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Abstract: With the successful application of the convolutional neural network (CNN), significant
progress has been made by CNN-based ship detection methods. However, they often face consider-
able difficulties when applied to a new domain where the imaging condition changes significantly.
Although training with the two domains together can solve this problem to some extent, the large
domain shift will lead to sub-optimal feature representations, and thus weaken the generalization
ability on both domains. In this paper, a domain adaptive ship detection method is proposed to
better detect ships between different domains. Specifically, the proposed method minimizes the
domain discrepancies via both image-level adaption and instance-level adaption. In image-level
adaption, we use multiple receptive field integration and channel domain attention to enhance the
feature’s resistance to scale and environmental changes, respectively. Moreover, a novel boundary
regression module is proposed in instance-level adaption to correct the localization deviation of the
ship proposals caused by the domain shift. Compared with conventional regression approaches,
the proposed boundary regression module is able to make more accurate predictions via the effective
extreme point features. The two adaption components are implemented by learning the correspond-
ing domain classifiers respectively in an adversarial training way, thereby obtaining a robust model
suitable for both of the two domains. Experiments on both supervised and unsupervised domain
adaption scenarios are conducted to verify the effectiveness of the proposed method.

Keywords: ship detection; convolutional neural networks; domain adaption; adversarial training

1. Introduction

The technique of ship detection can find a wide range of applications in both military
and civilian fields, and has received extensive attention from researchers for a long time.
In recent years, encouraged by the great success of convolutional neural network (CNN)-
based object detection methods [1–10], many researchers propose to utilize a similar
methodology for ship detection in optical remote sensing images [11–18].

Following the pipeline of general object detection algorithms, these methods can
be divided into two categories of region-based methods and regression-based methods.
The region-based methods first generate a set of region proposals based on predefined
anchor boxes via the region proposal network (RPN) [5]. Then, those candidate regions
are refined to obtain the final detection results [11,12,14–16]. In contrast, regression-based
methods directly regress the bounding box of each object from different locations [13,17,18].
In general, the region-based methods have higher detection accuracy, while regression-
based methods run faster. With the help of the powerful feature extraction ability of
CNN, these methods achieves promising improvements compared with their traditional
counterparts which relies on manually designed features for the detection.

Despite the effectiveness of these CNN-based ship detection methods, they are only
trained and tested on a single domain (dataset). In practical applications, the changing
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environments and weather conditions often lead to large domain shift between different
domains. Such domain shift commonly exists in object detection tasks and has been
observed to cause significant performance drop when apply the trained model to a visually
different new domain [19]. Therefore, to improve the detection performance on both of
the two domains, a natural idea is to train on the two domains together to cover richer
situations. However, without dedicated treatments, the model will tend to fit the two
domains with sub-optimal feature representations separately, and thus leads to inferior
detection results.

To solve this problem, we propose a novel domain adaptive ship detection method
based on the region-based detection pipeline. The basic idea is to minimize the distance
of the feature distribution between the two domains on both image-level and instance-
level. In general, this distance is usually optimized by maximizing the error rate of the
domain classifier that predicts the domain label of the data [20–22]. Moreover, conventional
feature extraction networks are employed for typical single-domain object detection. These
networks are less powerful to deal with the large domain shift between different domains
in remote sensing images. Therefore, some innovative treatments are also proposed for
better feature representation between different domains.

In image-level adaption, several improvements are proposed to overcome the short-
comings of conventional feature extraction networks for the overall image feature extraction.
Specifically, we reasonably integrate the feature maps with different receptive fields via
the attention-based feature fusion structure. In this way, the integrated feature map is able
to better perceive ships of different sizes on each pixel location. Then, the feature map is
optimized in the channel direction for more suitable cross-domain feature representations
based on the squeeze-and-excitation (SE) [23] mechanism, which emphasizes important
features by modelling the interdependencies between different channels of the feature map.
Finally, the optimized feature maps are fed into the domain classifier to obtain aligned
feature representations between the two domains.

In addition to the overall image-level features, the domain shift also affects instance-
level feature expression, which leads to deviations in object localization. Therefore, to obtain
more accurate detection results, we propose the boundary regression module to refine
the region proposals generated by RPN. The proposed module utilizes extreme point
features closest to the boundary of the proposal to predict the offset of each corresponding
boundary. Compared with the traditional bounding box regression approach, the boundary
regression module discards redundant features useless for object localization, making the
regression process more robust and accurate. Similar to image-level adaption, the domain
classifier is also used to align the refined region of interest (ROI) features. Moreover,
the proposed module is also suitable for the unsupervised domain adaption scenario,
where the bounding box annotations are only available in one of the two domains.

The rest of this paper is organized as follows. In Section 2, we introduce the related
work. Section 3 describes the details of the proposed method. In Section 4, detailed
experimental analysis and comparisons are given to verify the superiority of our method.
Section 5 concludes this paper.

2. Related Work
2.1. General Object Detection

In recent years, convolutional neural networks (CNN) have shown powerful abilities
in various visual tasks such as image classification [24–26], semantic segmentation [27–29]
and object detection. In general, current CNN-based object detection methods can be
divided into two categories. The first category generates a series of region proposals via
the region proposal network (RPN) [5] or selective research [1] at first. Then, on each
proposal, region classification and bounding box regression are performed to obtain the
final detection results [1–7,9,10]. Among all these methods, Faster R-CNN [5] is the most
representative one, which integrates all these steps into a unified network for the first time.
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The second category directly obtains the object bounding boxes from predefined
default boxes via regression, ignoring the process of proposal generation. For example,
the single-shot multibox detector (SSD) [3] predicts bounding box offsets and probability
scores for the densely distributed default boxes based on the feature maps of different
scales. In pursuit of faster running speed, you only look once (YOLO) [2] divides the
image into several grids. Then, two default boxes are defined at the center location of each
grid to perform region classification and regression. Although these one-step methods
usually have inferior detection performance than those proposal-based ones, YOLOv3 [9]
(the upgradation version of [6]) still achieves impressive performance with the help of
multiple improvements.

2.2. Ship Detection in Optical Remote Sensing Images

Ship detection is a hot research topic in the fields of remote sensing. The manually-
designed features (such as geometric elements) are widely used in early ship detection
methods to identify ships from the background. For instance, Lei et al. [30] and Lin et al. [31]
perform onshore ship detection via the contour feature and line segment. A hierarchical
complete and operational ship detection method was proposed in [32] based on shape and
texture features. Since these basic geometric features are not robust enough in complex
background interference, more prominent features of the ship head are used in some
other methods for preliminary localization. In [33], the regions of potential ship heads
are first predicted by transforming local pixels into the polar coordinate system, based
on which the saliency of directional gradient information is then employed to identify
ship body. The ship heads are detected in [34] by corner features, and then the methods
of shape analysis and region growth are used to determine the complete ship region.
The method [35] first determines the potential ship regions by saliency segmentation,
and then the structure-LBP features are used to identify the real ships. However, these
manually-designed features can only utilize low-level information with poor generalization
ability, these methods often suffer from the influence of complex background, resulting in
either false or miss detection.

In recent years, based on the successful CNN-based object detection methods, many
similar ship detection algorithms in optical remote sensing images are proposed and
achieve good results [11–18]. Li et al. [11] detect ships of various scales via the multi-
scale feature mapping. Nie et al. [12] improve the post-processing process of the Mask
R-CNN [10] algorithm and use it for ship detection. Zhang et al. [15] rotate the ship
candidate regions to achieve arbitrarily oriented ship detection. Li et al. [16] propose
a novel dual-branch regression network to more effectively predict the ship orientation
and other variables independently. For the regression-based methods, Liu et al. [13] pass
through shallow layer feature maps to deeper ones to utilize fine-grained features for small
ship detection. Based on the advanced YOLOv3, Chen et al. [18] propose a lightweight
dilated attention module to achieve a trade-off between detection accuracy and speed.
However, these methods are all trained and tested on a single dataset with simple scenarios,
which have limited generalization abilities in practical applications.

2.3. Domain Adaption

The purpose of domain adaption is to find a domain-invariant feature representation to
achieve information transfer. Various methods have been proposed to solve this problem in
computer vision, such as image classification and semantic segmentation [36–39]. Recently,
inspired by the powerful generative adversarial network (GAN) [40], adversarial learning
is widely used to align features between different domains. For example, Ganin et al. [37]
effectively improve the performance of the domain adaptive classification task via the
domian classifier and a gradient reversal layer. Tzeng et al. [38] propose an adversarial
discriminative domain adaption model, which combines the discriminative model, untie
weight sharing, and GAN loss for classification. With the help of adversarial learning,
Tsai et al. [39] achieves superior performance in domain adaptive semantic segmentation.
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Recently, some domain adaptive object detection methods have been proposed to
solve the problem of cross-domain object detection. Chen et al. [20] optimize the detection
model together with the domain classifier by adversarial training to minimize the distance
between the features of the two domains. Following the same principle, Saito et al. [21]
focus on aligning low-level image features during training, but weakens the alignment of
high-level features. To achieve multi-scale feature alignment, Xie et al. [22] set multiple
domain classifiers to the middle layers of the feature extraction network for training.

3. The Proposed Method

Following the region-based detection pipeline, the overall framework of our method is
shown in Figure 1. To achieve the domain adaption based on both image-level and instance-
level, some dedicated and innovative structures are used to improve the generalization
ability of the detection model. In the following, we will describe them as well as other
relevant information of the proposed method in detail.
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Figure 1. The pipeline of the proposed method.

3.1. Image-Level Adaption

The image-level adaption focuses on coping with the overall image differences through
feature alignment. Existing ship detection methods adopt conventional backbone networks
for feature extraction. However, the structures of these networks are all designed for single
domain and are less powerful to deal with the large domain shift. Therefore, we adopt two
successive feature optimization modules to adapt the domain shift in both the width (the
receptive field) and depth (the feature channels) direction of the feature map generated
by the backbone network. Meanwhile, two independent classifiers are set to align the
foreground and background features separately for more effective training.

3.1.1. Multiple Receptive Field Feature Integration

For region-based object detection methods, RPN slides on the feature map via 3× 3
convolutional layers, and predicts classification scores together with bounding box offsets
based on the feature vectors which have a fixed receptive field. However, the size of
the ship can be arbitrary. It is obviously sub-optimal to predict ships of different sizes
with a fixed receptive field. Especially when the domain offset exists, the disharmony
between the scale and the receptive field further increases the difficulty of the cross-domain
feature representation. To solve this problem, the first step is to enlarge the receptive field
of the feature map. A larger receptive field can cover larger objects and contain more
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context information [41], which is conducive to extracting important features between
different domains.

Conventional backbone networks mainly expand the receptive field through the
pooling operation [42]. However, pooling is actually a down-sampling process. The loss
of the spatial information blurs the boundary of objects, which compromises the object
location ability. Therefore, we adopt the dilated convolution to expand the receptive
field without down-sampling [43]. Specifically, as shown in Figures 2 and 3, we add the
dilated convolution layer to two different types of residual modules, and combine them
repeatedly to obtain new feature maps with a larger receptive field [44]. Then, these
feature maps should be integrated together to contain multiple pieces of receptive field
information. The most common way to merge different feature maps is directly splicing
them along the channel. However, due to the semantic gap between different features,
this rough combination approach is not conducive to feature learning. Therefore, we
gradually integrate the two adjacent feature maps with different receptive fields via a novel
attention-based feature fusion module to alleviate the negative impact of the semantic gap
(see Figure 2).

A B A B

Att

Att

B B

Figure 2. Illustration of the multiple receptive field feature integration. A and B represent two differ-
ent types of residual modules, respectively, while Att represents the attention-based feature fusion.

Conv 3×3, dilate=2

Conv 1×1

Conv 1×1

Conv 1×1

(a)

Conv 3×3, dilate=2

Conv 1×1 

 Conv 1×1

(b)

Figure 3. Illustration of the residual blocks in multiple receptive field feature integration. (a) Structure
A with 1× 1 convolutional mapping. (b) Structure B with identity mapping.

Inspired by [45], the attention-based feature fusion module combines global and
local information to predict the weight of the integration. The structure of the attention-
based feature fusion is shown in Figure 4, where ⊕ and ⊗ denote element-wise add and
multiplication, respectively. Denoting the output of the connected ⊗ as P, then the dotted
arrow indicates the operation (1 − P). The two inputs are first merged together by a
convolutional layer after splicing. Then, two parallel convolution branches are used to
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extract global and local information, respectively. The upper branch is directly calculated
on the input feature map to obtain local information, while the lower branch first obtains
global information by the global pooling operation. Finally, the outputs of the two branches
are element-wise added and passed through the sigmoid activation function to obtain the
final fusion weight. Using ] and Ψ to represent the convolution operation and global–local
weight prediction (the dashed box in Figure 4), respectively, the attention-based feature
fusion module can be represented by the following formula:

Z = Ψ(X ]Y)⊗ X + (1−Ψ(X ]Y))⊗Y, (1)

where X, Y and Z represents the two inputs and output, respectively. With the help of
the attention-based feature fusion, features with different receptive fields are reasonably
integrated to adapt to ship targets of different sizes.

Global 
pooling 

Conv 3×3

Conv 1×1 Conv 1×1

Sigmoid

Input 1

Input 2

Output
Conv 1×1 Conv 1×1

Global-local weight prediction

Figure 4. Illustration of the attention-based feature fusion.

3.1.2. Channel Domain Attention

The multiple receptive field feature integration introduced in Section 3.1.1 enables the
integrated features to better adapt to the scale changes of ships. However, such location-
related optimization is unable to cope with the domain shift caused by environmental
and weather changes since these differences are encoded into different feature channels
via convolutional layers. One possible solution is to optimize the feature channels to
better emphasize the important features of the two domains, while suppressing those
that are useless for the feature alignment. Therefore, inspired by the wildly used SE
mechanism, we attach the channel domain attention module to multiple receptive field
feature integration. The channel domain attention module extends the SE mechanism to
different domains, aiming at achieving more effective feature extraction by focusing on
individual domains.

The structure of the channel domain attention module is shown in Figure 5, which
consists of multiple SE adapters and an attention assignment branch. For a channel
domain attention module, the input feature map is first pooled by a global pooling layer
to aggregate the spatial information. Then, following the SE mechanism, N SE adapters
produce independent channel weights for the C channels of input feature map, selectively
emphasising informative features and suppress less useful ones [46]. Next, the attention
assignment branch generates domain-specific activations for each SE adapter to obtain the
final channel weights. Finally, the input feature map is scaled by the final channel weights
through channel-wise multiplication.
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Figure 5. Structure of the channel domain attention module.

The benefit of this module is two-fold: first, the channel-related information is encoded
into the output of multiple SE adapters, making the model more sensitive to input changes
and easier to capture useful information; second, the attention assignment branch further
dynamically integrate these channel-related information for different domains, facilitating
the efficacy to obtain robust features suitable for both of the two domains.

3.1.3. Dual Supervision Adaption Approach

Besides the multiple receptive field feature integration and channel domain attention
for feature optimization, the domain classifier is also required to achieve cross-domain
feature alignment. During training, the domain classifier adjusts its weights to discriminate
the domain label of the input features produced by the feature extraction network, while
the feature extraction network tries to generate domain-invariant features that can deceive
the domain classifier. Therefore, if the classification error is high even for the well-trained
domain classifier, it means that the features of the two domains are close to each other.
So they are already aligned.

In theory, the image-level adaption should take the output feature map of the feature
extraction network as a whole for global feature alignment. However, during training, each
activation on the feature map (which represents a fixed-size image patch) is regarded as
an independent sample as the input of the domain classifier. The benefits of using image
patches instead of the entire image for domain classification are two-fold:

(1) Limited by the computing power, the batch size is usually set to a small value
during training. Classifying image patches instead of the whole image can generate more
training samples (e.g., 128 per image in our implementation).

(2) Since the classifier requires fixed-size input while the size of the image is change-
able, this patch-based classification strategy can avoid the scaling or sampling operation,
which will inevitably cause the information distortion.

However, despite of the effectiveness of this patch-based approach, the training
samples are dominated by the background since the ship region in remote sensing images
only occupies a small part. Therefore, the ship samples will not be fully trained, which
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is not conducive to obtaining a proper feature representation for the ships between the
two domains.

To solve this problem and obtain more effective aligned features, we set two indepen-
dent domain classifiers of the foreground domain classifier and the background domain
classifier to identify the ship samples and background samples from the two domains,
respectively (see Figure 1). During training, the classification scores predicted by RPN de-
termine whether current location on the feature map is a ship sample. Specifically, locations
with a classification score larger than 0.5 are ship regions, and those with classification
scores less than 0.2 are background regions. It is worth noting that to cover different scales
and aspect ratios, multiple anchors with different sizes are centred on each location of
the feature map. Since each anchor has a corresponding classification score, we take the
maximum value as the score of current location.

Specifically, the image-level adaption loss is the sum of the foreground domain classi-
fier L f g and background domain classifier Lbg:

Limg = L f g + Lbg. (2)

We train the domain classifier on each activation located at (u, v) of the feature map.
Denoting the output probability of the domain classifier as p, L f g and Lbg is defined
as follows:

L f g = − ∑
i,u,v

αu,v
i ∗ [Di log pu,v

i + (1− Di) log(1− pu,v
i )], (3)

Lbg = − ∑
i,u,v

βu,v
i ∗ [Di log pu,v

i + (1− Di) log(1− pu,v
i )], (4)

where Di denotes the domain label of the i-th training image (Di = 0 for the first domain
and Di = 1 for the second domain). α = 1 for ship samples, or α = 0. β = 1 for background
samples, or β = 0.

3.2. Instance-Level Adaption

Section 3.1 minimizes the impact of domain shift in terms of the image-level global
feature representations. However, images in different domains may also show significant
differences in local regions that may contain ships. The feature of these regions also
affect the localization accuracy of the detection. Therefore, to achieve local region feature
alignment, we design a novel boundary regression module to correct the size and location
of the proposals, as well as align the corrected ROI features between different domains via
the domain classifier.

Due to the existence of the domain shift, more robust features are required to achieve
accurate regression. Although the features in the inside part of the region proposal are
helpful for the classification task, they are redundant for the boundary regression and will
make the regressor easily affected by the background inference. Therefore, to reduce the
interference as much as possible, we only utilize the features closest to the boundary of the
proposal for the regression. Such features are the extreme point features with a maximum
response value on the boundary of the ROI features.

Specifically, as shown in Figure 6, the boundary regression module takes a 7× 7× 512
size feature map produced by the ROI Align [10] layer for each proposal as input. Then,
since the convolution operation applies shared transformations which are more robust to
regress the ship boundary, the number of channels is increased through two convolution
branches to obtain a 7× 7× 1024 size feature map. Finally, four 1024-d vectors are obtained
via the extreme point pooling to regress the offset of the proposal, respectively. The structure
of extreme point pooling is shown in Figure 7. Features of the outermost circle are first
divided into four parts, which are upper, lower, left and right (identified by different colors).
Then, max pooling is performed to convert these four parts of features into 1024-d vectors,
each of which is responsible for regressing the corresponding offset.
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Conv 1×1 Conv 1×1

ReLU
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Figure 6. Structure of the boundary regression module.
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Figure 7. Illustration of the extreme point pooling.

In object detection algorithms, a proposal is usually described by x, y, w, h ((x, y)
represents the center point, while w and h represent the width and height). However,
in the boundary regression module, we adopt another approach to predict the offset of
each side (represented by l, r, u, d for the left, right, upper and down side, respectively)
of the proposal via the corresponding feature vectors. In this way, the feature and the
predicted value are well linked to avoid the interference from irrelevant information,
and thus improves the adaptability to the domain shift. Given a proposal represented by
x, y, w, h, the normalized offsets ttt = (tl , tr, tu, td) is expressed as follows:

tl =
(x− w

2 )− (xa − wa

2 )

wa ,

tr =
(x + w

2 )− (xa + wa

2 )

wa ,

tu =
(y + h

2 )− (ya + ha

2 )

ha ,

td =
(y− h

2 )− (ya − ha

2 )

ha ,

(5)
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in which x, xa are for the original proposal and the corrected proposal, respectively (likewise
for y, w, h). Given the ground-truth offset t∗ = (t∗l , t∗r , t∗u, t∗d), we employ the smooth-L1
loss [1] for the regression:

Lreg(t, t∗) = ∑i∈{l,r,u,d} smoothL1(t
∗
i − ti), (6)

where

t∗l =
(x∗ − w∗

2 )− (xa − wa

2 )

wa ,

t∗r =
(x∗ + w∗

2 )− (xa + wa

2 )

wa ,

t∗u =
(y∗ + h∗

2 )− (ya + ha

2 )

ha ,

t∗d =
(y∗ − h∗

2 )− (ya − ha

2 )

ha ,

(7)

in which x∗, y∗, w∗, and h∗ denote the corresponding ground-truth values.
Given the predicted offsets, the corrected proposal can be calculated from Equation (5),

and then the second ROI pooling process is performed to obtain the corrected ROI feature
for further identification. To eliminate the domain shift on instance level, a domain classifier
is attached to the second ROI Align layer to discriminate the corrected ROI features. Similar
to Equations (3) and (4), the loss of the region-level domain classifier is as follows:

Lcls = −∑
i,j
[Di log pi,j + (1− Di) log(1− pi,j)], (8)

where j represents the j-th corrected region proposal.
In summary, the instance-level adaption loss Lins is composed of the loss of the domain

classifier and the loss of offsets regression:

Lins = Lcls + Lreg. (9)

Moreover, the proposed method is also applicable to the unsupervised domain adap-
tion scenario, where only one of the two domains has bounding box annotations during
training (see Section 3.4 for detail). In this situation, Lreg is only for the proposals of the
annotated domain.

3.3. Training

Since the proposed method is constructed on the typical object detection model,
the final training loss L includes the original detection loss in addition to the domain
adaption loss introduced above, which can be written as:

L = Ldet + Limg + Lins, (10)

where Ldet is the detection loss. It is worth noting that the optimization goals of the pro-
posed model are contradictory. During training, the detection network tries to generate
similar features to deceive the domain classifiers, thus maximizing Limg and Lins. In con-
trast, to obtain a powerful domain discriminator, the optimization goal of the domain
classifier is to minimize Limg and Lins.

Therefore, it is natural to perform the two-stage adversarial training. In the first stage,
all loss items are minimized to optimize the detection network and the discriminative
ability of the domain classifiers. The second stage keeps the parameters of the domain
classifiers fixed, continues to minimize Ldet while maximizing Limg and Lins. At this time,
the detection network tends to generate domain-invariant features to deceive the domain
classifier. The above two stages are alternately performed until the network parameters
are optimized.
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3.4. Unsupervised Domain Adaption

Since annotating the training samples is quite labor-expensive and energy-consuming,
it is also meaningful to consider the case of unsupervised domain adaption. In unsuper-
vised domain adaption scenario, no bounding box annotations are available for the target
domain during training. Therefore, the detection loss and offset regression loss of the target
training data must be ignored at this time. However, due to the existence of domain shift
and lack of bounding box annotations, proposals of the target domain usually have poor
localization accuracy even if the features are well aligned. Such inaccurate proposals will
directly lead to poor detection results.

This problem can be alleviated by the proposed boundary regression module and
instance-level domain classifier. Since the accuracy of the proposal is faithfully reflected
on their ROI features via the ROI pooling process, the domain classifier can also be used
to supervise the update of offset t by implementing the feature alignment. That is, when
the corrected ROI features are close enough to each other, the localization accuracy of
the proposals corrected by t is also almost the same. Therefore, even if no bounding box
annotations are available for the target domain, the effective offset can still be predicted
via the feature alignment to reduce the localization deviation between the proposals of the
two domains.

The boundary regression together with other structures improves the generalization
ability of the model to different domains, making the proposed method achieve leading
results in the unsupervised domain adaption task. The comparative experiments with
other methods are shown in Section 4.3.3.

4. Experiments
4.1. Datasets and Implementation Details

HRSC2016 and Airbus ship detection dataset. The proposed method is trained and
tested on a collection of the HRSC2016 [47] dataset and the dataset for the Kaggle Air-
bus ship detection challenge (https://www.kaggle.com/c/airbus-ship-detection, date
accessed: 9 August 2021). The HRSC2016 dataset contains 1055 ship images, while the
Airbus dataset has a total of 3000 images. As shown in Figure 8, the two datasets have
obvious differences. Images in HRSC2016 are mainly taken from the port environment and
contain a large number of military ships. In contrast, most of the ships in the Airbus dataset
are civil ships in the sea environment.

Figure 8. Typical images in HRSC2016 dataset (the first row) and Airbus dataset (the second row).

Synthetic remote sensing ship datasets. To verify the superiority of the proposed
method in more demanding domain adaption scenarios, we also adopt the synthetic re-
mote sensing image data from the maritime ship detection competition (https://www.
datafountain.cn/competitions/275/, date accessed: 9 August 2021) held by the China Com-

https://www.kaggle.com/c/airbus-ship-detection
https://www.datafountain.cn/competitions/275/
https://www.datafountain.cn/competitions/275/
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puter Federation in the comparison experiments. As shown in the Figure 9, the data
are divided into two independent datasets (each of which contains 1500 images) ac-
cording to different weather conditions, including normal weather (Normal) and cloudy
weather (Cloudy).

Figure 9. Typical images in Normal dataset (the first row) and Cloudy dataset (the second row).

The network is trained with an Adam optimizer on GTX1080ti GPU with 2 images
from different datasets per mini-batch. The input image is resized such that its shorter
side has 600 pixels. The backbone network is ResNet-50 [25]. During training, we use a
momentum of 0.9 and a weight decay of 0.0005 for optimization. The collection of the two
datasets is randomly divided into three parts (training set, validation set, and test set) with
a ratio of 6:1:3. We flip each image in horizontal reflections to double the images for data
augmentation. The other parameter settings are consistent with those in paper [5]. We use
the average precision (AP) calculated in accordance with the PASCAL visual object classes
challenge 2007 (VOC2007) [48] as the evaluation metric.

4.2. Experimental Analysis
4.2.1. Evaluation of the Proposed Modules

To verify the superiority of the proposed structures, we conduct several comparisons
in Table 1 with a baseline model in which any proposed technology is abandoned. For a
fair comparison, any other parameter settings of the baseline model are consistent with the
proposed method. In Table 1, MRFI and CDA indicate the multiple receptive field feature
integration and the channel domain attention module in image-level adaption, respectively.
BR indicates the boundary regression in instance-level adaption.

Table 1. Quantitative evaluation of the proposed modules.

MRFI CDA BR AP

Baseline 85.4%

Ours

X 86.5%

X X 87.2%

X 87.4%

X X X 89.0%

From Table 1, we can see that the multiple receptive field feature integration can effec-
tively improve the performance of the baseline model on the test set. By combining with
the domain attention module, the AP finally achieves a 1.8-point improvement. In addition,
the extreme point regression also brings an AP increase of 2.0 points independently. Exper-
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imental results show that the instance-level adaption has achieved a higher improvement
than the image-level adaption. The reasons may be as follows: (1) for the two datasets,
the difference between ship objects is more significant than the background region. (2) The
instance-based adaption includes the process of proposal correction. More precise object
localization can directly improve the performance of the detection. Finally, by further
assembling all these structures together, the proposed model improves the Baseline model
by +3.6%, which achieves 89.0% in terms of AP.

4.2.2. Evaluation of the Multiple Receptive Field Feature Integration

The key of multiple receptive field feature integration is the fusion strategy of the
feature maps with different receptive fields. Since there are semantic gaps between different
feature maps, a simple fusion strategy may not achieve good results. Therefore, we
gradually fuse adjacent feature maps, and obtain appropriate fusion weights based on the
attention mechanism. As shown in Table 2, we evaluate the performance of the proposed
approach with different fusion strategies.

Table 2. Quantitative evaluation of the multiple receptive field feature integration.

Direct Gradual Gradual *

AP 88.1% 88.6% 89.0%

* means the attention-based feature fusion proposed in this paper.

In Table 2, direct means directly splicing the feature maps with different receptive
fields along the channel, while gradual means fusing the adjacent feature maps in sequence.
The attention-based feature fusion proposed in this paper is indicated by *. Experimental
results show that gradual fusion is better than direct fusion, and the weight obtained by
the attention-based feature fusion further improves the performance of multiple receptive
field feature integration.

4.2.3. Evaluation of the Domain Attention Module

In this section, we will study the influence of the number of SE adapters in the channel
domain attention module. As shown in Figure 10, we set a different number of SE adapters
(denoted by n) for the channel domain attention module to evaluate their performance.
It is worth noting that when n = 1, the channel domain attention module degenerates to
the standard SE module.

1 2 3 4 5
n

86

87

88

89

90

AP

Figure 10. AP versus the number of SE adapters.

It can be seen from the experimental results that a single SE adapter has the worst
performance, since only the channel attention works at this time. When sufficient SE
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adapters are used (n = 3 in our experiment), involving more SE adapters will not bring
further performance improvement. This can probably be explained as the following.
Although a larger n provides a larger parameter space which helps to sensitively distribute
the activation between both of the two domains, more parameters also increase the risk of
over-fitting, thus resulting in a performance decrease.

4.2.4. Evaluation of the Boundary Regression Module

The boundary regression module consists of two major components: a convolution
head for feature preprocessing, and the extreme point pooling to obtain the features of
extreme points for the regression. In this section, we will study the performance of these
two components separately.

The experimental results are shown in Table 3, where normal means that the feature
obtained from the previous ROI pooling process is used as the pooling input, and conv
indicates that the structure shown in Figure 6 is used to process the feature map. For the
pooling method, traditional represents the conventional way to divide the proposal into
7× 7 bins for pooling (a feature map of 7× 7× 512 size is obtained after pooling), while the
point-based score indicates that the extreme point pooling shown in Figure 7 is performed
to obtain four 1024-d vectors for regression. To better evaluate the localization performance,
the index of mean intersection-over-union (IoU) is also calculated.

Table 3. Quantitative evaluation of the boundary regression module.

Pooling Head Pooling Meathod AP IoU

normal traditional 88.5% 0.798
conv traditional 88.9% 0.805
conv point-based 89.0% 0.819

Experimental results show that the conv head boosts both AP and IoU, which means
that convolution operation is more suitable for bounding box regression. In addition,
although the AP indicator of extreme point pooling is almost the same as the traditional
pooling method, we can still see a significant improvement in terms of IoU. This shows
that extreme point pooling effectively improves the localization accuracy of the detection.

4.3. Comparison
4.3.1. Domain Adaption on Real Remote Sensing Data

The proposed method is compared with four other representative methods which are
Faster R-CNN [5], RetinaNet [8], YOLOv3 [9], and Mask R-CNN [10]. Some examples of the
detection results from HRSC2016 and Airbus by different methods are shown in Figure 11
and Figure 12, respectively. Examples of some failed cases are shown in Figure 13.

The three images shown in Figure 11 are all with complex port background inter-
ference. It can be seen that the other four methods are all have miss detections to some
extent, while the proposed method successfully detects all the ships with various scales.
In contrast, images in Figure 12 are all with sea backgrounds. Despite the relatively simple
environment compared with the ports, the sea clutter and complicated weather conditions
also make it difficult to detect small ships. For example, all the other algorithms fail to
detect both of the tiny moving ships in the first image at the same time. Suffering from
the bad weather, ships in the other two images are less clear. It can be seen from the
results that such blurry ships are easily cause miss detections, while the proposed method
successfully detects all these ships. In summary, compared with general detection methods,
the proposed method can effectively deal with the domain shift between different datasets,
achieving accurate ship detection in both port and sea environments.

Quantitative comparisons on the test set are provided in Table 4. From Table 4, it can
be seen that our method obtains the highest scores on all the indexes of precision, recall,
and AP.
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(a)

(b)

(c)

(d)

(e)

Figure 11. Comparison of the ship-detection results by different methods on the HRSC2016 dataset.
(a) Faster R-CNN [5]. (b) RetinaNet [8]. (c) YOLOv3 [9]. (d) Mask R-CNN [10]. (e) Our method.
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(a)

(b)

(c)

(d)

(e)

Figure 12. Comparison of the ship-detection results by different methods on the Airbus dataset.
(a) Faster R-CNN [5]. (b) RetinaNet [8]. (c)YOLOv3 [9]. (d) Mask R-CNN [10]. (e) Our method.
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Figure 13. Some failed cases of the proposed method. The missed detections are marked by
green boxes.

Table 4. Quantitative comparison results on real remote sensing data.

Faster R-CNN RetinaNet YOLOv3 Mask R-CNN Our Method

AP 83.7% 86.8% 87.5% 88.1% 89.0%
Recall 77.6% 80.7% 82.7% 82.0% 85.6%
Precision 87.8% 91.6% 92.3% 92.8% 93.6%
Running Time 71 ms 73 ms 55 ms 144 ms 83 ms

The best results are marked in bold.

4.3.2. Domain Adaption on Synthetic Remote Sensing Data

In addition to adapting between real remote sensing data, synthetic data are also used
for the comparison experiments. Specifically, the experiments with synthetic data include
HRSC2016 & Normal, HRSC2016 & Cloudy, and Normal & Cloudy. The evaluation results are
shown in Table 5.

Table 5. Quantitative comparison results on synthetic remote sensing data.

Faster R-CNN RetinaNet YOLOv3 Mask R-CNN Our method

HRSC2016 & Normal 83.0% 86.4% 86.9% 87.7% 88.7%
HRSC2016 & Cloudy 82.4% 85.9% 86.3% 87.4% 88.5%
Normal & Cloudy 83.2% 86.5% 87.1% 88.0% 88.8%

The best results are marked in bold.

The experimental results show that, compared with other methods, our proposed
method still maintains obvious advantages in all the three adaption scenarios with synthetic
data. It should be noted that both the data types and weather conditions between HRSC2016
and Cloudy are different. Therefore, there is a large domain shift between the two datasets,
which limits the performance of the detection methods. In contrast, the Normal and Cloudy
datasets are both synthetic data. The difference is only in weather conditions, so there is
a relatively small domain shift between them. In this case, all methods achieve the best
performance compared with the other two sets of experiments.

4.3.3. Unsupervised Domain Adaption

Since it is difficult to acquire and annotate the remote sensing image, we also consider
the unsupervised domain adaption scenario and the experimental results are shown in
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Table 6. We perform the adaption experiments between real remote sensing data and
synthetic remote sensing data, respectively. Specifically, we use the HRSC2016 dataset as
the source domain for which images and their bounding box annotations are provided,
and the Airbus dataset as the target domain for which only unlabeled images are available.
All images from the source domain are used for training, while 30% of the images from
the target domain are reserved to evaluate the performance of the trained model. In the
experiment on synthetic data, the Normal dataset is used as the source domain, while the
Cloudy dataset is used as the target domain.

Table 6. Quantitative comparison results on the unsupervised domain adaption scenario.

Baseline Method [20] Method [21] Method [22] Our method

HRSC2016→ Airbus 34.3% 39.5% 40.9% 42.0% 46.8%
Normal→ Cloudy 40.1% 45.3% 48.0% 47.5% 51.5%

The best results are marked in bold.

The proposed method is compared with three other representative domain adaption
methods which are method [20], method [21] and method [22]. We also present the evalua-
tion results of the baseline model proposed in Section 4.2.1 to verify the effectiveness of the
domain adaptation technology. As shown in Table 6, the proposed method outperforms all
the other relevant methods on both of the two unsupervised domain scenarios.

5. Conclusions

In this paper, we propose a novel CNN-based domain adaptive ship detection method
for cross-domain ship detection in optical remote sensing images. The proposed method
alleviates the performance drop caused by domain shift via both image-level adaption and
instance-level adaption. In image-level adaption, we utilize multiple receptive field feature
integration and channel domain adaption to improve the feature representation ability
of the network between the two domains. In instance-level adaption, a novel boundary
regression module is proposed to correct the region proposals with the corresponding
effective extreme point features. During training, the network learns suitable feature
representations for both of the two domains with the help of the domain classifiers, thereby
improving the generalization ability of the trained model. In addition, the proposed method
is also suitable for the unsupervised domain adaption scenario. Detailed ablation studies
and the comparison results with other algorithms verify the superiority of our method.
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