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Abstract: Compared with multispectral sensors, hyperspectral sensors obtain images with high-
spectral resolution at the cost of spatial resolution, which constrains the further and precise appli-
cation of hyperspectral images. An intelligent idea to obtain high-resolution hyperspectral images
is hyperspectral and multispectral image fusion. In recent years, many studies have found that deep
learning-based fusion methods outperform the traditional fusion methods due to the strong non-
linear fitting ability of convolution neural network. However, the function of deep learning-based
methods heavily depends on the size and quality of training dataset, constraining the application of
deep learning under the situation where training dataset is not available or of low quality. In this
paper, we introduce a novel fusion method, which operates in a self-supervised manner, to the task
of hyperspectral and multispectral image fusion without training datasets. Our method proposes
two constraints constructed by low-resolution hyperspectral images and fake high-resolution hy-
perspectral images obtained from a simple diffusion method. Several simulation and real-data ex-
periments are conducted with several popular remote sensing hyperspectral data under the condi-
tion where training datasets are unavailable. Quantitative and qualitative results indicate that the
proposed method outperforms those traditional methods by a large extent.

Keywords: deep neural network; hyperspectral and multispectral fusion; self-supervised
optimization

1. Introduction

Different from multispectral remote sensing images, hyperspectral remote sensing
images can reflect not only the color information but also the physical property of ground
objects, which contributes a lot to Earth observation tasks such as ground object classifi-
cation [1], target tracking [2] and environment monitoring [3-5]. However, due to the sig-
nal-to-noise ratio, spatial resolution of hyperspectral images cannot be as high as that of
multispectral images. The low resolution constrains the precise application of hyperspec-
tral images. One mainstream strategy to obtain high-resolution hyperspectral (HR HSI)
optical images is to fuse the spectral information from low-resolution hyperspectral (LR
HSI) images and spatial information from corresponding multispectral images (HR MSI).
According to the study in [6], traditional LR HSI and HR MSI fusion methods can be
roughly classified into three families: (1) component substitution-based methods (CS-
based methods) [7-10]; (2) multiresolution analysis-based methods (MRA-based meth-
ods) [11-14]; (3) variation model-based methods (VM-based methods) [15-20].

CS-based methods are the most traditional LR HSI and HR MSI fusion methods.
They actually extend the application of CS-based methods on the pansharpening task to
LR HSI and HR MSI fusion tasks. CS-based methods share the same three steps to com-
plete the fusion process. First, they project the LR HSI to a novel feature space; then some
bands in the new feature space are substituted by the bands from HR MSI. Finally, HR
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HSI is obtained by transforming the bands in the novel feature space back to the original
space. Different projection methods contribute to different CS-based methods. These
methods include Gram-Schmidt transformation (GS) [9] and Adaptive Gram-Schimidt
transformation (GSA) [10]. General CS-based methods can obtain HR HSI with vivid and
sharp edges. However, these transformation methods cannot obtain feature maps per-
fectly matching the spectral information of HR MSI. The reason is that the actual relation-
ship between HR HSI and HR MSI is non-linear but existing transformation methods in
CS-based methods are linear. Therefore, the fusion results usually have severe spectral
distortion.

MRA-based methods are also most classic LR HSI and HR MSI fusion methods. They
share the same main steps. First, high-frequency information and low-frequency infor-
mation of LR HSI and HR MSI are separated by specific filtering methods. The fusion
result is obtained by combining the high-frequency information of HR MSI and the low-
frequency information of LR HSI. MRA-based methods differ from each other in terms of
filtering methods. Representative filtering methods include High-pass filter (HPF) [13],
Generalized Laplacian Pyramid family (GLP) [11], the decimated wavelet transform
(DWT) [14] and smoothing filter-based intensity modulation (SFIM) [12]. Due to the high-
frequency information having almost no spectral information, MRA-based methods avoid
the effect of spectral distortion. However, the high-frequency information cannot be com-
pletely extracted by these filtering methods so MRA-based methods often suffer from the
blurry spatial presentation.

VM-based methods are more novel methods than CS-based methods and MRA-
based methods. They treat the fusion of LR HSI and HR MSI as an ill-posed inverse prob-
lem. Equations are first established by observation model [21-23] and then constrained by
many handcraft priors. Popular priors contain the sparse prior [16,18,19] and low-rank-
ness prior [24,25]. These equations are solved by iterative optimization methods such as
alternating direction method of multipliers (ADMM) [26] and gradient descent algorithm
[27]. Dictionary learning methods [22,23] are a representative kind of VM-based methods.
By using sparse representation, they can combine the dictionaries from LR HSI and the
high-resolution sparse coefficients from HR MSI to obtain HR HSI. Compared with CS-
based methods and MRA-based methods, VM-based methods can acquire fusion results
with better balance between spatial and spectral accuracy. However, it is hard to deter-
mine the most suitable parameters.

Due to the strong non-linear fitting ability of deep neural network, recent studies
focus on introducing deep learning methods to the fusion of LR HSI and HR MSI, which
can be classified as the fourth kind of methods (DL-based methods). They train the deep
neural network in the supervised manner with triplets of HR HSI image, HR MSI and LR
HSI image and then apply the trained network to the other data. For example, the study
in [28] proposed a Unet-style network for LR HSI and HR MSI fusion tasks in order to
analyze the features of multi-scales. The study in [29] took the idea from the super reso-
lution work of 3D-CNN [30] and introduced 3D convolution layers into LR HSI and HR
MSI fusion tasks. Xie, et al. [31] proposed an interpretable deep neural network for the
fusion of LR HSI and HR MSI. Shuaigqi Liu, et al. [32] introduced a multi-attention-guided
network and trained the network in an unsupervised manner. Lu, et al. [33] made use of
a cascaded convolutional neural network for HR HSI resolution enhancement via an aux-
iliary panchromatic image. Despite the success of DL-based methods in LR HSI and HR
MSI fusions, their performance depends heavily on the size and quality of datasets. When
the dataset is small or non-existent, DL-based methods will be unsatisfying or not work.
DL-based methods train the network in a supervised manner, which means they ignore
the spatial and spectral features in the original resolution and have to down-sample the
original HR HSI by specific times according to Wald’s protocol, largely decreasing the
number of available training data. Therefore, DL-based methods are not as flexible as
those traditional methods under the situation of limited dataset.



Remote Sens. 2021, 13, 3226

3 of 17

Therefore, it is of great value to explore how to obtain results by strong fitting ability
of deep neural network without datasets. In some recent studies, deep neural network are
introduced [34-37] to some interesting applications in a self-supervised manner where
training datasets are unavailable. These applications includes style transfer [34], super-
resolution and inpainting [35]. For example, given a style image and a content image, ref-
erence [34] extracts style representation of the style image and content representation of
the content image from the internal layer of a pre-trained deep neural network, such as
VGGI19 network [38], which is a famous classification model, and combines them to opti-
mize the input map. Finally, a style-transferred image is acquired until optimizing to the
optimal. A similar work is that given a texture image, Leon Gatys, et al. [39] shows the
generation of images in a VGG19 network with similar but different texture from refer-
ence image. Ulyanov, et al. [35] finds that the deep neural network itself can be viewed as
a prior. With the random noise as input of network and the known degradation model,
the network can complete many low-level vision tasks including super-resolution,
inpainting and denoising. The above methods work well because they establish the simple
yet accurate relationship between output and the given images. However, when it comes
to spatial and spectral fusion tasks such as LR HSI and HR MSI fusion, they cannot extract
accurate spatial and spectral features because existing methods cannot establish the com-
plex relationship between LR HSI, HR MSI and the target image.

In order to obtain high-quality fusion results training without training datasets, we
introduce a novel strategy for LR HSI and HR MSI fusion. The proposed method can op-
erate in a self-supervised manner where all constraints in the method are constructed by
LR HSI and HR MSI themselves. The process of the proposed strategy can be summarized
as follows. First, the network takes a fake HR HSI as input, which is obtained roughly by
a traditional information diffusion method, to obtain an initial output. Then, one optimi-
zation term is constructed between the output and LR HSI to constrain the spectral accu-
racy; another optimization term is constructed by the output and the fake HR HSI to con-
strain the spatial accuracy. By optimizing the network parameters with the two optimiza-
tion terms, we obtain the final output with both high spatial and spectral accuracy. We
summarize our contribution as follows:

e  Weintroduce a strategy for self-supervised fusion of LR HSI and HR MSI. Different
from deep learning methods, the proposed strategy gets rid of the dependence on the
size and even the existence of a training dataset.

e A simple diffusion process is introduced as the reference to constrain the spatial ac-
curacy of fusion results. Two simple but effective optimization terms are proposed
as constraints to guarantee the spectral and spatial accuracy of fusion results.

e  Several simulation and real-data experiments are conducted with some popular hy-
perspectral datasets. Under the condition where no training datasets are available,
our method outperforms all comparison methods, testifying the superiority of the
proposed strategy.

Our paper is developed with the following four sections. In Section 2, we present the
workflow and the details of the proposed strategy; in Section 3, experiment results of the
proposed method are displayed and compared with other state-of-the-art fusion methods
under the condition without datasets. In Section 4, we discuss some findings in our exper-
iment. In Section 5, we summarize the merits and demerits of our method applied on LR
HSI and HR MSI fusions and discuss the potential improvement of the proposed method
in the future.

2. Methods
2.1. Problem Formulation

Before the introduction of the proposed methods, we give some important notations
for simplification and state the problem of LR HSI and HR MSI fusion. X € R*"*“ means
the LR HSI image where ,, & and . are respectively the width, height and the number
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of channels of x . Y e R” isHR MSI where » , # and . respectively mean the
width, height and band number of y. We aim to obtain Z e R"* which shares the
same spatial resolution with y and the same spectral resolution with x . Specifically,
the width and height of y are much larger than those of x while the channel number
of x ismuch largerthanthatof v, ;.. » » », H>h and ¢ .

It is well accepted that x and y are two degradation results of 7. On the one
hand, v canbe viewed asthe product of down-sampling 7 by some spatial down-sam-

pling algorithm D, such as bicubic and bilinear algorithm. On the other hand, v is

thought to be obtained by down-sampling 7 in the spectral dimension with some spec-
tral down-sampling algorithm D, . The two degradation processes are illustrated in Equa-

tions (1) and (2). The target HR HSI can be obtained by solving the Equation (3):

Y=D,(Z) )
Z=[X =D (Z) ||+ ]| Y = Dy (Z) || +AR(Z) 3)

For the spectral degradation model D,, existing studies all select linear regression

model or spectral response function which is also a linear model in their simulation ex-
periments. However, the results may not be satisfying when linear spectral response func-
tion cannot accurately reflect the complex relation between z and real MSI. We will re-
flect this phenomenon in the real experiment. We attempt to abandon D, and try another

choice to constrain the spatial information.

2.2. Fusion Process

To guarantee the robustness of fusion process, we first diffuse the spatial information
from y toallbandsof x with GSA [10] to obtain a fake HR HSI Z, as backbone:

Then Z, serves as the input of network G and we obtain an initial output z from

Z=G(Z;) (5)

To constrain the spectral accuracy of z, we construct the spectral optimization term
directly with x and z:

i
Loss .y = Z, 4 =X, [ (6)

where | isthe operation of down-sampling by . timesand 7, isthe operation of up-

sampling by , times. , is the spatial resolution ratio between y and x . Although
down-sampling operation can well represent the spectral information of z, we add the
up-sampling operation to the constraint term to further strengthen the spatial information
of z.

Then we make use of the Z, to construct the spatial optimization term with 7 to

constrain the spatial accuracy of output:

L0oSS e =1 Z = Z; || )

With limited loss of spatial information, Z, contains more spectral information of
x compared with y because of the diffusion operation in Equation (4). In this way, Z,
could have less effect on the spectral accuracy of fusion results compared with .
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Finally, the total optimization term, which is described in Equation (8), is constructed
by the two optimization terms:

Loss

total

= L0SS s + ALOSS 0 ®)

where A denotes the weight.

The optimization process ends when the total optimization term reaches the optimal.
Different from those deep learning-based methods whose target is a trained network, we
abandon the network after optimization but retain the output:

Z" = argmin Loss,,, 9)

It is worth mentioning that the whole process does not depend on a training dataset
and operates in a self-supervised manner. Actually, the proposed method can also be
viewed as the process of spectral information correction of Z, .

2.3. Network Structure

We design a simple 5-layer deep neural network to complete the whole task. The
whole structure and parameters are displayed in Figure 1. In each of the first five layers,
there exists a convolution operation, a batch-normalization operation and a non-linear
activation operation. For the last layer, there are only a convolution operation and a non-
linear activation operation. To avoid the gradient vanishing phenomena, one skip connec-
tion operations are used between the first layer and the fifth layer. Detailed parameters
are listed in Figure 1.

Upsample

spectral constraint
=} piR= = 3.8 =
ransformation ol 8 S| L
~3

spatial constraint

N s ! ' ) i ) i Vo)

Figure 1. Framework of our method.

3. Experiments
3.1. Experiment Settings
3.1.1. Datasets

We apply three hyperspectral datasets in the experiment with simulated multispec-
tral images. They are respective CAVE dataset, Pavia University dataset and Washington
DC dataset. Two datasets are used in experiment with real multispectral images. They are
respectively CAVE dataset and Houston 2018 dataset. We introduce these datasets in de-
tail.

CAVE dataset consists of 32 HR HSI, whose spatial resolution is 512 x 512. The spec-
tral range of hyperspectral images covers from 400 nm to 700 nm and each band covers 10
nm.

Each HR HSI image has a corresponding natural RGB image with the same spatial
resolution. In the experiment of CAVE dataset, we select six HR HSI images. We set the
down-sampling ratio as 8 so the original HR HSI are down-sampled to 64 x 64 as the LR
HSI images. For the simulation experiment, HR MSI are produced by down-sampling HR
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HSI images in the spectral dimension. For the real-data experiment, we make use of nat-
ural RGB images provided by the official website https://www.cs.colum-
bia.edu/CAVE/databases/multispectral/ (Accessed on 12 August 2021) of CAVE dataset.

Pavia University dataset is obtained by the Reflective Optics System Imaging Spec-
trometer (ROSIS) sensor. The image, whose size is 610 x 340, have the spectral range be-
tween 430 nm and 860 nm. The original image has 115 bands and only 103 bands among
them are used for experiments after processing. We crop a patch with the size of 280 x 280
x 103 from the dataset as HR HSI. Then, we follow the Wald'’s protocol and down-sample
HR HSI by 8 times to obtain LR HSI with the size of 35 x 35 x 103. HR MSI is simulated by
linearly combining the channels of HR HSI and we finally acquire HR MSI with the size
of 280 x 280 x 4. In the experiment, we view HR HSI as the ground truth.

Washington DC dataset is an aerial hyperspectral image acquired by the Hydice sen-
sor whose spectral range is between 400 nm and 2400 nm. The image has a total of 191
bands and has a size of 1208 x 307. We select a patch with the size of 280 x 280 x 191 as HR
HSI and the ground truth. Then we down-sample it to the size of 35 x 35 x 191 to acquire
LR HSI by following the Wald’s protocol. We also simulate HR MSI by down-sampling
the HR HSI in the spectral dimension and finally obtain HR MSI with the size of 280 x 280
x 4.

Houston 2018 dataset: Houston 2018 dataset is the dataset originally used in the com-
petition of 2018 IEEE GRSS Data Fusion. It is produced and published by University of
Houston. Houston 2018 dataset consists of 14 pairs of hyperspectral images and natural
HR MSI. Hyperspectral images, whose spatial resolution is 1 m, have a size of 601 x 596
and 48 bands. HR MSIs, whose spatial resolution is 0.05 m, have a size of 12,020 x 11,920
and 3 bands. In the experiment, we select 8 pairs of hyperspectral and multispectral im-
ages to testify the effectiveness of the proposed method. First, we follow the Wald’s pro-
tocol and down-sample HR MSI to the similar size of hyperspectral images. Then we crop
patches with the size of 400 x 400 respectively from the hyperspectral images and the
down-sampled multispectral images as the ground truth and HR MSI for fusion. The hy-
perspectral images are further down-sampled by 8 times to the size of 50 x 50 to get the
LR HSI for fusion.

3.1.2. Comparison Methods

Different from those deep learning-based methods which need datasets for training,
the proposed method needs no training datasets and can be applied on only one image in
a self-supervised manner. Hence, we select six state-of-the-art fusion methods from dif-
ferent kinds of fusion methods. They operate under the same conditions as the compari-
son methods. The six selected methods are respectively Adaptive Gram-Schmidt method
(GSA) [13], Coupled Nonnegative Matrix Factorization (CNMF) [17], Coupled Spectral
Unmixing (ICCV15) [20], Generalized Laplacian Pyramid for HyperSharpening (GLPHS)
[40], Hyperspectral Subspace regularization (HySure) [41] and Smoothing Filter-based In-
tensify Modulation for HyperSharpening (SFIMHS) [12].

3.1.3. Evaluation Methods

Four commonly used indexes are used to evaluate the fusion results of the proposed
and the comparison methods. They are respectively peak-signal-to-noise ratio (PSNR),
structure similarity index (SSIM), correlation coefficient (CC) and spectral angle mapper
(SAM). The first three indexes can judge the spatial accuracy of fusion results while the
last one can evaluate the spectral accuracy of fusion results. For PSNR and SSIM, a higher
index means the better result. While for SAM, a lower index indicates more accurate spec-
tral information.
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3.1.4. Impletion Details

All of the experiments are conducted with Pytorch 1.0 under the environment of Ub-
untu 16.04. Adam optimizer is used to optimize the fusion result and we set the learning
rate of the network as 0.0002.

3.2. Experiment with Simulated Multispectral Images

In our experiment, we attempt to obtain HR HSI with spatial resolution 8 times
higher than LR HSI by the process of fusion, which is a really challenging task. In this
part, we test our method with images from CAVE dataset, Pavia University dataset and
Washington DC dataset, with HR MSI of which are simulated by adding channels linearly
from HR HSI according to the spectral response function. Linear spectral response func-
tion is also the basic assumption of the above six comparison methods.

3.2.1. CAVE Dataset

We visualize the fusion results of the proposed method and six comparison methods
on CAVE dataset in Figure 2. Band 11, 21 and 31 are selected as R, G and B bands of the
displayed images. Results of GSA, SFIMHS, GLPHS, CNMF are respectively displayed in
Figure 2a—d. Results of ICCV15, HySure and the proposed method and the ground truth
are presented in Figure 2e-h. To more intuitively compare the results of all methods, we
further display their residual difference maps from the ground truth in Figure 3. It can be
observed that residual map of the proposed method is darker than those of other methods,
indicating that the proposed method can obtain results with least difference from the
ground truth. We also compare the proposed method with the other six methods quanti-
tatively in Table 1 which lists the three indexes mentioned above. We mark quantitative
evaluation results with the highest scores in bold and those with the second highest scores
with underline. The proposed method achieves the highest scores in all five indexes and
outperforms the method with the second highest score by a large extent. For co-variance
map and RX detection map of results in Pavia University dataset with simulated HR MSI,
please view Figure 53 and Figure S8 in Supplementary Materials.

(e)

(f) (8) (h)

Figure 2. Results of CAVE dataset with simulated multispectral images. (a) results of GSA; (b) results of SFIMHS; (c)
results of GLPHS; (d) results of CNMEF; (e) results of ICCV15; (f) results of HySure; (g) ours results; (h) Ground truth.
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(b) (d)

(c)
. i 0
(8)

Figure 3. Residual information of CAVE dataset with simulated multispectral images. (a) results of GSA; (b) results of
SFIMHS; (c) results of GLPHS; (d) results of CNMF; (e) results of ICCV15; (f) results of HySure; (g) ours results.

(e) )

Table 1. Quantitative evaluation results of CAVE dataset with simulated multispectral images.

PSNR SSIM SAM CC

GSA 38.4838 0.9742 4.5940 0.9745
SFIMHS 33.8042 0.9396 8.7843 0.9641
CNMF 34.8185 0.9506 7.6047 0.9109
ICCV15 36.5875 0.9652 6.0231 0.9766
GLPHS 37.4164 0.9606 5.5818 0.9769
HySure 37.3821 0.9585 6.7477 0.9641
Ours 40.1032 0.9864 4.2902 0.9832

Scores marked in bold mean the best and those marked with underline mean the second best.

3.2.2. Pavia University Dataset

The fusion results of patches from Pavia University dataset obtained by the seven
methods are displayed in Figure 4. We select the 37th, 68th and 103rd bands as the R, G
and B bands for visualization. Figure 5 presents the residual information of results from
all methods compared with the ground truth. The proposed method has the less residual
information in the fusion result than the other methods. We also compare the fusion re-
sults with quantitative evaluation in Table 2. The evaluation results with the highest
scores are marked in bold and those with the second highest scores are marked with un-
derline. Again the proposed method achieves the highest scores in all five evaluation in-
dexes, indicating that the result of the proposed method is the most accurate in both spa-
tial and spectral details. For co-variance map and RX detection map of results in Pavia
University dataset with simulated HR MSI, please view Figure S6 and Figure S11 in Sup-
plementary Materials.



Remote Sens. 2021, 13, 3226 9 of 17

(b) (d)

(e) (f) (8) (h)

Figure 4. Results of Pavia University dataset with simulated multispectral images. (a) results of GSA; (b) results of
SFIMHS; (c) results of GLPHS; (d) results of CNMF; (e) results of ICCV15; (f) results of HySure; (g) ours results; (h) Ground
truth.

(d)

o

(f) (8)

Figure 5. Residual information of Pavia University dataset with simulated multispectral images. (a) results of GSA; (b)
results of SFIMHS; (c) results of GLPHS; (d) results of CNMF; (e) results of ICCV15; (f) results of HySure; (g) ours results.



Remote Sens. 2021, 13, 3226 10 of 17

Table 2. Quantitative evaluation results of Pavia University dataset with simulated multispectral images.

PSNR SSIM SAM CC

GSA 38.0679 0.9721 3.6394 0.9337
SFIMHS 35.8753 0.9651 4.0605 0.9343
CNMF 37.6781 0.9720 3.6576 0.9335
ICCV15 38.3872 0.9737 3.3430 0.9220
GLPHS 37.6992 0.9742 3.3215 0.9178
HySure 35.7145 0.9676 3.6405 0.9215
Ours 38.7403 0.9751 3.2625 0.9345

Scores marked in bold mean the best and those marked with underline mean the second best.

3.2.3. Washington DC Dataset

We visualize the fusion results of the proposed method and six comparison methods
on Washington DC dataset in Figure 6. Band 16, 82 and 166 are selected as R, G and B
bands of the displayed images. Results of GSA, SFIMHS, GLPHS, CNMF are respectively
displayed in Figure 6a—d. Results of ICCV15, HySure and the proposed method and the
ground truth are presented in Figure 6e-h. To more intuitively compare the results of all
methods, we further display their residual difference maps from the ground truth in Fig-
ure 7. It can be observed that the result of the proposed method has the least residual
information. We also compare the proposed method with other six methods quantita-
tively in Table 3 which lists the five indexes mentioned above. We mark quantitative eval-
uation results with the highest scores in bold and those with the second highest scores
with underline. The proposed method achieves the highest scores in all five indexes and
outperforms the method with the second highest score by a large extent. For co-variance
map and RX detection map of results in Washington DC dataset with simulated HR MS],
please view Figure S4 and Figure S9 in Supplementary Materials.

Figure 6. Results of Washington DC dataset with simulated multispectral images. (a) results of GSA; (b) results of SFIMHS;
(c) results of GLPHS; (d) results of CNMEF; (e) results of ICCV15; (f) results of HySure; (g) ours results; (h) Ground truth.
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(f) (8)

Figure 7. Residual information of Washington DC dataset with simulated multispectral images. (a) results of GSA; (b)
results of SFIMHS; (c) results of GLPHS; (d) results of CNMF; (e) results of ICCV15; (f) results of HySure; (g) ours results.

Table 3. Quantitative evaluation results of Washington DC dataset with simulated multispectral images.

PSNR SSIM SAM CC

GSA 38.6088 0.9839 1.9482 0.9932
SFIMHS 36.4287 0.9817 2.2033 0.9924
CNMF 38.3836 0.9857 1.8832 0.9929
ICCV15 36.9171 0.9696 2.2603 0.9767
GLPHS 37.5585 0.9763 2.1159 0.9750
HySure 37.5309 0.9805 1.9879 0.9901
Ours 39.1805 0.9873 1.6875 0.9937

Scores marked in bold mean the best and those marked with underline mean the second best.

3.3. Experiment with Real Multispectral Images

The experiments presented above assume that HR MSI can be simulated by adding
the channels of corresponding HR HSI linearly according to the spectral response func-
tion. However, according to reference [6], the actual relationship between HSI and MSI
obtained physically is far from linear but non-linear, and it is hard to precisely establish
the complex relationship between them. So those methods based on the assumption of
simple linear relationship between real HR HSI and HR MSI will not operate well in real
applications. However, the proposed method is not based on this assumption and can
deal well with complex spectral response function in the real situation.

3.3.1. CAVE Dataset

We pick one image among six test images from CAVE and display the fusion results
of the proposed method and the comparison method in Figure 8. The 11th, 21st and 31st
bands are chosen as the R, G and B bands for visualization. With the real multispectral
images in CAVE dataset, all six comparison methods, which are all based on the



Remote Sens. 2021, 13, 3226

12 of 17

(e)

assumption of simple linear spectral response function, obtain unsatisfying fusion results.
We also display the residual information maps of ground truth and results from all meth-
ods in Figure 9. In terms of the results of the six comparison methods, there is much more
residual information in the experiment with real HR MSI than that in the experiments
with simulated HR MSI that are displayed in Figures 3 and 5. It is testified again that the
six comparison methods follow the wrong assumption. The proposed method, however,
has the least residual information in the fusion results compared with the other six meth-
ods in CAVE dataset and has the equivalent residual information in experiments with
simulated HR MSI and real HR MSI, which can be observed in Figures 3 and 9. That means
the proposed method does not rely on the accuracy of spectral response function and can
well perform in real situations. The quantitative evaluation scores of fusion results from
all methods are listed in Table 4. We mark the highest scores of indexes in bold and the
second highest with underline. It is worth noting that in the experiment of real HR MSI,
all six comparison methods cannot obtain the scores as high as those in the experiments
with simulated HR MSI, which again indicates that they are not ready for real situations.
The proposed method, however, acquires the highest scores in all indexes and outper-
forms the comparison methods by a large extent. Comparing the quantitative evaluation
results of the proposed methods in the experiments of real HR MSI and those in the ex-
periments of simulated HR MSI, the proposed method obtains the same good results in
both situations, which again confirms that the proposed method is not constrained by the
accuracy of spectral response function and can be practically used. For co-variance map
and RX detection map of results in CAVE dataset with real HR MSI, please view Figure
52 and Figure S6 in Supplementary Materials.

(f) (8) (h)

Figure 8. Results of CAVE dataset with real multispectral images. (a) results of GSA; (b) results of SFIMHS; (c) results of
GLPHS; (d) results of CNMEF; (e) results of ICCV15; (f) results of HySure; (g) ours results; (h) Ground truth.
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(e) )

Figure 9. Residual information of CAVE dataset with real multispectral images. (a) results of GSA; (b) results of SFIMHS;
(c) results of GLPHS; (d) results of CNMEF; (e) results of ICCV15; (f) results of HySure; (g) ours results.

Table 4. Quantitative evaluation results of CAVE dataset with real multispectral images.

PSNR SSIM SAM CC

GSA 30.3058 0.8591 13.8931 0.9727
SFIMHS 25.2277 0.8126 22.3912 0.9244
CNMF 30.6975 0.8908 10.7764 0.9496
ICCV15 27.1515 0.8811 12.9924 0.9412
GLPHS 35.0865 0.9262 8.4063 0.9829
HySure 27.7137 0.8312 14.7039 0.9482
Ours 36.0586 0.9601 6.6032 0.9863

Scores marked in bold mean the best and those marked with underline mean the second best.

3.3.2. Houston 2018 Dataset

We display the fusion results of the proposed method and the comparison method
in Figure 10. From Figure 10, we observe that all comparison methods cannot acquire re-
sults with sharp spatial details and spectral information at the same time. Compared with
these methods, results of the proposed method have accurate spectral and spatial infor-
mation. We also display the residual information maps of ground truth and results from
all methods in Figure 11. The proposed method has the least residual information in the
fusion results compared with the other six methods in Houston 2018 dataset. The quanti-
tative evaluation scores of fusion results from all methods are listed in Table 5. The pro-
posed method acquires the highest scores in all indexes and outperforms the comparison
methods by a large extent. For co-variance map and RX detection map of results in Hou-
ston 2018 dataset with real HR MSI, please view Figure S5 and Figure S10 in Supplemen-
tary Materials.
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(c) (d)

(e) (f) (8) (h)

Figure 10. Results of Houston 2018 dataset with real multispectral images. (a) results of GSA; (b) results of SFIMHS; (c)
results of GLPHS; (d) results of CNMEF; (e) results of ICCV15; (f) results of HySure; (g) ours results; (h) Ground truth.

(e) () (8)

Figure 11. Residual information of Houston 2018 dataset with real multispectral images. (a) results of GSA; (b) results of
SFIMHS; (c) results of GLPHS; (d) results of CNMF; (e) results of ICCV15; (f) results of HySure; (g) ours results.
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Table 5. Quantitative evaluation results of Houston 2018 dataset with real multispectral images.

PSNR SSIM SAM CC

GSA 24.2119 0.5682 9.4216 0.9995
SFIMHS 22.6962 0.5431 11.0776 0.9996
CNMF 24.4170 0.5633 8.0521 0.9996
ICCV15 18.8145 0.3710 18.2986 0.9961
GLPHS 24.6457 0.5935 8.5538 0.9990
HySure 23.6509 0.5699 8.0248 0.9994
Ours 27.1543 0.6772 7.4625 0.9997

(@)

Figure 12. Enhancement from ground truth. (a) 1st band of ground truth; (b) 1st band of ours; (c) original RGB image.

Scores marked in bold mean the best and those marked with underline mean the second best.

4. Discussion

In our experiment results, we find that the proposed method can even obtain en-
hanced results compared with ground truth images. As is mentioned in reference [17],
out-of-focus blur exists at the extremes of the spectral range because different channels
are acquired individually in a fixed focal length with the tunable filters. An example is
selected from CAVE dataset. The 1st band of hyperspectral image is displayed in Figure
12a. There is no texture information in the 1st band of ground truth image while there is
rich texture information in the corresponding RGB image. However, the proposed method
can inject the spatial information from the RGB image to this band of the result without
largely changing the spectral accuracy, which is shown in Figure 12b.

(b) (c)

5. Conclusions

In this paper, we introduce a novel strategy, which makes use of the strong fitting
ability of deep neural network to LR HSI and HR MSI fusion task and can operate without
training datasets in a self-supervised manner. The spatial information of target is con-
strained by the fake HR HSI obtained by the spatial diffusion and the spectral accuracy is
constrained by LR HSI. A simple deep neural network is used to complete the interpola-
tion process. We conduct several simulation and real-data experiments on some popular
hyperspectral datasets to compare the proposed method with other state-of-the-art meth-
ods. Quantitative and qualitative results confirm the outperformance and higher accuracy
of the proposed methods compared with other fusion methods.

In spite of the great performance of our method, the optimization process costs much
time. In our future work, we will train a deep neural network in a self-supervised manner
with the proposed strategy and process the images in a feed-forward manner. On the
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other hand, we will attempt to further improve the accuracy of fusion results by combin-
ing other strategies such as recurrence.

Supplementary Materials: The following are available online at www.mdpi.com/arti-
cle/10.3390/rs13163226/s1, Figure S1. Curve of spectral difference between selected pixels and
ground truth; Figure S2. co-variance matrix of CAVE dataset experiment with real HR MSI; Figure
S3. co-variance matrix of CAVE dataset experiment with simulated HR MSI; Figure S4. co-variance
matrix of Washington DC dataset experiment with simulated HR MSI; Figure S5. co-variance matrix
of Houston 2018 dataset experiment with real HR MSI; Figure S6. co-variance matrix of Pavia da-
taset experiment with simulation HR MSI; Figure S7. RX map of CAVE dataset experiment with real
HR MSI; Figure S8. RX map of CAVE dataset experiment with simulated HR MSI; Figure S9. RX
map of WashingtonDC dataset experiment with real HR MSI; Figure 510. RX map of Houston 2018
dataset experiment with simulated HR MSI; Figure S11. RX map of Pavia dataset experiment with
simulated HR MSL
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