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Abstract: This paper proposes a building façade contouring method from LiDAR (Light Detection
and Ranging) scans and photogrammetric point clouds. To this end, we calculate the confidence
property at multiple scales for an individual point cloud to measure the point cloud’s quality. The
confidence property is utilized in the definition of the gradient for each point. We encode the
individual point gradient structure tensor, whose eigenvalues reflect the gradient variations in the
local neighborhood areas. The critical point clouds representing the building façade and rooftop (if,
of course, such rooftops exist) contours are then extracted by jointly analyzing dual-thresholds of
the gradient and gradient structure tensor. Based on the requirements of compact representation,
the initial obtained critical points are finally downsampled, thereby achieving a tradeoff between
the accurate geometry and abstract representation at a reasonable level. Various experiments using
representative buildings in Semantic3D benchmark and other ubiquitous point clouds from ALS
DublinCity and Dutch AHN3 datasets, MLS TerraMobilita/iQmulus 3D urban analysis benchmark,
UAV-based photogrammetric dataset, and GeoSLAM ZEB-HORIZON scans have shown that the
proposed method generates building contours that are accurate, lightweight, and robust to ubiquitous
point clouds. Two comparison experiments also prove the superiority of the proposed method in
terms of topological correctness, geometric accuracy, and representation compactness.

Keywords: critical points; gradient; gradient structure tensor; simplification; building façade; Seman-
tic3D; DublinCity; Dutch AHN3; potogrammetric point clouds; GeoSLAM

1. Introduction

Building contours are the most significant component of the geometric features of a
building. As the most basic and critical feature, building contours provide the foundations
for scene understanding [1], semantic annotation [2], and 3D abstract perception [3]. In the
initial stage of computer vision, a majority of contouring methods are image-based because
the “linear” features of images are more accurate when the resolution is guaranteed. Further,
the contour of images has a clear definition: the image pixels at the discontinuities in gray
level, color, texture, etc. [4]. These discontinuities produce four types of edge profiles which
are step, ramp, roof, and ridge edges [5]. The building contour feature is an important
feature for image segmentation [6], image understanding [7], and image recognition [8];
however, as image-based contouring cannot fully describe the 3D geometric shapes of
complex objects, it is not directly applicable to applications in 3D scene recognition and
geometric expression. Recently, the company ESRI (https://www.esri.com/en-us/home,
last accessed on 6 August 2021) used the deep learning framework, i.e., MaskRCNN [9], to
extract accurate building contours from high-resolution aerial and satellite imagery. The
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deep learning framework is capable of learning complex semantics and obtaining accurate
building contours by training a network on a big dataset. Using deep learning for building
contouring from aerial and satellite imagery is also computationally efficient compared
with digitizing building features manually; however, it should be noted that the created
building contours from aerial and satellite imagery are only 2D building footprints rather
than 2.5D building highmaps or 3D building envelops.

In the past two decades, with the improvement of LiDAR sensor technology, the den-
sity and precision of point clouds have been significantly improved. The point clouds are
sufficient to describe the global structure features and the local detailed geometric features,
which facilitate critical points extraction from point clouds [10]. Despite this, it should
be noted that the outdoor scenes are complex and the scans are frequently contaminated
by noise, outliers, and missing data caused by occlusion and/or self-occlusion. These
adverse factors present a huge challenge for the intelligent extraction of building contours.
One should be aware that the term “critical points” has not yet been clearly defined in
the context of point clouds [11]. Compared with feature extraction from the images, the
feature extraction from the discrete point clouds is far from being mature, and there is
still much room for improvement. In this paper, we explicitly define the term “critical
points” in the context of 3D point clouds to avoid ambiguity. It contains three types of
point sets: (1) corner points: the intersections of three non-parallel planes; (2) edge points:
the intersections between two consecutive pairs of planes; (3) boundary points: the outer
boundaries of planes, the boundaries of the inner holes, such as the frames of the windows,
and the boundaries caused by missing data.

Critical point extraction is the basis of many applications, such as 3D reconstruc-
tion [12–15], registration [16–18], target detection [19–21], and data simplification [22]. The
critical points of buildings are important of the intermediate inputs for 3D reconstruction.
For instance, Mineo et al. [13] propose an algorithm to generate tessellated meshes from
point clouds by combing boundary points (a subset of critical points) extraction method
and a Fourier transform based spatial filtering. The two stage method of [13] is insensitive
to predefined thresholds and superior to methods based on polynomial fitting for 3D
reconstruction. Critical points of the objects can also be regarded as the feature points for
the registration of multiple scans. For example, Choi et al. [18] use the organized structure
information (such as 3D shape information and photometric texture information) of RGB-D
images to effectively detect critical points. These detected critical points are applied in
edge-based pair-wise registration and a pose-graph SLAM problem based on this registra-
tion. The advantages of the registration algorithm based on the detected critical points are
verified from both qualitative and quantitative perspectives. Critical point extraction is also
the basis of many target detection methods. For example, Wang et al. [21] first extract the
critical points of windows, and then realize detection and recognition of window targets
by considering the position of windows. This method is robust to noisy data but is not
suitable for window detection in complex and large-scale scenes. Data simplification can
be achieved by extracting the critical points of objects. In this line, Song and Feng [22]
propose a simplification algorithm to reduce the number of points of mechanical parts. This
algorithm first identifies these critical points, and then gradually deletes the least important
data points until the specified data reduction ratio is reached. The effectiveness of the
simplification [22] is verified by the simplified results of several actual point cloud datasets.

The contour feature of point clouds is fundamental to many applications. We can
generally categorize the existing contouring methods into two types based on the spatial
dimensions in which the contouring is performed: image-based contouring methods and
LiDAR-based contouring methods.

(1) Image-based Contouring: The contouring methods in images are more mature
than in 3D point clouds. Many methods project the input 3D point cloud onto an image,
and directly use the existing contouring methods of images to extract contour pixels. In this
line, some methods convert point clouds into grayscale images. For example, Li et al. [23]
generate a corresponding grayscale image and then determine the critical points based
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on the contours detected in the grayscale image; however, this method is only for the
extraction of the roof contours of buildings. Similarly, Poullis [24] converts the building
roof points into a binary image, and then use the contouring method in the binary image
to extract the roof contours. Converting the point clouds into a distance image is another
commonly used method. Wang et al. [25] detect the contours in the 2D grayscale image
and the distance image. Then multiple sets of contour pixels generated from grayscale
and distance images are combined to finalize the contour generation from 3D point clouds.
This method not only extracts the contours of the buildings but also regularizes it. Apart
from the above methods, there are methods that establish the correspondences between
the image pixels and the corresponding 3D point clouds to maintain accurate feature
pairs. For example, Li et al. [26] use the elevation difference in the point clouds to extract
rough contours, and then project these rough contours onto the image for compact contour
extraction. This method has strong robustness in complex scenes. Chen et al. [27] match
a single scene of point clouds with a single corresponding image to realize critical point
detection. This method reduces the computational complexity.

(2) LiDAR-based Contouring: Since the 3D point clouds contain the intrinsic structure
information and topological relationship of object parts, the intrinsic information of 3D
point clouds, such as curvature, normal vector, and gradient can also be used for the
extraction of critical points. For instance, Yang and Zang [28] use local curvature as an
edge index and select points with curvature higher than the given threshold as critical
points. This method is suitable for contouring in small objects with high-quality point
clouds. Demarsin et al. [29] first perform first-order segmentation and extraction of critical
points based on normal vector estimation, and then organize the generated segments into
a graph to restore sharp feature lines. Essentially, most of the edges can also be seen as
intersections of surfaces. Borges et al. [30] divide the point clouds into planes and then
locate critical points by calculating the intersection lines between adjacent planes; however,
this method is not suitable for extracting the critical points from the objects with the small
fragment of the planes. To solve this problem, Ni et al. [31] project adjacent points on
a local plane and then extract critical points according to the angular gap metric. This
method can achieve good results from the small scenes with high-quality point clouds, but
for large and complex scenes, parameter tuning is an extremely difficult task.

In summary, image-based contouring methods need to rasterize 3D point clouds onto
regular 2D images and use more mature image edge detection algorithms to extract various
contour pixels; however, this type of method ignores the spatial information and topological
relationship of the 3D point clouds and loses precision during coordinate transformation.
Although LiDAR-based contouring methods overcome these drawbacks, this type of
method is only suitable for contouring some specific objects, such as buildings, road curbs,
and tree skeletons. It requires accurate segmentation and target recognition from 3D raw
points [32], and it is difficult to control the thickness of the extracted critical points.

In this paper, we propose a method to extract critical points of buildings from 3D
discrete point clouds. More specifically, the point confidence indicating the local quality
of point clouds is estimated. After that, the 3D gradient of individual point is defined.
The gradient of point clouds is successively encoded into 3 × 3 structure tensor whose
eigenvalues represent the distribution of gradients in the local neighborhood. The problem
of the façade critical points extraction can be transformed into the problem of analyzing
eigenvalues of structure tensor along three eigenvectors. Considering the detected critical
points are relatively thick, these critical points are refined by the concept of contour
simplification. The proposed method is not only more accurate than the existing methods
which directly derive contour features in 3D point clouds, but also superior to the projected
contouring methods, which convert 3D point clouds into 2D images followed by image-
based contouring [33]. In addition, the results of the proposed method have high precision
and the method is capable of controlling the degree of contour thickness easily. Considering
our work is built on the previous works, we explicitly denote the novel contributions of
the paper.
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• Building façade contouring framework: We propose a generic framework for building
façade contouring from LiDAR and photogrammetric point clouds. The framework
consists of five steps including confidence measure estimation, 3D gradient calculation,
gradient structure tensor encoding, dual-threshold criterion, and simplification. These
steps loosely coupled interact in the pipeline (see Figure 1) to enhance the flexibility of
the framework, thereby achieving a tradeoff between geometric accuracy and compact
abstraction of building façades.

• Gradient structure tensor encoding: We encode each point’s structure tensor, which
describes the gradient variation in the local neighborhood areas. Through analyzing
each point’s structure tensor, building point clouds can be roughly labeled into corner
points, edge points, boundary points, and constant points (see Section 2.3).

• The solid experiments and effective comparisons: We provide qualitative and quanti-
tative performance evaluations using five datasets, and give two comparisons with
the state-of-the-art methods to demonstrate the superiority of the proposed method
in terms of topological correctness, geometric accuracy, and compact abstraction.

Figure 1. Pipeline of the proposed methodology. (a) The representative building is selected by the manual segmentation. (b)
The visualization of confidence measure of building point clouds. (c) Gradient visualization of building point clouds. (d)
Gradient structure tensor encoding. (e) The critical point clouds extraction via dual-threshold criterion. (f) The refinement
of critical point clouds through simplification.

The reminder of this paper is organized as follows. Section 2 describes the detailed
methodology including 3D gradient definition, gradient structure tensor encoding, dual-
threshold criterion, and the concept of refinement. In Section 3, the experimental datasets,
the performance evaluation of building contours are presented, analyzed, and discussed.
Finally, Section 4 concludes the paper along with a few suggestions for future research topics.

2. Methodology

To generate a compact set of critical points of building façades and rooftops (if, of
course, such rooftops exist), we propose the methodology that consists of the following
steps that are denoted in Figure 1. The confidence measure of each point is estimated
by the eigenvalue analysis of covariance matrix established in a local neighborhood (see
Figure 1b), followed by the calculation of the gradient of each point cloud in 3D space (see
Figure 1c). The point’s gradient is then decomposed into three components along with
the corresponding coordinate axis. We encode gradient information of the point cloud
into a 3 × 3 structure tensor, whose eigenvalues can reflect the gradient distribution in the
local neighborhood of each point. (see Figure 1d). After that, the confidence measure and
the gradient structure tensor of each point are both provided as inputs to the proposed
dual-threshold method, which determines whether the current point under processing is a
critical point or not (see Figure 1e). In the final step, we simplify the results to provide a
highly compact set of critical points, thereby enhancing the flexibility of building façade
abstraction (see Figure 1f).
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2.1. Confidence Estimation

Confidence measures the local quality of point clouds within a small sphere centered
at the individual point. Since the purpose of this paper is to extract critical points from
building façades, the confidence definition should be directly related to the characteristics
of these critical points. Based on this principle, we estimate the confidence by a combination
of two geometric properties, i.e., fitting quality C f and sampling uniformity Cs. The first
geometric property represents the fitting quality of the local tangent plane at point pi,
and it can be calculated by: Ci

f = λi
0/(λi

0 + λi
1 + λi

2), where λi
0 ≤ λi

1 ≤ λi
2 represents

three eigenvalues of the covariance matrix of point pi and its local neighborhood points.
If point pi and its local neighbors can perfectly fit the local tangent plane, the value of
fitting quality measure Ci

f of pi approaches 0. In contrast, if the neighbors of point pi

is inhomogeneous, they are most probably distributed on façade edges, façade corners,
and façade extrusions and intrusions. In this case, the value of Ci

f of pi tends to be 1.
The second geometric property Cs represents the local sampling uniformity, and it can be
calculated by the following equation: Ci

s = λi
1/λi

2. If point pi and its local neighbors are
distributed linearly, the value of Cs of pi approaches 0; if uniformly distributed, Cs tends
to be 1; therefore, this measure is effective detection of outer boundaries of façades and
the window frames, where the density variances and data missing frequently occur due
to laser beam penetration through window glass. In addition, to make the calculation of
confidence measure more robust, the above two measures are calculated at multiple scales
by varying the size of the neighborhood spheres. In our case, we set three scales of the
local neighborhood sphere with a radius of 1.0, 1.5, and 2.0 times of mean point density of
point clouds. Inspired by the work in [34], the complete confidence measure Ci ∈ [0, 1] of
point pi is given as below:

Ci = 1− 1
n

n

∑
j=1

(1− 3Ci
f ) · C

i
s (1)

where, parameter n represents the number of static scales for individual point’s confidence
estimation. It is obvious that if the confidence measure Ci of point pi tends to be 1, it means
pi mostly comes from façade boundaries, corners, windows frames, and other shapes that
varied dramatically, as demonstrated in Figure 2. In contrast, if this value approaches 0, the
point pi has high local fitting quality, and it most likely comes from inner points of façades,
as evident in Figure 2.

Figure 2. Confidence measure visualization for a representative building. (a) Confidence measure visualization for building
façades and rooftops. (b) The histogram distribution of confidence.

2.2. Gradient Definition in 3D Point Cloud Space

Once the confidence measures of point clouds are estimated, we can define the gradient
for the discrete point clouds in 3D space based on the confidence measure. We first
analyze the directional derivative, from which the gradient can be inferred. The directional
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derivative denotes a rate of change of a function in any given direction. The gradient
indicates the direction of the greatest change of a function of more than one variable.
The magnitude of the gradient is the largest value of all directional derivatives of the
current point, and the gradient direction is the corresponding direction of the directional
derivative. Let function f (x, y, z) be a differentiable function with three variables and
u = cos(α)i + cos(β)j + cos(γ)k be a direction vector in the 3D space. The directional
derivative of function f (x, y, z) along the direction vector u is given by the equation:
Du f = lim

t→0

f (x+t cos(α),y+tcos(β),z+t cos(γ))− f (x,y,z)
t if the limit exists. Three angles α, β, and γ

represent the angles between the directional vector u and positive of three axes. The symbol
t represents the distance between the current point and its neighbors. The maximum value
of the directional derivative occurs when the gradient ∇ f (x, y, z) and the direction vector
u are in the same direction.

In the context of discrete point clouds, the function f (x, y, z) denotes the confidence
value at point p(x, y, z). The gradient value G(x, y, z) of point p(x, y, z) can be obtained by
maximizing the directional derivative Du f , which is approximately equal to max

j∈N
(Ci−Cj

dij
),

where Ci and Cj represent the confidence measures of current point pi and its neighborhood
point pj selected from pi’s neighborhood set N; dij denotes the Euclidean distance from
point pi to point pj. The relationship between gradient and directional derivative in the
discrete form of 3D space is given below:

G(x, y, z) = max(Du f ) ≈ max
j∈N

(
Ci − Cj

dij
). (2)

The gradients of individual point cloud are vividly shown in Figure 3. The value of
gradient G(x, y, z) of point pi can be decomposed into three components along three axes:

gx ≈ max
j∈N

(Ci−Cj

dij
)×

dx
ij

dij

gy ≈ max
j∈N

(Ci−Cj

dij
)×

dy
ij

dij

gz ≈ max
j∈N

(Ci−Cj

dij
)×

dz
ij

dij

(3)

where dx
ij, dy

ij, and dz
ij represent the coordinate differences between pi and pj in x-, y-, and

z-axis.

Figure 3. Gradient property visualization for a representative building. (a) Gradient property visualization of building
façades and rooftops. (b) The histogram distribution of each point’s gradient. Note that gradient values are normalized into
the range [0, 1] for better visualization.
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2.3. Gradient Structure Tensor Generation

Inspired by Harris’s corner detector [35] and edge detector [36] using the intensity
changes by shifting the windows in a small amount in various directions, we calculate the
changes of the point gradient by shifting a small amount in various directions (∆x, ∆y, ∆z)
in 3D point cloud space. The change of gradient E(∆x, ∆y, ∆z) of a point cloud p(x, y, z) in
the local neighborhood set N can be represented as below:

E(∆x, ∆y, ∆z) = ∑
p(x,y,z)∈N

[Gx+∆x,y+∆y,z+∆z − Gx,y,z]
2 (4)

Equation (4) can be transformed into Equation (5) using Taylor expansion with
O(∆x2 + ∆y2 + ∆z2) as the reminder term:

E(∆x, ∆y, ∆z) = ∑p(x,y,z)∈N [∆x · gx + ∆y · gy + ∆z · gz + O(∆x2 + ∆y2 + ∆z2)]2

≈ (∆x, ∆y, ∆z)M(∆x, ∆y, ∆z)T (5)

where M = ∑p(x,y,z)∈N

 g2
x gxgy gxgz

gygx g2
y gygz

gzgx gzgy g2
z

, and it represents the gradient structure tensor

of the local neighborhood point set N centered at current point pi. M is a semi-positive
and symmetric matrix, whose three eigenvalues λM

0 , λM
1 and λM

2 are mutually orthogonal.
The gradient distribution in the local neighborhood set N can be estimated by analyzing
three eigenvalues of gradient structure tensor M. The current point pi has four status to be
considered:

• Corner points: the current point pi is most probably at the intersection area of three
mutually nonparallel surfaces (façades and rooftop planes). In this case, all three
eigenvalues are large.

• Edge points: the current point pi most likely belongs to the intersection edges gen-
erated from façades and/or rooftop planes. In this situation, two eigenvalues are
relatively large.

• Boundary points: the current point pi most probably comes from the outer boundaries
or boundaries of inner holes (e.g., window frames) caused by missing data of the
façades. In this case, only one large eigenvalue can be observed.

• Constant points: the local neighborhood areas of current point pi maintain approxi-
mately constant gradient values, i.e., arbitrary shifts of 3d voxel windows centered at
pi cause little change value in E (see Equation (4)). All three eigenvalues are small in
this case.

Obviously, the term critical points in our paper refer to three types of point sets,
including corner points, intersection points, and boundary points. These three parts
constitute the skeleton of building façades.

As the gradient matrix, M is calculated as a discrete form rather than continuous
representation, the calculated eigenvalues are not stable and robust. That is to say, the
obtained gradient structure tensor M cannot fully reflect the gradient distributions in the
local neighborhood areas. To solve this deficiency, the gradient structure tensor M needs to
be smoothed using the Gaussian weight function, and the smoothing processing is given
as follows:

Mi = ∑
pj∈N

Gauss(pi ,pj)
·Mi ⊗Mj (6)

s.t. Gauss(pi ,pj)
=

1
σ
√

2π
e−
‖pi−pj‖

2

2σ2

where, “·” represents the multiplication of numbers and matrices, and the symbol “⊗” rep-
resents convolution operation between two gradient structure tensors Mi and Mj produced
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by two point pi and pj according to Equation (5). Mi is the Gaussian smoothed version
of Mi. σ is the standard deviation of distance between current pi and its neighborhood
point pj.

2.4. Dual-Threshold Criterion

As the large or small eigenvalue is hard to be defined, inspired by [35], we directly
define the response function using the three eigenvalues of gradient structure tensor M to
detect the critical points from building façades. The response function of critical points is
defined below:

RM = det(M)− k[trace(M)]3. (7)

s.t.

{
det(M) = λM

0 · λM
1 · λM

2
trace(M) = λM

0 + λM
1 + λM

2

The value of RM expresses the the status of current point by an elegant combination
of three eigenvalues of gradient structure tensor M in Equation (7). This means that if the
value of RM is greater than or equal to a predefined threshold TM, the corresponding point
is regarded as the critical point; however, setting an inappropriate threshold TM will cause
the under- and/or over-segmentation of a façade’s critical points. This is most probably
because the calculated value of RM is a local variable, and it is determined through multiple
steps including confidence estimation, gradient tensor generation, and tensor smoothing,
using varied scales of local neighborhood sizes. In contrast, TM is a global threshold defined
in the whole building façade data space, causing the fixed threshold to be unable to fully
represent each point’s gradient variations estimated at different local neighborhood areas.

As shown in Figure 4, the result with green color shows the extracted critical points us-
ing the single-threshold criterion, i.e., determination of critical points by checking whether
the condition RM ≥ TM is met. We can see that the building skeleton is relatively thick
and some outliers distributed at the rooftops are mistakenly classified as critical points.
To alleviate this problem, we employ a dual-threshold criterion by introducing another
constraint, i.e., G(x, y, z) ≥ TG where TG is a predefined gradient threshold. As mentioned
previously, the gradient value of each discrete point is calculated by Equation (2). That is to
say, if a point cloud is labeled as a critical point, it must simultaneously satisfy the following
two conditions: G(x, y, z) ≥ TG and RM ≥ TM. As shown in Figure 4, the point clouds with
red color are critical points generated using dual-threshold criterion by setting 2.25 and
25 as threshold values regarding TG and TM. Compared with results by single-threshold
criterion, the obtained critical points using dual-threshold criterion is relatively thin and
more reasonable to describe the skeleton of building façades and rooftops. Moreover, some
scattered outliers on the rooftop are eliminated, making the results clean and concise.

Figure 4. Critical point cloud comparisons by single- and dual-threshold criteria.

2.5. Critical Point Refinement through Concept of Simplification

Although we can also obtain an optimal critical point set by jointly tuning two thresh-
olds, i.e., TM and TG to guarantee the geometric accuracy and high compactness of building
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façade representation, it should be noticed that it is not a trivial work to simultaneously
tune two parameters. It needs trial and error experiments, leading to time-consuming and
labor-intensive work. In this sense, we prefer to obtain a relative thick façade skeleton with
thick points on edges and refine the result in the successive simplification step.

To this end, we transform the problem of building skeleton abstraction into the prob-
lem of simplification. This is to say, we further refine the dual-threshold result by the
concept of simplification to enhance the flexibility of building façade abstraction. To this
end, we employ three classic algorithms, i.e., grid simplification, hierarchical simplifica-
tion [37], and the weighted locally optimal projection (WLOP) algorithm [38]. The grid
simplification algorithm divides the space of point clouds into multiple supervoxels, from
which only the representative one is chosen to express the corresponding supervoxel. The
hierarchical simplification provides an adaptive simplification of the points set through
recursively splitting the point clouds using binary space partitioning. Compared with two
other simplification algorithms, the WLOP algorithm not only simplifies but also regular-
izes the critical façades point clouds. WLOP algorithm is an improved LOP algorithm [39]
with a weighted density term, which can denoise and remove outliers from imperfect
point data and produce an evenly distributed set of particles that faithfully adheres to
the captured shapes [38]. The consolidated points generated by WLOP are newly created
instead of being chosen from the critical point set. These three refinement results with
different inputs are shown in Figure 5.

Figure 5. The refinement results generated by the grid, hierarchical, and WLOP algorithms with different input parameters.

In fact, there is no “absolute criterion” to determine whether the created critical point
clouds are optimal or not. The generated critical points with fewer point clouds tend to be
more lightweight/compact. The critical point clouds with high compactness are suitable
for storage, web transmission, acceleration of rendering large-scale scenes, and other VR
and/or AR applications. Although having compactness has such strengths, it should be
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aware that the geometric accuracy might be weakened if imposing a strict abstraction for
building façade point clouds. In this sense, we think an optimal abstraction should strike a
balance between geometric accuracy and compactness of critical points. To increase the
flexibility of façade representation, we hope the created points are generated at different
LoDs rather than a single fixed-level representation.

3. Performance Evaluation
3.1. Dataset Specification

The first dataset we used for experiment is Semantic3D (http://www.semantic3d.net/,
last accessed on 6 August 2021) [40]. It provides a large-scale outdoor scene of 30 scans over
4 billion labeled point clouds with diverse outdoor scenes. We selected eight representative
buildings to verify the critical extraction algorithm. The reasons for the selection of the
buildings from Semantic 3D are threefold: (1) Accurate labeled point clouds: each point
cloud from Semantic3D is manually assigned a specific class label. We can easily select
diverse buildings according to the building label to verify the proposed algorithm. (2)
Diverse architectures: all the released scenes are captured in Central Europe, from which
diverse European architectures are provided. (3) Inhomogeneous scan points: this dataset is
particularly challenging because the scans are acquired using a surveying-grade terrestrial
laser scanner (TLS) with a long measurement range, thereby resulting in extreme point
density changes and occlusions. Because of this, the buildings are well suited for testing
the proposed algorithm. Regarding the detailed descriptions with Semantic3D, we suggest
the reader refers to the work in [40].

To evaluate the proposed algorithm’s capability for processing building façades with
extremely sparse point clouds, we select two groups of buildings from Dutch AHN3
(Actueel Hoogtebestand Nederland) and DublinCity (https://geo.nyu.edu/catalog/nyu_
2451_38684, last accessed on 6 August 2021) datasets. The Dutch AHN3 point cloud is
acquired by an aircraft during 2014 and 2019. For the acquisition, Riegl LMS-Q680i laser
scanning sensor is the most frequently used and sometimes adoption of Riegl VQ-780i [41].
The mean density of point clouds is around 16 points/m2. The AHN3 dataset is released
to the public through a central distributed platform PDOK (https://downloads.pdok.nl/
ahn3-downloadpage/, last accessed on 6 August 2021). The DublinCity dataset is acquired
by the helicopter in March 2015. The entire dataset consists of 14 flight paths, covering the
major areas of the Dublin city center with around 5.6 km2. The adopted sensor is a TopEye
system S/N 443. The entire dataset consists of 500 × 500 rectangular tiles. The registered
point clouds by multiple paths offer the mean point density of 250 to 348 points/m2 for
different titles. The reader can refer to the work [42] for more details of the DublinCity
dataset. These two ALS (Airborne Laser Scanning, ALS) datasets have a clear semantic
building label, which facilitates us to choose the buildings with a variety of geometric
shapes. The building façades contained by these two ALS datasets are extremely sparse
and include missing data due to the building self-occlusions. In addition, the selected two
groups have varied sizes and rooftop shapes/structures in different orientations. These
two datasets provide an opportunity to test the proposed algorithm’s abstraction capability,
focusing not only on building façades but rooftops.

To evaluate the algorithm’s extensibility, we select one zone MLS (Mobile Laser
Scanning, MLS) point clouds from the TerraMobilita/iQmulus 3D urban analysis bench-
mark [43] (http://data.ign.fr/benchmarks/UrbanAnalysis/, last accessed on 6 August
2021). The entire benchmark contains 11 zones with 300 million point clouds in the center
of Paris, France. The dataset is acquired in January 2013 by Stereopolis II, an MLS system
developed at the French National Mapping Agency. Two Riegl LMS-Q12Oi and one HDL-
64E Velodyne LiDAR sensors are integrated into Stereopolis II. Our selected zone contains
a fully annotated street section 200 m long with 12 million point clouds. We believe this
section of MLS point clouds from a dense urban environment in Paris can effectively test
the algorithm’s extensibility to a large scale.

http://www.semantic3d.net/
https://geo.nyu.edu/catalog/nyu_2451_38684
https://geo.nyu.edu/catalog/nyu_2451_38684
https://downloads.pdok.nl/ahn3-downloadpage/
https://downloads.pdok.nl/ahn3-downloadpage/
http://data.ign.fr/benchmarks/UrbanAnalysis/
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We also use UAV-based photogrammetric points and hand-held scanning (HLS) points
to verify the robustness of the proposed algorithm. As shown in Figure 6, point clouds
for Buildings A and B at Nanjing Forestry University are derived by the overlap images
captured by DJI Phantom 4 RTK with a GSD (Ground Sampling Distance, GSD) of 2.74 cm
at 100 meters flight altitude. The front and side overlap rates are set to 80% and 70%,
respectively. The acquired oblique images are fed into Bentley ContextCapture commercial
software package for generating high-density point clouds. Because of the high density, we
downsample the raw point clouds to 3 cm. Another Building C shown in Figure 7 at Nanjing
Forestry University is scanned by GeoSLAM ZEB-HORIZON Scanner, which achieves
3D point cloud registration and stitching in real time based on SLAM (Simultaneous
Localization and Mapping) technique. These two types of point clouds have low point
precision and high outliers and noise, thereby posing extreme challenges for critical point
extraction.

Figure 6. Critical point extraction from UAV-based photogrammetric point clouds. (a,c) are the colored point clouds of two
representative Buildings A and B at Nanjing Forestry University. The generated critical points for these two buildings are
shown in (b,d). Note that the enlarged rectangle views show that the UAV point clouds miss sharp edge features and have
massive artifacts.

Figure 7. Critical points derived from GeoSLAM ZEB-HORIZON point clouds. (a–c) are the raw points, the façade contour
result, and their overlap map for better visualization.

3.2. Parameter Analyzing

Before we evaluate the quality of the created critical points, we first analyze all the
relevant thresholds and explain how to select their appropriate values. All the thresholds
that are used in the experiments are listed in Table 1. For the confidence estimation,
we average the confidence measure at three scales of neighborhood spheres centered on
current point pi with the radius of 1.0, 1.5, and 2.0 times of mean point density (ρ) of a given
dataset. Compared with the calculation at a single, fixed scale, our multi-scale strategy
reduces parameter insensitivity and enhances the stability and reliability of the confidence
measure; however, it should be noted that increasing the size of the radius at a multi-
scale will increase the computational complexity. Through trial-and-error experiments,
it has been found that the neighborhood sphere r = {ρ, 1.5ρ, 2ρ} can strike a balance
between the highly reliable confidence calculation and low cost computation. In the steps
of gradient calculation, structure tensor generation, and structure tensor smoothing, the
neighborhood N of the current point pi is commonly used. Fortunately, the threshold
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N is insensitive to a wide range of values. Through experiments, it has been found that,
by selecting in the range [20, 80], the obtained results have no obvious differences. In
our case, we simply set N = 40 for the sake of achieving a balance between the result
stability and the computational efficiency. For the dual-threshold setting, the gradient
obeys a normal distribution, i.e., G(x, y, z) ∼ N(µ, σ2), where, µ and σ are the mean and
the standard derivation of the gradient that can be obtained by the histogram analysis of a
set of individual building points. Threshold TG is encouraged to be set with a relatively
smaller value and it is suggested to be within the range [0.6µ, µ]. Threshold TM controls
the strictness of determining whether a point is a critical point or not. Selecting smaller
or larger values will cause over- or under-segmentation. Fortunately, this threshold is
less sensitive to a wide range of values. It is recommended to be set in the range [5, 30].
These principles can be demonstrated in Figure 8 with varying thresholds TG and TM. The
grid simplification algorithm has only one input parameter, i.e., cell size (Grid_size) of
the supervoxel. The larger the cell size is, the lower the geometric accuracy it produces,
and less critical points might be generated and vice versa. Generally, we set Grid_size
as two or three times the mean point density to meet the requirements of simplification.
The hierarchical simplification algorithm has two input parameters, including max cluster
size (Cluster_size) and max surface variation (Sur f ace_var). The larger they are, the fewer
sampled points we have. In our case, they are set to 30 and 0.01. The WLOP algorithm
also needs two input parameters, including the percentage of points to retain (Ratio) and
the neighbor size (Radius). The former controls the percentage of the obtained critical
point clouds, while the latter decides the degree of regularization. More specifically, when
we adopt a large neighbor size, we tend to generate the regularized result. In our case,
they are simply set to 50% and 0.2 to achieve a certain degree of simplification. More
results of the simplification threshold settings are shown in Figure 5. It should be noted
that there was no optimal threshold setting for simplification, instead one should consider
the geometric accuracy and the degree of abstraction, which are generally determined by
practical applications.

Table 1. Parameters for the proposed critical point extraction algorithm. The symbol “-” denotes that the corresponding
value can be calculated by the given dataset. “ρ” is the mean density of the dataset and “µ” is the mean value of the gradient,
which can be obtained by the histogram analysis of a set of individual building points.

Modules Parameters Recommended
Values

Descriptions

Confidence Estimation r (ρ, 1.5ρ, 2ρ) Parameter r defines the neighborhood sphere radius for
the calculation of confidence measure. Three scales of the
spheres are used to obtain the mean value of each point’s
confidence.

Gradient Calculation/Structure
Tensor Generation/Gaussian
Smoothing

N 40 It represents how many points are included for calculating
gradient and structure tensor of point pi.

Dual-threshold Criterion TG [0.6µ, µ] Gradient threshold.

TM [5, 30] Response function threshold.

Gaussian Smoothing σ - The standard deviation of distance between the current
point pi and its neighbor point set pj (pj ∈ N).

Grid Refinement Grid_size 2ρ/3ρ It defines the cell size of the 3D grid. The larger cell size is,
the less critical points are remained.

Hierarchical Refinement Sur f ace_var 0.01 It controls the local variation of the divided clusters. The
values goes from 0 with a coplanar cluster to 1/3 with a fully
isotropic cluster. The large it is, the fewer critical points we
have.

Cluster_size 30 It controls the maximum number of the divided clusters.The
larger it is, the few critical points we have.

WLOP Refinement Ratio 50% It determines the percentage of points to retain.

Radius 0.2 It controls the degree of regularization. The larger neighbor
size is, the more regularized results are obtained.
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Figure 8. The critical point extraction from building façades using dual-threshold criterion. It can be seen that the results
are slightly different based on the composition of TG and TM.

3.3. Compactness

Compactness is a critical index for the evaluation of whether the extracted critical
point set is lightweight. That is, if the result contains a few critical points, it represents more
compactness of the building façade abstraction. Critical points with high compactness
facilitate web transmission, storage-saving, and large-scale building point clouds rendering.
We use compactness ratio Ca calculated by dividing the number of critical points by
the number of raw building point clouds to represent the degree of compactness. In
addition, we also use another compactness ratio Cb calculated by dividing the number
of created point clouds by the number of reference point clouds. The reference point
clouds are generated by extensive manual work using the CloudCompare open-source tool
(https://www.danielgm.net/cc/, last accessed on 6 August 2021).

Quantitative evaluation results of the selected buildings from different datasets are
listed in Table 2. We can see that for eight Semantic3D buildings, the mean compactness
ratio of dual-threshold results approaches 36.96%. In this case, the number of critical
points is consistent with the number of reference points, as demonstrated by Cb in the
dual-threshold column. This ratio can be further compressed to less than 20% or even 10%
according to the different degrees of abstraction via three types of refinement algorithms.
We note that high compactness (e.g., 0.92% for Semantic Building 8 after grid refinement)
does not mean that the results are more reasonable. Although having a high compactness
ratio, the detailed shape features might be ignored on some occasions, thereby weakening
abstraction accuracy. For the two other ALS and MLS datasets, the compactness ratio Ca
is significantly lower than the TLS dataset (e.g., only 0.72 for DublinCity after hierarchy
refinement). This is because the ALS point clouds do not have enough capability to
describe the building shape’s details due to sparse point density. As UAV and HLS
datasets include sufficient shape details due to high-density point clouds, the abstraction
accuracy can be guaranteed when posing heavy abstraction (less than 1% after grid or
hierarchy refinements). In summary, the compactness is closely related to scene complexity,
point cloud density, and a degree of abstraction. We should strike a balance between the
compactness and accuracy while guaranteeing an abstraction of critical points.

https://www.danielgm.net/cc/
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Table 2. Quantitative evaluation of extracted critical points’ compactness. #Building and #Reference represent the number
of point clouds for building raw data and reference data. Ca and Cb denote the compactness ratios of the generated critical
point clouds with respect to the input buildings and the reference point clouds. Two types of ratios are calculated in two
phases, including the dual-threshold judgment stage and the refinement stage using three different simplification algorithms.
The symbol “-” means the corresponding data are not available.

Datasets Buiding ID #Building #Reference Dual-Threshold Grid Hierarchy WLOP

Ca(%) Cb(%) Ca(%) Cb(%) Ca(%) Cb(%) Ca(%) Cb(%)

TLS

Semantic3D Building 1 78,223 31,971 43.89 107.38 12.88 31.51 8.73 21.37 21.37 52.29
Semantic3D Building 2 142,346 48,949 37.90 110.21 14.16 41.17 9.00 26.18 18.67 54.31
Semantic3D Building 3 800,048 258,267 33.00 102.22 2.12 6.54 9.43 29.21 16.50 51.11
Semantic3D Building 4 713,975 225,596 33.84 107.09 3.99 12.63 8.02 25.39 16.89 53.44
Semantic3D Building 5 406,525 118,602 37.95 130.09 4.33 14.83 8.50 29.13 18.91 64.83
Semantic3D Building 6 446,521 101,665 29.65 130.24 0.98 4.32 6.75 29.65 14.83 65.11
Semantic3D Building 7 169,399 96,377 54.43 95.67 8.25 14.50 11.53 20.27 26.99 47.43
Semantic3D Building 8 763,570 162,936 25.03 117.31 0.92 4.31 5.42 25.40 12.51 58.63

ALS Netherland 6,047,084 - 23.11 - 9.08 - 1.15 - 11.55 -
Dublin 9,189,507 - 14.38 - 6.20 - 0.72 - 7.19 -

MLS Paris 3,738,321 - 9.61 - 1.23 - 1.46 - 14.81 -

UAV Building A 11,192,178 - 3.71 - 0.49 - 0.19 - 1.85 -
Building B 6,475,114 - 6.45 - 0.63 - 0.32 - 3.22 -

HLS Building C 5,118,751 - 5.79 - 0.56 - 0.32 - 2.89 -

3.4. Accuracy

As previously mentioned, we have the reference of the critical point cloud for each
building in the Semantic3D dataset. The reference is generated through manual labeling
using the CloudCompare open-source tool. Based on the reference, we evaluate the quality
of results generated by the dual-threshold analysis and the successive refinement using
grid, hierarchy, and WLOP algorithms. The quantitative evaluation statistics are shown
in Table 3. The Max values for Buildings 4 and 5 are greater than three meters because
some critical points are contaminated by outliers generated by the laser beam penetration
through façade window glass, as demonstrated in the areas labeled in black ovals in
Figure 9d. Another reason is that our results contain some pseudo-edges/boundaries
that are generated in some regions of the building façades corrupted by the missing data
due to occlusions, as evident in the region labeled by black rectangles in Figure 9. In
fact, these pseudo-edge/boundary points in reference are not included, thereby causing
relatively large Max values of these two buildings. We also observe that Max values
for dual-threshold are constantly greater than grid and hierarchy results because these
two results are downsampled from the initial dual-threshold result. Although WLOP
is also generated from the initial dual-threshold result, the Max value of Building 7 is
1.3606 m, which is greater than the dual-threshold result of 1.3306 m. The possible reason
could be that the WLOP result is not simply downsampled from the initial dual-threshold
critical point set but is a newly regenerated point set through the optimized technique.
Apart from the hierarchy Mean values of 0.0271 m and 0.0442 m for Buildings 2 and 4,
the dual-threshold Mean values are less than the Mean values in the three refinement
algorithms. This means that the refinement through the concept of simplification can
weaken the geometric accuracy. This point keeps consistent with the conclusion derived in
Section 3.3. The RMSE measures the differences between the generated critical point set
and the reference. To evaluate the importance of this difference and make the difference
independent of the unit, we use another relevant measure RMSE

′
calculated by dividing

the value of RMSE to the diagonal length of the corresponding building’s bounding box.
As we can see, the maximum of RMSE

′
is 0.0088 for Building 6, which means that the

maximum gap between our result and reference is only 0.88% of the building’s diagonal.
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Figure 9. Comparison between dual-threshold result and the corresponding reference data for Semantic3D Building 4.
(a) is the raw data of Semantic3D Building 4. (b,c) show that the reference data denoted by blue color and the dual-
threshold result denoted by red color are superimposed onto their raw data. (d) is the overlap between the reference and the
dual-threshold result.

Table 3. The accuracy statistics for eight representative buildings in Semantic3D dataset. The symbols Min, Max, Mean,
and SD represent the minimum, maximum, mean, and standard deviation of the Euclidean distance from the critical point
to its closest point in the reference. ‘RMSE’ measures the RMS distance from the extracted critical point to its closest point
in the reference. These values are normalized (RMSE

′
) to the diagonal length of the building’s bounding box. The first

five measures are all in meters, while the last measure RMSE
′

is dimensionless. Four rows of values associated with each
building represent the statistics generated by dual-threshold analysis, grid refinement, hierarchy refinement, and WLOP
refinement.

Building ID Max (m) Min (m) Mean (m) SD (m) RMSE (m) RMSE
′

Semantic3D Building 1

2.1129 0 0.0368 0.1819 0.1856 0.0064
1.7406 0 0.0415 0.1758 0.1807 0.0063
1.6855 0 0.0354 0.1632 0.1670 0.0058
1.7434 0 0.0587 0.1663 0.1764 0.0061

Semantic3D Building 2

2.0195 0 0.0291 0.1137 0.1174 0.0026
2.0195 0 0.0372 0.1393 0.1442 0.0031
2.0195 0 0.0271 0.1061 0.1095 0.0024
1.9955 0 0.0538 0.1080 0.1206 0.0026

Semantic3D Building 3

1.9446 0 0.0052 0.0683 0.0686 0.0017
1.8483 0 0.0179 0.1010 0.1025 0.0026
1.9141 0 0.0098 0.0707 0.0713 0.0018
1.9094 0 0.0203 0.0684 0.0720 0.0018

Semantic3D Building 4

3.7826 0 0.0556 0.2779 0.2838 0.0062
3.7787 0 0.0936 0.3573 0.3693 0.0081
3.7118 0 0.0442 0.2283 0.2325 0.0051
3.7817 0 0.0736 0.2718 0.2816 0.0062

Semantic3D Building 5

3.2625 0 0.0788 0.2582 0.2703 0.0060
3.2364 0 0.1477 0.3543 0.3839 0.0085
3.2245 0 0.0769 0.2352 0.2474 0.0055
3.2474 0 0.0931 0.2479 0.2648 0.0059

Semantic3D Building 6

0.7303 0 0.0568 0.1545 0.1647 0.0087
0.7226 0 0.0682 0.1525 0.1670 0.0088
0.7230 0 0.0599 0.1526 0.1639 0.0086
0.7175 0 0.0699 0.1497 0.1652 0.0087

Semantic3D Building 7

1.3306 0 0.0340 0.1069 0.1122 0.0023
1.2979 0 0.0559 0.1245 0.1365 0.0028
1.2749 0 0.0342 0.0998 0.1055 0.0021
1.3606 0 0.0520 0.1011 0.1137 0.0023

Semantic3D Building 8

1.9282 0 0.0252 0.0948 0.0982 0.0040
1.8951 0 0.0433 0.1139 0.1218 0.0050
1.9181 0 0.0279 0.0853 0.0898 0.0037
1.8918 0 0.0381 0.0923 0.0998 0.0041
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3.5. Comparison

We compare the proposed algorithm with two other classic algorithms, including
Canny edge detector [33] and Xia’s method [36]. As the Canny edge detector is designed for
2D images rather than 3D point clouds, we project the building façades onto 2D gray images
according to the dominant façade’s normal and location. The value of each pixel is an
average gradient value of all point clouds within each pixel. The pixel value is normalized
to the range from 0 to 255. Compared with the Canny edge detector that worked on raster
images, Xia’s and our methods are implemented onto 3D point clouds. The comparison
results with these two methods are shown in Figure 10. We can see that our method can
effectively extract the critical points from façades with a high degree of complex shapes.
In Semantic3D Building 3, the enlarged rectangles denoted by the purple color have a
very complex geometric shape with a high degree of nonlinear structure. Despite this, we
can obtain a reasonable skeleton for this complex shape; however, some edge points are
missing in Xia’s result. As our method works directly on the 3D point clouds like Xia’s
method, this means these two methods can effectively maintain the geometric shapes of
building façades without artifacts; however, for the Canny method, it inevitably brings
distortions during the conversion from 3D point clouds to 2D grayscale images. This is
demonstrated in Building 5 denoted by red rectangles. In addition, it should be noted that
the Canny detector often produces an adverse effect of “double edge”, which means one
edge is represented by two contours due to the thickness/width of the edge, as evident
in blue rectangles in Semantic3D Building 5. We should also notice that our method is
also insensitive to the density of point clouds. In the enlarged areas of green rectangles in
Semantic3D Building 7, the point cloud is extremely sparse and with irregular distribution.
In this case, Canny and Xia’s results are very messy; however, our method is superior to
these two methods because of the reasonable definition of 3D gradient and an accurate
analysis of the gradient structure tensor.

Figure 10. Comparison with classic Canny edge detector [33] and Xia’s method [36] on eight representative buildings in the
Semantic3D dataset. The first two rows represent results derived from the Canny edge detector. The grayscale images in the
first row generated by projection of Semantic3D TLS point clouds are provided as inputs to the Canny edge detector. Xia’s
results are presented in the middle row, and our results are given in the bottom row.
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Apart from qualitative comparisons with the Canny detector and Xia’s method, we
also conduct a quantitative comparison with Xia’s method using eight buildings in the
Semantic3D dataset. We first calculate each building’s Mean, SD, RMSE, and Compactness
according to the reference. Next, we average all of them to obtain the overall values of the
entire Semantic3D dataset. The statistics are listed in Table 4, from which we can see that
our method outperforms Xia’s method in terms of geometric accuracy and compactness.

Table 4. Quantitative comparison between our method and Xia’s method [36] of eight buildings in the Semantic3D
dataset in terms of Mean, SD, RMSE, and Compactness. Note that all values are the average of eight buildings in the
Semantic3D dataset.

Dataset
Mean (m) SD (m) RMSE (m) Compactness (%)

Our
Method

Xia’s
Method

Our
Method

Xia’s
Method

Our
Method

Xia’s
Method

Our
Method

Xia’s
Method

Semantic3D TLS 0.0574 0.0626 0.1507 0.1771 0.1618 0.1889 18.33% 56.09%

3.6. Robustness

Apart from using the Semantic3D TLS dataset, we also employ various types of
ubiquitous point clouds captured by different platforms with different LiDAR sensors to
verify the robustness of the proposed algorithm. We use two patches of ALS building
clouds clipped from DublinCity and Dutch AHN3 datasets. Due to the advantages of
airborne scanning, the acquired building point clouds are relatively dense for rooftops
and sparse and non-uniform distributed for building façades. The proposed algorithm
successfully extracts the rooftop skeleton (see the enlarged rectangle views in Figure 11);
however, it is hard to extract feature contours from building façades due to very sparse and
irregular points and/or large-scale missing data caused by occlusion and self-occlusion.

Figure 11. Critical point extraction from part of DublinCity and Dutch AHN3 datasets. Subfigures (a,b) are the part of
DublinCity building point clouds and contour point results, while (c,d) are some selected building point clouds from the
Dutch AHN3 dataset and their contour points. Since these two datasets are captured by airborne laser scanners, they have
more detailed rooftop shapes than façades.

We used large-scale MLS point clouds from the TerraMobilita/iQmulus 3D urban
analysis benchmark to test whether the proposed algorithm is sensitive to the irregularity
of point clouds. Generally, for MLS point clouds, the point density at the bottom of
street façades is higher than the point density at the areas of the top façades. In addition,
when scanning the street façades, the laser beam can be easily blocked by moving cars,
pedestrians, and street trees in front of the façades, thereby causing missing data. Despite
this, the building façade contour is successfully extracted, as shown in Figure 12.

The UAV-based photogrammetric point cloud is used to test the algorithm’s applica-
bility for processing data captured from the consumer-grade UAV DJI Phantom 4 RTK. The
density of UAV-based point clouds is restricted to the resolution of the acquired images.
The obtained point clouds are calculated by stereo-image matching rather than directly
surveying using the LiDAR technique. Because of this, the photogrammetric point clouds
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miss fine details and sharp edges with massive artifacts, as demonstrated in the enlarged
views in Figure 6. Despite this, the proposed algorithm has the capability to abstract the
building façade contours.

Figure 12. Critical point results of TerraMobilita/iQmulus 3D urban analysis benchmark. Subfigures (a,c) are the raw
point clouds, while (b,d) are the corresponding building contour results. Point clouds in (c) come from subfigure (a). Note
that subfigure (b) only includes building critical points, and the ground, trees, and other irrelevant objects are excluded
according to the class label.

In addition, GeoSLAM ZEB-HORIZON point clouds are used for testing the sensitive-
ness to point precision. In Figure 7, we observe that GeoSLAM point clouds have very low
point precision with mess point cloud distribution. In this case, the sharp façade features
cannot be clearly described in the raw point clouds; however, fortunately, the proposed
algorithm can perceive the differences of the façade points and successively detect the
feature point clouds, as evident in the overlap view in Figure 7c.

4. Conclusions and Suggestions for Future Works

In this paper, we present a method for extracting building façade contours. Our
method analyzes each point gradient and its derived gradient structure tensor to obtain
the gradient distribution for each point in the local neighborhood areas. To relieve the
dependence on thresholds of gradient and gradient structure tensor, we refine the initial
critical point set, striking a balance between geometric accuracy and compact representa-
tion/abstraction. We use multiple ubiquitous LiDAR datasets to verify the applicability of
the proposed algorithm.

Although promising results are achieved, it should be noted that our algorithm
is effective when it is applied to building contouring. The contouring results may not
reasonably be expected to other objects, such as trees and cars. This requires us to recognize
individual building at the instance level from LiDAR scans through machine learning [44]
and/or deep learning [45,46] methods. In addition, we should be aware that the critical
points are extracted based on the analysis of the gradient structure tensor in the local
areas, but these critical points jointly describe the global feature of architectural shapes.
This implies that in future work, we can carry out successive research on the analysis of
building structures and geometric shapes. Although we provide the critical points with
fine details for the description of the building façades and rooftops, these critical points
cannot maintain the topological relationships, making it difficult for further reconstruction
with a boundary representation. In future work, we plan to research how to segment these
critical point clouds into multiple clusters with meaningful semantics using the graph
convolutional network and how to organize the clusters into watertight building models
using a topology optimization technique.
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