution, where
a plane tangent to the local surface of each point is constructed, then the local surface is
projected onto the tangent plane and convolved on the projection plane. Lawin et al. [19]
observe 3D point clouds from different views, then integrate and input multiple projections
to the FCN network, and synthetic image per-pixel evaluation scores are output, finally the
evaluation scores are mapped back to individual views to obtain semantic labels for each
point. However, the performance of this method is greatly influenced by the viewpoint
selection, and it is difficult to handle the occluded point clouds, and the projection is
highly prone to lose point cloud information, so these methods are not suitable for dealing
with point clouds that possess complex geometric structures. Additionally, in the self-
driving scenario, poor synchronization of LIDAR and camera may lead to bad point cloud
projection in the image, resulting in 3D points with an erroneous semantic class [20].

2.2. Voxelization-Based Semantic Segmentation Method for Point Clouds

Since point cloud data have irregular structure in 3D space, early point clouds were
often processed by voxelization methods to enable them to be processed using standard 3D
convolution. Huang et al. [21] voxelized point clouds and input them into 3D convolutional
neural networks for semantic segmentation, the predicted semantic labels for each point
are output and compared with the real semantic labels for back-propagation learning. Due
to the sparsity of point clouds, this method can only cope with some more regular point
clouds. Tchapmi et al. [22] proposed SEGCloud for feature extraction in the fine-grained
space of point clouds and performing semantic segmentation that encompasses the whole
point cloud.

The discretization method can maintain the geometric structure of the point cloud,
and the standard 3D convolution can be well adapted to this format. However, the vox-
elization method will inevitably make some points shift the original position and lead
to discretization artifacts, and there is also the problem of information loss in the pro-
cess. Since point cloud data contain variable types of objects, it is difficult to choose a
suitable grid resolution, and a high resolution will make the network training slow and
computationally expensive, while a low one will lose important information and lead to
wrong results.

2.3. Point-Based Semantic Segmentation Method for Point Clouds

Point-based methods can directly use raw point clouds. PointNet is a pioneer work
which used the point cloud data directly, but the operation of global pooling makes the
network lose local information of the point cloud, which cannot meet the needs of point
cloud semantic segmentation for small objects. In order to learn local features of the
point cloud, subsequent work mainly uses hierarchical networks or feature weighting
methods. PointNet++ is a representative work for hierarchical networks, which uses a
sampling and grouping strategy to extract the point cloud local features, the iteration of
downsampling to expand the receive field of the network, and feature interpolation to
finally achieve point cloud semantic segmentation. In [23], a large outdoor public dataset
for 3D semantic segmentation (PC-Urban) is proposed and baseline semantic segmentation
results on PC-Urban are produced by PointNet++ and PointConv. Unal et al. [24] proposed
a detection aware 3D semantic segmentation method which leverages localization features
from an auxiliary 3D object detection task. By utilizing multitask training, the shared
feature representation of the network is guided to be aware of per class detection features
that aid tackling the differentiation of geometrically similar classes. Hua et al. [25] proposed
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a method to integrate adjacent points in the local region space of the point cloud and then
convolve the integrated point cloud features using kernel point weights. Thomas et al. [26]
proposed a kernel point convolution operator to construct kernel points in the 3D point
cloud space, and weighted the features by calculating the Euclidean distance from the
point to the kernel point. Ye et al. [27] proposed to extract multi-scale features of point
clouds using a pointwise pyramid structure and apply Recurrent Neural Networks (RNNs)
to achieve end-to-end learning. In order to extract the contextual features of each local
region of the point cloud during the point cloud feature propagation, Engelmann et al. [28]
applying RNNs to do point cloud semantic segmentation, it encodes features that contain
different scales of the point cloud by [28] using merged units or recursive merged units to
extract the detailed point cloud feature information.

3. Methods
3.1. Spatial Kernel Convolution Algorithm

Previous works directly use shared MLPs separately on each point, followed by
the operation of global max-pooling. The shared MLP acts as a set of learning spatial
encodings, and the global characteristics of the point cloud are calculated as the maximum
response between all points for each of these encodings. Although the kernel of point
convolution can be implemented by MLPs in this way, local spatial relationships in the data
have not been considered, and it makes the convolution operator more complex and the
convergence of the network harder. To this end, we propose the idea of using spatial kernel
convolution, like image convolutions, whose weights are directly learned without the
intermediate representation of a MLP. Furthermore, local relationships between points can
be modeled by distance weighting, so that the local fine-grained feature can be extracted
by the proposed method.

Specifically, multiple kernel points with shared weights are generated in the point
cloud neighborhood space, and each kernel point is accompanied with coordinates. Be-
fore aggregating the neighborhood points features into the MLP, the distances between the
kernel points and several points in their neighborhood are calculated, then features of each
point are weighted by the distances and the kernel point weights, finally all the weighted
features are aggregated and input into the MLP network.

As shown in Figure 1, the p1, p2 . . . pn represent n neighborhood points, w1, w2 . . . wk
denote the weights of the k kernel points, and the features of each point in the neighborhood
are multiplied with the weights w1, w2 . . . wk. Unlike the conventional fully connected
method, features of each point are only connected to some kernel points. The dashed lines
in Figure 1 which connect the features and weights indicate that the features of each point
are weighted using the reverse distance from each point in the neighborhood to the kernel
point, so the closer the point is to the kernel point, the greater the weight is. The method
that uses inverse distance weighting features can not only well distinguish the strength of
the relationship between each point and the centroid, but also extract fine-grained features
of the point cloud more effectively. The features of each point are weighted by multiple
spatial kernels and then combined again into new features m1, m2 . . . mn. Then we input
the new features that contain tight connections into MLP, as a result, the local point cloud
features will be effectively extracted.

We study the influence of different kernel points number on ability of feature ex-
traction. We change the number of kernel points in point cloud semantic segmentation
experiments. The experimental results show that the best number of spatial kernel points
is 8. Because the number of feature points in the neighborhood space is limited, and the
feature information extraction of each kernel point is accompanied by distance weighting.
When the number of kernel points increases, the point with the same feature may be
similar to several kernel points at the same time, and the information extracted from the
feature point by these kernel points may be repetitions, resulting in the entire spatial kernel
convolution module doing redundant and meaningless work, which increases the network
computation in vain. Since the eight kernel points are uniformly distributed in the eight
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quadrants of the neighborhood space, we call our point cloud feature extraction method as
Spatial Eight-Quadrant Kernel Convolution (SEQKC).

M
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P

... ... ...

Output

p1

p2

p3

pn

w1

w2

w3

wk mn

m3

m1

m2

Figure 1. The process of spatial kernel convolution, where pn denotes n neighborhood points, wk
denotes weights of the k kernel points, dashed lines denote features of each point are weighted
using the reverse distance from each point in the neighborhood, mn denotes the new feature that is
combined with features weighted by multiple spatial kernels.

3.2. Spatial Eight-Quadrant Kernel Convolution Algorithm

In this section we describe the details of the SEQKC. As shown in Figure 2, a spher-
ical neighborhood space is constructed, where the center point is p and the radius is r.
The SEQKC takes p as the origin and unfolds the spatial eight quadrants. In each quadrant
space, there is a point with the weight Wk, and the spatial coordinate of the kernel point is
[r/2, r/2, r/2]. The dimension of the weight c is matched with the dimension of current
point cloud feature. The SEQKC module g is used to convolute all the point features F in
the neighborhood, which can be defined as:

(F ∗ g) = ∑
piεNp

g(pi, K) fi (1)

where pi denotes the points in the neighborhood, the fi is the feature of point pi, K denotes
the eight quadrant kernel points. We define the kernel function g for neighborhood points as:

g(pi, K) = ∑
kiεK

Wkj
/dist(pi, k j) (2)

where dist(pi, k j) is the Euclidean distance between each point in the neighborhood and the
quadrant kernel point. We use it restricts the influence of kernel point to each neighborhood
points, so that the weights of the points that closer to the quadrant kernel point are larger,
while the points far from the quadrant kernel point are small and less affected by the weight.
Using the distance-constrained weights in eight directions to dot product the feature of
each point, the algorithm can aggregate the global feature from all neighborhood.

p
y

z

x

Figure 2. The structure of spatial eight-quadrant kernel in point cloud neighborhoods. The red point
is the center point p in the constructed spherical neighborhood space, the black points are kernel
points of eight quadrants in the constructed spherical neighborhood space, and the blue points are
neighborhood points of the center point.
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3.3. Spatial Eight-Quadrant Kernel Convolution Module

Based on the proposed SEQKC, we design a feature encoder for 3D point clouds,
namely SEQKC module. The structure of SEQKC module is shown in Figure 3. The input
data of the module are divided into point cloud coordinates (b, n1, 3) and point clouds
feature (b, n1, cin), which b denotes the batch size of input data, n1 is the number of
points for each batch, 3 indicates the X, Y, Z coordinates of the point cloud, and cin is the
dimension of the current point cloud feature. In addition, we employed the sampling and
grouping strategy of PointNet++ to our encoder. That is to say, we use the farthest point
sampling to find n2 points, which are used to be the centroid to construct the spherical
neighborhood with the radius r. In every neighborhood, we select k support points,
if there are not enough points, the center point is repeatedly used instead. We combine the
coordinates and features of the points in each neighborhood, so the data sizes are (b, n2, k, 3)
and (b, n2, k, cin) respectively. The neighborhood points need to be decentered before
computing with each quadrant kernel point, namely, the coordinates of each point in the
neighborhood need to be subtracted from the coordinates of corresponding centroids. After
that, the eight-quadrant kernel points are constructed with coordinate size (8, 3) and the
weight dimension (8, cin). We compute the distances from each point in the neighborhood
to the eight-quadrant kernel points , then use them as weight coefficients for quadrant
kernel point. Although the convolution kernel has only eight kernel points with eight
different weights, when each weight is given a different distance weighting, it disguisedly
increases the kernel point weights to the same number of points as the neighborhood
points. After distance weighting, the weight dimension is raised to (b, n2, k, 8, cin), which
is the same as point cloud feature dimension. They are multiplied with the neighboring
point cloud features, added to the bias, and followed by batch normalization layer and
ReLu activation to batch normalize the features and remove the data less than zero in the
features. Finally, the feature information of point cloud is extracted by MLP, and the feature
information is output after dimensionality upgrading.

Sample 

& group

tile
Compute 

distance

Kernel 

point

tile

Distance 

weight

multiply MLP output

coordinate

weight

coordinate

feature

input

(b,n1,cin)
(b,n2,k,8,cin)

(b,n2,k,8,3)

(b,n1,3)

（8，cin）

(8,3) 

(b,n2,k,3)

(b,n2,k,cin)

(b,n2,k,8,1)

feature

distance

(b,n2,k,8,cin)

weight

(b,n2,k,cin)

feature

(b,n2,cout)

feature

coordinate

Figure 3. The encoder module of spatial eight-quadrant kernel convolution. First, sampling and
grouping the input point clouds to form the neighborhood space. Then, using the spatial eight-
quadrant kernel convolution algorithm to weight the features in neighborhoods. Finally, the weighted
features are aggregated and input to the MLP.

4. Spatial Eight-Quadrant Kernel Convolution Algorithm-Based Networks

We apply the proposed SEQKC module based on the spatial eight-quadrant kernel
convolution algorithm to PointNet++, PointSIFT, PointConv networks as a downsampling
module together with the Set Abstraction Module (SA) for feature extraction of the point
cloud. The SA module consists of a sampling layer, a grouping layer, and a feature
extraction layer. The sampling layer samples the point clouds globally by the farthest point
sampling method; the grouping layer constructs multiple local regions by the K-nearest
neighbor algorithm [29] or by specifying the radius of the sampled points; the feature
extraction layer extracts the sampled and grouped point clouds using MLP to increase the
feature dimension.
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To save computational time and memory, we fused the SEQKC module with the SA
module, which is shown in Figure 4. The SEQKC fusion module is similar to a residual
network structure. The cascaded features contain multi-scale semantic information about
the point cloud, it can allow the deep neural network to learn the global features of the
grouped neighborhood as well as the shape features of small local regions.

输入 采样分组

SEQKC

MLP特征级联 输出

input
Sample 

and group

SEQKC

MLP
Feature

cascade
output

Pointnet

Figure 4. The SEQKC fusion network. After sampling and grouping the point cloud, the SA module
of PointNet and SEQKC module are cascaded to extract features.

4.1. Seqkc-Based Pointnnet++ Network

PointNet++ is a hierarchical neural network, by iterating the farthest point sampling
to downsample point clouds, the network is able to learn features of point clouds from
local to global. The network uses SA modules to extract point cloud features. Each SA
module extracts the local information of the spherical neighborhood. By stacking SA
modules, the number of point clouds decreases, the local information converges to global
information, and the network’s receptive field changes from small to large. Subsequently,
the feature propagation (FP) module is used, and the input number of points is linearly
interpolated from N to N′. Finally, the number of point clouds is restored to the original
number of point clouds while keeping the feature dimension unchanged, and the semantic
segmentation is achieved.

The SA module of the PointNet++ network directly inputs the sampled and grouped
features into the MLP, which leads to the network learning more about the global shape
information of each grouping neighborhood, lacking the processing of local area infor-
mation in the neighborhood. As a result, the network is unable to segment small objects
surrounded by large objects, and the robustness of the semantic segmentation for point
cloud is poor. We incorporated the SEQKC module into the PointNet++ network, and the
improved network structure is shown in Figure 5.
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Figure 5. The structure of SEQKC-PointNet++ nerwork. The basic structure is the same as Point-
Net++. Fusion module denotes the SEQKC module with the SA module, and FP module is a
feature propagation module which uses linear interpolation weighted by distances to upsample the
point cloud.

We directly replace the original SA module in the encoding layers of PointNet++
with SEQKC module, so that the network can extract richer features that contain more
detailed contextual relationship between points. For complex environments, the network
can propagate richer semantic information for the prediction of semantic labels. At the
same time, the improved network is more accurate in terms of segmentation results of
small objects with more natural and realistic boundary transitions due to the extracted
semantic features contain more fine-grained information.
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4.2. Seqkc-Based Pointsift Network

The PointSIFT network is improved based on PointNet++, which combines point
cloud Orientation-Encoding and Scale-Awareness unit. In the past, point cloud local
descriptors were usually unordered operations, while ordered operations may provide
more information. With this in mind, PointSIFT uses Orientation-Encoding, which is a
three-stage operator that convolves the 2 × 2 × 2 cube along X, Y, and Z axes successively.
The PointSIFT module is used before the SA module in the network to integrate the
features of point cloud. Such an approach enhances the ability of the network to extract
distinguished features, so that the network has a stronger semantic segmentation capability.

Similarly, we replace the SA module of the PointSIFT network for point cloud feature
downsampling with the proposed SEQKC module. Through the interaction between the
small neighborhood information contained by the features of each point and other points
in the spherical neighborhood, the point cloud features output by SEQKC fusion module
contain the relationship between the points. The structure of the improved PointSIFT
network based on the SEQKC feature fusion module is shown in Figure 6.

With the PointSIFT module for point cloud feature preprocessing, the features ob-
tained by the SEQKC fusion module contain more fine-grained multi-scale information
about the local neighborhood of the point cloud. After three times of downsampling
by the SEQKC fusion module, the acquired global features can be upsampled using the
original feature decoding module of the PointSIFT network. The features obtained by
downsampling with the SEQKC fusion module contain richer and more detailed semantic
information than that of the original network, so the PointSIFT network with the improved
downsampling module has higher semantic segmentation accuracy compared with the
original PointSIFT network.
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Figure 6. The structure of SEQKC-PointSIFT network. The structure of SEQKC-PointSIFT is the same
as that of PointSIFT, except that SA module is replaced with Fusion module.

4.3. Seqkc-Based Pointconv Network

Inspired by 2D image convolution, PointConv approximates the continuous convo-
lution operation with a discrete function that performs the convolution operation on a
non-uniformly sampled point cloud. In the original PointConv network, the inverse density
weighting method is used to weight the point features in the local region, and the local
coordinates of the points in the region are used to construct the weights which is multiplied
by the point feature. In the network based on SEQKC, the inverse distance weighting
method is used to weight the point features in the local region, and the weight of the
constructed kernel points is multiplied by the point features.

Since both points in sparse region and dense region are important to the whole point
cloud, and the number of points in the dense region accounts for a relatively large number,
so directly feeding the whole points into the network will make the network learn more
information from the dense points and neglect the sparse points. To avoid this problem,
the SEQKC algorithm extracts the features of the points in the region by eight spatial kernel
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points from the viewpoint of distance. The spatial kernel points are uniformly distributed
in the local region of the point cloud, and in this region, both the points in the dense and
sparse places will have their features weighted by their nearest kernel points, so that the
influence of each point on the region is balanced.

These two methods obtain balanced local space features from the viewpoint of density
and distance, and have different scale point cloud semantic information. Considering the
differences between these two methods, we combine them to construct a new downsam-
pling module called the point cloud double convolution (DC) module, which is shown in
Figure 7. For the input point cloud features, the improved point cloud DC module uses a
sampling and grouping strategy to obtain individual local features of the point clouds.

Sample 

and group
Input Feature

cascade
output

PointConv

SEQKC

MLP

Figure 7. The double convolution module. After sampling and grouping the point cloud, the SEQKC
with PointConv convolution are cascaded to extract features.

The improved PointConv network based on the DC module is shown in Figure 8.
It uses the PointConv convolution method with the spatial eight-quadrant kernel convolu-
tion method to extract features from each local region of the point cloud, then cascades the
two features which contains semantic information at different scales. Finally, the cascaded
new features are fed into the MLP for training, and the point cloud features are extracted.
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Figure 8. The structure of SEQKC-PointConv network. The network consists of downsampling (DC
module) and upsampling (Decoder module) procedures. The DC module is double convolution
module mentioned above, and Decoder is the PointDeconv module in [15].

5. Experiment

To ensure the comparability of the experimental results, we evaluate our networks on
the benchmark dataset ScanNet V2 [17] (Richly annotated 3D Reconstructions of Indoor
Scenes). This dataset contains a large number of indoor scenes, obtained by camera scan-
ning at different viewpoints and 3D reconstruction. The indoor scenes are rich in types and
sizes, including not only large-scale indoor scenes such as apartments and libraries, but also
many small indoor scenes such as storage rooms and bathrooms. Each scene may contain
19 different categories of objects such as doors, windows, chairs, tables, etc., and one un-
known type. We used 1201 indoor scenes for training and the remaining 312 indoor scenes
for testing. For a fair comparison, we follow we follow the PointNet++ [13], PointSIFT [14]
and PointConv [15] to divide ScanNet dataset into the training set and the test set in the
corresponding experiments. Note that the scenes of PointConv [15] in the training set and
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the test set are different from that of PointNet++ [13] and PointSIF [14], but the amount of
data in the training set and the test set is the same. In all experiments, we implement the
models with Tensorflow on a GTX 1080Ti GPU.

5.1. Hyperparameter Setting

Each training session uses non-uniform sampling to collect input points in each point
cloud scene, and the input points size of the network is set to 8192. If the training platform
does not have enough memory, the number of input points can be reduced to 4096, and the
batch size is 12. The network uses Adam optimizer, the learning rate is set by exponential
decay method, the initial learning rate is set to 0.001, decay step is 200,000 and decay rate
is 0.7, max epoch is 1000.

5.2. Loss Function

To measure the degree of inconsistency between the predicted semantic labels of the
model and the true semantic labels , we use the sparse cross entropy loss [30] function,
and the formulas are shown in Equations (3) and (4).

p = so f tmax(logits) =
elogitsj

∑K
j=0 elogitsj

(3)

loss = −
K

∑
j=0

y ∗ ln Pi (4)

where logits denotes the semantic label predicted by the network for any point, which is
the probability score of each category, logitsj denotes the probability of the point on the jth
category. The formula shows that P also has K + 1 dimension, the natural logarithm of each
dimension on p is obtained and multiplied with the actual semantic label y. The negative
sum of all the dimensions is the desired loss.

5.3. Evaluation Criteria

In the experiments, we use the following evaluation metrics.
(1) Point calibrated average accuracy (caliacc). MPA treats each class equally and takes

the average of all the accuracy of the classes. In fact, the proportion of each class in the
point cloud is different, so that this method is flawed. As shown in Equation (5), the caliacc
uses the proportion of each class in the point cloud points to weight the accuracy of each
class, and sums them.

caliacc =
K

∑
i=0

Wi
Pii

∑K
j=0 Pij

(5)

(2) Mean Intersection over Union (MIoU). The IoU refers to the ratio of intersection and
union of two sets. For the prediction results of point cloud semantic labels, the more points
that are predicted to be the right semantic labels, and the fewer points whose semantic
labels are not of that class are predicted to be of that class. The IoU is more convincing than
judging whether the semantic labels of only one class of points are predicted accurately
without considering the PA values of other classes. As shown in Equation (6), the MIoU is
obtained by summing the IoU for each class and taking the mean value.

MIoU =
1

K + 1

K

∑
i=0

Pii

∑K
j=0 Pij + ∑K

j=0 pij − pii
(6)

5.4. The Experiments to Verify the Number of Kernel Point

In order to find the optimal number of kernel points for the spatial kernel convolution
algorithm, we distribute different numbers of kernel points uniformly in the spherical
neighborhood, then conduct point cloud semantic segmentation experiments separately.
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The distribution of kernel points in the spherical neighborhood of the point cloud un-
der each number is shown in Figure 9. The experiments are conducted based on the
PointNet++ network, and the point cloud downsampling module of the PointNet++ net-
work is replaced with SEQKC module, while the rest of the network structure remains
unchanged. A comparison of the specific results is shown in Table 1, where k = 0 denotes
the original network.

Table 1. The comparison results for different number of kernel point.

k MIoU(%) Caliacc (%)

0 40.56 83.71
6 41.94 84.35
8 42.32 84.85
12 41.58 84.76
8 41.87 84.73
8 41.41 84.74

y

z

x

p
y

z

x

y

z

x

y

z

x

y

z

x

a、six kernel b、eight kernel c、twelve kernel

d、fourteen kernel e、sixteen kernel

Figure 9. The distribution of kernel in spatial for different kernel number.

It can be seen that all PointNet++ networks using SEQKC module obtain an improve-
ment in both MIoU and caliacc compared to the original network. As the number of kernel
points increases, it reaches a maximum at 8 kernel points, and the network’s caliacc finally
remains at about 84.74%. MIoU also reaches a maximum at 8 kernel points and then
starts to decrease, so the spatial kernel convolution has the best semantic segmentation
performance for 3D point clouds when 8 kernel points are used.

5.5. The Experiment to Verify Cascaded Seqkc Structure

Our proposed SA module with SEQKC fusion module is actually a residual structure
of SEQKC module. In order to verify whether this residual structure is valid, experiments
were conducted on the uncascaded SEQKC module and the cascaded SEQKC module
with sampling and grouping operations, respectively. The experiments were based on
PointNet++ network, and the results are shown in Table 2.
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Table 2. Experimental results of cascaded SEQKC module.

Method MIoU (%) Caliacc (%)

Pointnet++ 40.56 83.71
SEQKC 42.13 83.56
SEQKC (Cascaded) 42.32 84.85

From Table 2, it can be seen that the SEQKC module can effectively improve the MIoU
of point cloud semantic segmentation results with or without cascade, and the cascaded
SEQKC module can improve the semantic segmentation caliacc of points. This indicates
that the features extracted by the SEQKC method contain more detailed spatial scale and
can imply the point-to-point connection information to improve the integrity of the object
semantic segmentation results, thus improving the MIoU values.

In addition, in order to verify the importance of the kernel point coordinates, we
cancel kernel point coordinates in SEQKC, and apply the eight weights without distance
weighting to the input point cloud features. The results are shown in Table 3. The eight
kernel points that lose the coordinates are convolved with the point cloud features without
the distance weighting, and the network segmentation results are slightly lower in terms of
caliacc than the network with the kernel point coordinates, and their MIoU is 2.52% lower
than the network with the kernel point coordinates. This indicates that the coordinate
positions of the kernel points can indeed help the network analyze the connection between
points and help the network find the accurate location of the points in the final semantic
segmentation results.

Table 3. The comparison results for SEQKC with and without kernel point coordinates.

Method MIoU (%) Caliacc (%)

SEQKC (without coordinate) 39.79 84.40
SEQKC 42.32 84.85

5.6. The Experiment of Semantic Segmentation-Based on Enhanced Networks

We embed the SEQKC module into classical semantic segmentation networks to eval-
uate the performance of the algorithm, and for the fairness of comparison, we ensure that
the network parameters are the same as the original network except for the added module.

In order to better show the effectiveness and stability of our method, we did three
repeated experiments on SEQKC-PointNet++, SEQKC-PointSIFT and SEQKC-PointConv
with the same setting, and the results are shown in Table 4. It shows that the proposed
method has stable improvement, although there is randomness in the training process. We
compared the MIoU of the semantic segmentation results across all networks. From Table 4,
we can see that the networks with the SEQKC module improve the MIoU compared to the
original networsk, with a minimum improvement of 1.35%, indicating that our module can
more accurately identify the points of small objects in indoor scenes, and has a stronger
performance of the segmentation in visual.

Table 4. The comparison results of the enhanced networks for semantic segmentation.

Method MIoU (%) Caliacc (%)

PointNet++ [13] 40.56 83.71
SEQKC-PointNet++ 42.68 ± 0.42 84.71 ± 0.75
PointSIFT [14] 42.47 85.04
SEQKC-PointSIFT 43.82 ± 0.22 85.66 ± 0.81
PointConv [15] 48.28 -
SEQKC-PointConv 50.12 ± 0.33 -
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In order to analyze it in detail, Tables 5 and 6 show the segmentation results of each
category on the Scannet dataset under different networks. To make the comparison of
experimental results more intuitive, we highlight the small objects in Tables 5 and 6. As can
be seen from the table, the semantic segmentation results of large objects are almost the
same. However, the segmentation performance of our network is significantly better than
that of the original network in terms of small objects, such as chair, shower curtain, sink,
toilet, picture and so on.

Table 5. Experimental results of all categories on Scannet dataset in terms of Caliacc (%).
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PointNet++ 91.17 98.45 79.03 66.44 43.72 74.86 73.45 74.78 38.34 80.46 63.10 44.09 39.40 15.80 22.60 54.05 46.19 0.70 36.33 27.67
SEQKC-PointNet++ 90.46 97.80 83.09 65.64 48.00 72.71 60.13 79.75 56.38 87.93 77.03 51.84 38.21 29.97 26.57 82.30 54.24 10.37 39.89 37.75
PointSIFT 90.36 98.24 81.65 60.35 45.39 78.04 78.52 80.85 59.57 82.33 75.69 50.92 32.89 37.83 33.76 57.19 58.22 1.93 42.71 28.07
SEQKC-PointSIFT 92.16 98.51 87.19 63.85 48.72 76.97 74.62 74.72 52.43 87.69 83.81 64.12 35.43 27.73 28.38 50.93 43.33 4.66 36.47 25.60

Table 6. IoU (%) comparison of various semantic segmentation results based on PointConv.
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PointConv 65.84 92.11 35.53 56.32 73.69 55.85 54.64 29.13 35.74 37.99 12.58 42.30 36.97 41.15 27.75 40.90 75.03 56.10 66.93 29.03
SEQKC-PointConv 64.53 85.61 32.53 58.77 74.65 60.85 58.17 32.22 38.90 37.52 10.82 40.85 38.97 52.43 31.75 49.88 76.09 50.72 67.28 30.25

Compared to PiontNet++, the semantic segmentation accuracy of small objects (chair,
desk, sink, bathtub, toilet, counter, shower curtain and picture) are improved by SEQKC-
PointNet++. Especially, the semantic segmentation accuracy of SEQKC-PointNet++ sig-
nificantly improved by 28.25% for shower curtains, 18.04% for sinks, 14.17% for doors,
13.93% for toilets, and 9.67% for picture. The reason why the “picture” is so difficult to
segment is that most of them are hung on the wall, and they are almost integrated with the
wall in the point cloud space, and the percentage of points in the whole Scannet dataset is
only 0.04%. Therefore, the semantic segmentation of pictures requires the network to be
able to extract fine-grained and discriminative features. It can be seen that our improved
PointNet++ network based on SEQKC accomplishes this task well.

SEQKC-PointSIFT also has improved the semantic segmentation accuracy of small
objects, such as chair, desk, bathtub, toilet, counter, curtain and picture. Among them,
the semantic segmentation accuracy of curtain is improved by 14.80% and toilet is im-
proved by 12.12%, and other objects also have small improvements, these objects have rich
geometric structure, thanks to the SEQKC can carefully handle the relationship between
the points in the point cloud space, the semantic segmentation accuracy of the small objects
with the smallest percentage of points has improved.

Since the improvement of PointConv network for 3D point cloud semantic segmenta-
tion is more on the IoU, we compared the IoU for each category in the semantic segmenta-
tion results as shown in Table 6. As we can see from Table 6, the improved network with the
SEQKC module has improved the IoU in 13 categories compared to the original network.
The largest improvement is for doors, with a 11.38% increase in the IoU, the semantic
segmentation IoU of shower curtain has also increased by 8.98%. This indicates that the
embedded modules in the PointConv network substantially help the network to obtain
more useful local features of the point cloud and strengthen the network’s ability to identify
the structure of small scale objects in the point cloud space.

The results of the semantic segmentation were visualized using Meshlab software,
and the results are shown in Figure 10. As shown in Figure 10, when the original network
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segment small objects in the 3D scene, the network sometimes could not recognize small
objects surrounded by large objects and often confused them with the background or other
large objects. Otherwise, the network was insensitive to the boundary information and
produced irregular object boundaries after segmentation. The network combined with
the SEQKC module is able to extract richer local semantic features, better segmentation
of small objects and clearer segmentation boundaries due to the enhanced relationship
between local points of the point cloud. The results show that the SEQKC algorithm can
correctly analyze the detailed information of the local region of the point cloud, and using
SEQKC module can effectively help the network extract more local feature information of
the point cloud, improve the semantic segmentation accuracy of the network.
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a、raw point cloud b、original network c、SEQKC network

Figure 10. Visualization of segmentation results on Scannet dataset.

5.7. Running Time

Table 7 illustrates a comparison of running time. For a fair comparison, we conduct
all experiments on a single GTX 1080Ti GPU with the same environment. The training time
is for training one epoch, and the test time is for evaluating 4 × 8192 points. As we can see,
compare with the original networks, when segmenting the same scenes, our algorithms
take about the same time, but our algorithms improve the segmentation accuracy, especially
for small objects in the scenes.

Table 7. The comparison results of running time.

Method Training Time (s) Test Time (s)

PointNet++ 98 0.14
SEQKC-PointNet++ 105 0.19
PointSIFT 160 0.25
SEQKC-PointSIFT 170 0.26
PointConv 200 0.30
SEQKC-PointConv 230 0.32

6. Discussion

Each point in the point cloud space does not exist in isolation, the relationship of
points between different objects or different parts of the same object are different. Such
point-to-point relationships are important for the point cloud semantic segmentation task.
To capture such relationships, we propose the spatial eight-quadrant kernel convolution
algorithm, which captures point-to-point connections by constructing kernel points and



Remote Sens. 2021, 13, 3140 15 of 16

weighting the neighborhood points with kernel point weights and distances, so that local
fine-grained information of the point cloud can be extracted.

The proposed algorithm can be added to previous point cloud semantic segmentation
network to improve the semantic segmentation performance. After incorporating the
spatial eight-quadrant kernel convolution algorithm, the network is more sensitive to
small objects and boundary features in point clouds, and the segmentation accuracy of the
network is significantly improved.

7. Conclusions

In this paper, we propose a point cloud feature extraction algorithm, which called
spatial eight-quadrant kernel convolution. The proposed algorithm models the relationship
between points and extracts local fine-grained features from point clouds, so that it can
improve the performance of semantic segmentation for small objects. We modified the
downsampling module with the spatial eight-quadrant kernel convolution algorithm and
apply it to classical point cloud semantic segmentation networks. The results show that
small-scale objects in 3D point clouds are easily affected by large-scale objects, resulting in
wrong semantic categories or partial boundary erosion by large-scale objects. The proposed
SEQKC module can help the network to extract fine-grained feature information from the
point cloud and improve the semantic segmentation ability of small-scale objects in complex
and variable environments. Extensive experimental results on ScanNet v2 dataset show
that The proposed model can help the network to improve the semantic segmentation.
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