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Abstract: With the rapid development of aeronautic and deep space exploration technologies, a large
number of high-resolution asteroid spectral data have been gathered, which can provide diagnostic
information for identifying different categories of asteroids as well as their surface composition and
mineralogical properties. However, owing to the noise of observation systems and the ever-changing
external observation environments, the observed asteroid spectral data always contain noise and
outliers exhibiting indivisible pattern characteristics, which will bring great challenges to the precise
classification of asteroids. In order to alleviate the problem and to improve the separability and
classification accuracy for different kinds of asteroids, this paper presents a novel Neighboring
Discriminant Component Analysis (NDCA) model for asteroid spectrum feature learning. The
key motivation is to transform the asteroid spectral data from the observation space into a feature
subspace wherein the negative effects of outliers and noise will be minimized while the key category-
related valuable knowledge in asteroid spectral data can be well explored. The effectiveness of the
proposed NDCA model is verified on real-world asteroid reflectance spectra measured over the
wavelength range from 0.45 to 2.45 µm, and promising classification performance has been achieved
by the NDCA model in combination with different classifier models, such as the nearest neighbor
(NN), support vector machine (SVM) and extreme learning machine (ELM).

Keywords: deep space exploration; asteroid spectrum classification; dimension reduction; feature
learning; classifier learning; extreme learning machine

1. Introduction

Deep space exploration is the focus of space activities around the world, which aims
to explore the mysteries of the universe, search for extraterrestrial life and acquire new
knowledge [1–3]. Planetary science plays an increasingly important role in the high-quality
and sustainable development of deep space exploration [4,5]. Asteroids, as a kind of
special celestial body revolving around the sun, are of great scientific significance for
human beings in studying the origin and evolution of the solar system, exploring the
mineral resources and protecting the safety of the earth due to their large number, different
individual characteristics and special orbits [6–8]. Studies have shown that the thermal
radiation from asteroids mainly depends on its size, shape, albedo, thermal inertia and
roughness of the surface [9,10]. The asteroids with different types (such as the S-type,
V-type, etc.) in different regions (such as the Jupiter trojans, Hungarian group, etc.) show
different spectral characteristics, which establishes the foundations for identifying different
kinds of asteroids via remote spectral observation [11,12]. For example, the near-infrared

Remote Sens. 2021, 13, 3306. https://doi.org/10.3390/rs13163306 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-7741-6352
https://orcid.org/0000-0002-2363-4175
https://doi.org/10.3390/rs13163306
https://doi.org/10.3390/rs13163306
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13163306
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13163306?type=check_update&version=2


Remote Sens. 2021, 13, 3306 2 of 20

data can reveal the diagnostic compositional information, and the salient features at 1 and
2 µm bands can be used to indicate the existence or absence of olivine and pyroxene [12].
The astronomers have developed many remote observation methods for asteroids, such
as spectral and polychromatic photometry, infrared and radio radiation methods [13–16].
Thus, a large volume of asteroid visible and near-infrared spectral data has been collected
with the development of space and ground-based telescope observation technologies,
which induced great progress in the field of asteroid taxonomy through their spectral
characteristics [17–20].

The Eight-Color Asteroid Survey (ECAS) is the most remarkable ground-based as-
teroid observation survey, which gathered the spectrophotometric observations of about
600 large asteroids [14]. However, very few small main-belt asteroids have been observed
due to their faintness. With the appearance of charge-coupled device (CCD), it has been
possible to study the large-scale spectral data of small main-belt asteroids with a diam-
eter less than 1 km [21]. The first phase of the Small Main belt Asteroid Spectroscopic
Survey (SMASSI) was implemented from 1991 to 1993 at the Michigan-Dartmouth-MIT
Observatory [15,20]. The main objective of SMASSI was to measure the spectral properties
for small and medium-sized asteroids, and it primarily focuses on the objects in the inner
main belt aiming to study the correlations between meteorites and asteroids. Based on the
survey, abundant spectral measurements for 316 different asteroids have been collected.
In view of the successes of SMASSI, the second phase of the Small Main-belt Asteroid
Spectroscopic Survey (SMASSII) mainly focused on gathering an even larger and internally
consistent asteroid dataset with spectral observations and reductions, which were carried
out as consistently as possible [20]. Thus, SMASSII has provided a new basis for studying
the composition and structure of the asteroid belt [9].

For asteroid taxonomy, Tholen et al. applied the minimal tree method by a combi-
nation with the principal component analysis (PCA) method in order to classify nearly
600 asteroid spectra from the ECAS [14]. For more comprehensive and accurate classifica-
tion of asteroids, DeMeo et al. developed an extended taxonomy to characterize visible and
near -infrared wavelength spectra [20]. The asteroid spectral data used for the taxonomy
are based on the reflectance spectral characteristics measured in the wavelength range
from 0.45 to 2.45 µm with 379–688 bands. In summary, the dataset was comprised of
371 objects with both visible and near-infrared data. SMASSII dataset provided the most
visible wavelength spectra, and the near-infrared spectral measurements from 0.8 to 2.5 µm
were obtained by using SpeX, the low-resolution to medium-resolution near-infrared
spectrograph and imager at the 3-m NASA IRTF in Mauna Kea, Hawaii [20]. A detailed
description for the dataset is illustrated in Table 1. Based on the dataset, DeMeo et al. have
presented the taxonomy, as well as the method and rationale, for the class definitions of
different kinds of asteroids. Specifically, three main complexes, i.e., S-complex, C-complex
and X-complex, were defined based on some empirical spectral characteristics/features,
such as the spectral curve slope, absorption bands and so on.

Table 1. Description of the asteroid spectral datasets for 371 asteroids with 24 classes.

Class ‘A’ ‘B’ ‘C’ ‘Cb’ ‘Cg’ ‘Cgh’ ‘Ch’ ‘D’
# samples 6 4 13 3 1 10 18 16

Class ‘K’ ‘L’ ‘O’ ‘Q’ ‘R’ ‘S’ ‘Sa’ ‘Sq’
# samples 16 22 1 8 1 144 2 29

Class ‘Sr’ ‘Sv’ ‘T’ ‘V’ ‘X’ ‘Xc’ ‘Xe’ ‘Xk’
# samples 22 2 4 17 4 3 7 18

Nevertheless, the question of how to automatically discover the key category-related
spectral characteristics/features for different kinds of asteroids remains an open prob-
lem [9,22,23]. Meanwhile, owing to the noise of observation systems and the ever-changing
external conditions, the observed spectral data usually contain noise and distortions, which
will cause spectrum mixture due to the random perturbation of electronic observation
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devices. As a result, the observed asteroid spectra data often show indivisible pattern
characteristics [24,25]. Furthermore, the observed spectral data always have wide bands,
such as the visible and near-infrared bands. Thus, the reflectance at one wavelength is
usually correlated with the reflectance of the adjacent wavelengths [26]. Accordingly, the
adjacent spectral bands are usually redundant, and some bands may not contain discrimi-
nant information for asteroid classification. Moreover, the abundant spectral information
will result in high data dimensionality containing useless or even harmful information
and bring about the “curse of dimensionality” problem, i.e., under a fixed and limited
number of training samples, the classification accuracy of spectral data might decrease
when the dimensionality of spectral feature increases [27]. Therefore, it is necessary to
develop effective low-dimensional asteroid spectral feature learning methods and find the
latent key discriminative knowledge for different kinds of asteroids, which will be very
beneficial for the precise classification of asteroids.

Machine learning techniques have developed rapidly in recent years for spectral data
processing and applications, such as the classification and target detection [28–35]. For
example, the classic PCA has been applied to extract meaningful features from the observed
spectral data without using the prior label information. PCA is also useful for asteroid and
meteorite spectra analysis due to the fact that many of the variables, i.e., the reflectance
at different wavelengths, are highly correlated [15,20,36]. Linear discriminant analysis
(LDA) can make full use of the label priors by concurrently minimizing the within-class
scatter and maximizing the between-class scatter in a dimension-reduced subspace [37].
In addition to the above statistics-based methods, some geometry theory-based methods
have also been proposed for the problem of data dimensionality reduction. For example,
the locality preserving projections (LPP) assume that neighboring samples are likely to
share similar labels, and the affinity relationships among samples should be preserved in
subspace learning/dimension reduction [38]. Locality preserving discriminant projections
(LPDP) have also been developed with locality and Fisher criterions, which can be seen as
a combination of LDA and LPP [39,40].

In order to define the class boundaries for asteroid classification, traditional methods
always empirically determine the spectral features by relying on the presence or absence of
specific features, such as the spectral curve slope, absorption wavelengths and so on, which
might be intricate and less reliable. Based on the well labeled asteroid spectral dataset
described in Table 1 the main objective of this paper is to study the pattern characteristics
of different categories of asteroids from the perspective of data-driven machine learning
technique and to develop efficient asteroid spectral feature learning and classification
method in a supervised fashion, as shown in Figure 1. In order to be specific, it is assumed
that not only the specified absorption bands, such as the 1 µm and 2 µm bands but also
all the spectral wavelengths might carry some useful diagnostic information for asteroid
category identification and will contribute to the accurate classification of different kinds
of asteroids. As a result, the spectral data spanning across the visible to near-infrared
wavelengths, i.e., from 0.45 to 2.45 µm, are treated as a whole in order to automatically
discover the key category-related discriminative information for efficient asteroid spectral
feature learning and classification by using supervised data-driven machine learning
methodology. The novelties and contributions of this paper are summarized as below.

(1) Instead of empirically determining the spectral features via the presence or absence
of specific spectral features to define asteroid class boundaries for classification, this
paper presents a novel supervised Neighboring Discriminant Components Analysis
(NDCA) model for discriminative asteroid spectral feature learning by simultaneously
maximizing the neighboring between-class scatter and data variances, minimizing
the neighboring within-class scatter to alleviate the overfitting problem caused by
outliers and enhancing the discrimination and generalization ability of the model.

(2) With the neighboring discrimination learning strategy, the proposed NDCA model
has stronger robustness to abnormal samples and outliers, and the generalization
performance can thus be improved. In addition, the NDCA model transforms the



Remote Sens. 2021, 13, 3306 4 of 20

data from the observation space into a more separable subspace, and the key category-
related knowledge can be well discovered and preserved for different classes of
asteroids with neighboring structure preservation and label prior guidance.

(3) The performance of the proposed NDCA model is verified on real-world asteroid
dataset covering the spectral wavelengths from 0.45 to 2.45 µm by combining with
different baseline classifier models, including the nearest neighbor (NN), support
vector machine (SVM) and extreme learning machine (ELM). In particular, the best
result is achieved by ELM, with a classification accuracy of about 95.19%.
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Figure 1. Overview of the asteroid feature learning and classification scheme. 
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Figure 1. Overview of the asteroid feature learning and classification scheme.

The reminder of this paper is structured as follows. Section 2 introduces related works
on subspace learning/dimension reduction and machine learning classifier models. The
proposed NDCA model is meticulously introduced in Section 3. Section 4 contains the
experimental results and discussions. The final conclusion is given in Section 5.

2. Related Work
2.1. Notations Used in This Paper

In this paper, the observed asteroid visible and near-infrared spectroscopy dataset is
denoted as X = [x1, x2, . . . , xN ] ∈ <D×N comprising N spectral samples with dimensional-
ity D from C classes. Ni is the number of the samples in the i-th class. The label matrix for X
is denoted as T = [t1, t2, . . . , tN ] ∈ <C×N with ti as the label vector for xi. The label of each
sample in X is coded as a C-dimensional vector, and the j-th entry of ti is +1 with the remain-
ing entities as 0, which indicates that sample xi belongs to the j-th category. The basic idea
of linear low-dimensional feature learning, i.e., dimension reduction, is to automatically
learn an optimal transformation matrix P = [p1, p2, . . . , pN ] ∈ <D×d with d < D, which can
project the observed spectral data from the original high D-dimensional observation space
into a lower d-dimensional feature subspace, and obtains the low-dimensional meaningful
features Y ∈ <d×N of X via Y = PTX = [y1, y2, . . . , yN ] ∈ <d×N . Table 2 summarizes the
important notations used in this paper.
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Table 2. Important notations used in this paper.

Notation Meaning Notation Meaning

P Subspace projection matrix T Label matrix
X High-dimensional dataset with dimension D xi, xj Data points with index i and j
Y Lower-dimensional features of X with dimension d N Number of datapoints
C Number of classes in X and Y Ni, i = 1, 2 . . . C Number of data points in i-th class
α Balance parameter in ELM model yi, yj Lower-dimensional features for xi, xj

2.2. Low-Dimensional Feature Learning for Spectral Data

In the process of low-dimensional feature learning, the key data knowledge and
information, such as the discriminative structures, should be preserved and enhanced.
Meanwhile, the noise and redundant information should be removed and suppressed.
Principal component analysis (PCA) is a widely applied unsupervised statistical dimension
reduction and feature learning method, which focuses on maximizing the variance of the
data with significant principal components [33]. A formulation for PCA can be derived by
solving the following least squares problem:

minP

∥∥∥X− PPTX
∥∥∥2

F
s.t. PTP = Id (1)

where ‖•‖2
F means the Frobenius norm of a matrix, and Id is an identity matrix with the

size of d. Formula (1) is equivalent to maximizing the variance of the transformed data as
follows [33].

maxPTr
(

PTXXTP
)

s.t. PTP = Id (2)

Unlike PCA, LDA is a supervised dimension reduction learning method and aims to
maximize the separability between different classes and enhance the compactness within
each class with the guidance of label information as described below [34,41–43]:

maxP
Tr
(
PTSWP

)
Tr
(
PTSBP

) (3)

where SW and SB are, respectively, the within-class and between-class scatter matrices of
data, which are calculated in the following way [34,41–43]:

SW =
C

∑
i=1

Ni

∑
j=1

(
xij − µi

)(
xij − µi

)T
(4)

SB =
C

∑
i=1

Ni

(
µi − µ

)(
µi − µ

)T
(5)

where xij is the j-th sample of the i-th class, and µi and µ are the mean value of the samples
in i-th class and all the samples in X, respectively.

2.3. Classifier Models for Spectral Data Classification

Classifier models, such as NN, SVM [44] and ELM [45–48], have been commonly
used in the contexts of machine learning and pattern recognition communities in order to
recognize and classify spectral data. In particular, the extreme learning machine (ELM) is
a newly developed machine learning paradigm for the generalized single hidden layer
feed forward neural networks and has been widely studied and applied due to its some
unique characteristics, such as the high learning speed, good generalization and universal
approximation abilities [47]. The most noteworthy characteristic for ELM is that the
weights between the input and the hidden layers are randomly generated without further
adjustments. The objective function of ELM is formulated as below:
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minβ
1
2‖β‖

2
F +

α
2 ∑N

i=1 ‖ξi‖2
F

s.t.h(xi)β = ti − ξi, i = 1, 2 . . . N ⇔ Hβ = T− ξ
(6)

where β ∈ <L×C denotes the output weights connecting the hidden layer and the output
layer. ξ = [ξ1,ξ2, . . . ,ξN ]

T ∈ <N×C is the prediction error matrix with respect to the
training data. H ∈ <N×L is the hidden layer output matrix and is computed with the
following method:

H =

 h
(
wT

1 x1 + b1
)
· · · h

(
wT

Lx1 + bL
)

...
. . .

...
h
(
wT

1 xN + b1
)
· · · h

(
wT

LxN + bL
)
 (7)

where h(•) is the activation function in the hidden layer, for example the sigmoid function.
W = [w1, w2, . . . , wL] ∈ <d×L and b = [b1, b2, . . . , bL] ∈ <L refer to the randomly gener-
ated input weights and bias, respectively. The output weight matrix β is used to transform
the data from the L-dimensional hidden layer space into the C-dimensional high-level label
space and is analytically calculated in the following manner.

β∗ =


(

HTH + IL×L
α

)
HTT, i f N ≥ L

HT
(

HHT + IN×N
α

)−1
T, i f N < L

(8)

With the optimal output weight matrix β∗ obtained, the predicted label for a new test
sample z can be computed as follows:

label(z) = h(z)β∗ (9)

where h(z) is the hidden layer output for test sample z.

3. The Proposed Neighboring Discriminant Component Analysis Model: Formulation
and Optimization

The remote observed asteroid spectral data usually contain noise and outliers, which
will mix different categories of asteroids and make them inseparable. In addition, learning
with outliers will easily cause overfitting problem, which will decrease the generalization
ability of machine learning models for testing samples. Thus, the key problem is to
distinguish the outliers and to select the most valuable samples for the learning of low-
dimensional feature subspace and preserve the key discriminative data knowledge for
different classes of asteroids.

To this end, the idea of neighboring learning is introduced to find a neighboring group
of valuable samples from all the training samples as well as the samples in each class, and
the outliers and noised samples are excluded in dimension reduction learning in order to
enhance the generalization ability of the model. As shown in Figure 2, the normalized
asteroid spectral data are firstly inputted as in (a). Secondly, (b) finds the neighboring
samples in each asteroid class in order to characterize the neighboring within-class and
between-class properties of data. Meanwhile, the neighboring samples from all the samples
for neighboring principal components were found to preserve the most valuable data
information as in (c). With the basic principles of (b) and (c), a clearer class boundary can
be found to alleviate the overfitting problem caused by the outliers and noised samples
and enhance the neighboring and discriminative information of data for efficient spectral
feature learning shown in (d). In order to achieve this goal, the neighboring between-
class and within-class scatter matrices need to be calculated in order to characterize the
neighboring discriminative properties of the observed asteroid spectra.
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Neighboring between-class scatter matrix SNb computation: Firstly, calculate the
global centroid mb = (1/N)× ∑N

i=1 xi for all the samples in training dataset X and find
Nb = Rb · N neighboring samples to mb by using between-class neighboring ratio Rb
(0 < Rb < 1). Thus, Nb = [Nb1, Nb2, . . . , Nbc, . . . , NbC] global neighboring samples Xb
can be obtained with Nbc as the number of the neighboring samples in the c-th class for
computing the neighboring between-class scatter matrix. Secondly, compute the local
centroid mbc = (1/Nbc)×∑Nbc

j=1 xbcj for the c-th class, and xbcj is the j-th sample in the c-th
class of the neighboring samples Xb. Finally, the neighboring between-class scatter matrix
is calculated as follows.

SNb =
C

∑
c=1

Nbc(mbc −mb)(mbc −mb)
T (10)

At the same time, the Nb global neighboring samples are used to calculate the covari-
ance matrix as below.

Nb

∑
i=1

xbi(xbi)
T (11)

Neighboring within-class scatter matrix SNw computation: Firstly, calculate the basic
local centroid mwc = (1/Nc) × ∑Nc

i=1 xci for each class of samples, where xci is the i-th
sample in the c-th class of X, and then find the samples group containing Nwc = Rw · Nc
neighboring samples to mwc by using within-class neighboring ratio Rw (0 < Rw < 1) in the
i-th class. Secondly, refine the local centroid of each class using the samples in the obtained
neighboring group of samples Xwc. Finally, compute the neighboring within-class scatter
matrix as follows:

SNw =
C

∑
c=1

Nwc

∑
i=1

(xwci −mwc)(xwci −mwc)
T (12)

where mwc = (1/Nwc) × ∑Nwc
i=1 xwci is the refined centroid of each class based on the

neighboring sample groups Xwc, and xwci is the i-th samples of c-th class samples in the
neighboring group. By comprehensively consider Equations (10)–(12) in a dimension-
reduced subspace, the following optimization problem is formulated.

maxPTr
(

PTSNbP
)
+ γTr

(
PTXbXT

b P
)
− µTr

(
PTSNwP

)
(13)
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The details for deriving Equation (13) based on Equations (10)–(12) are shown in
Appendix A. In Equation (13), γ and µ are the tradeoff parameters for balancing the
corresponding components in the objective function, from which one can observe that, in
the subspace formed by P, the goals of neighboring between-class scatter maximization,
within-class scatter minimization and neighboring principal components preservation can
be simultaneously achieved. Accordingly, the side effects of outliers and noised samples
will be suppressed to the largest extent. As a result, the global and local neighboring
discriminative structures and principal components will be enhanced and preserved by
using the neighboring learning mechanism. Furthermore, optimization problem (13) can
be transformed into the following one by introducing an equality constraint [49]:

maxPTr
(

PTSNbP
)

s.t.µTr
(

PTSNwP
)
− γTr

(
PTXbXT

b P
)
= v (14)

where v is a constant used to ensure a unique solution for model (13). The objective function
for model (14) can be formulated as the following unconstrained one by introducing the
Lagrange multiplier λ.

`(P, λ) = Tr
(

PTSNbP
)
− λ

(
µ · Tr

(
PTSNwP

)
− γTr

(
PTXbXT

b P
)
−v

)
(15)

Then, the partial derivative of the objective function (15) with respect to P is calculated
and set as zero, resulting in the following equations:

∂`(P, λ)

∂P
= SNbP− λ

(
µSNwP− γXbXT

b P
)
= 0 (16)

SNbP = λ
(

µSNw − γXbXT
b

)
P (17)

where the projection matrix P = [p1, p2, . . . , pd] can be acquired, which is composed of the
eigenvectors corresponding to the first d largest eigenvalues λ1, λ2 . . . , λd of the eigenvalue
decomposition problem as described below.(

µSNw − γXbXT
b

)−1
SNbp = λp (18)

Once the above optimal projection matrix P is calculated, the training data are pro-
jected into the subspace using P in order to acquire the low-dimensional discriminative
feature of the observed spectral data. Afterwards, a classifier model is trained using the
dimension-reduced training data. For testing, an asteroid spectral sample with unknown
label is firstly transformed into the subspace by using the optimal projection matrix P and
then classified by the trained classifier model.

4. Experiments
4.1. Preprocessing for the Asteroid Spectral Data

As shown in Table 3, a part of the samples described in Table 1 was used in the study.
The data preprocessing was performed to preliminarily reduce the influences of noise
for ease of classification. Firstly, the original spectral data were filtered and smoothed by
using some data filtering method, such as the moving average filter. Secondly, the discrete
spectrum measurements were fitted using the high-order polynomial method. Thirdly,
the obtained fitted spectral curves within the spectral wavelengths from 0.45 to 2.45 µm
were sampled with certain step interval. Several examples the original spectra, smoothed
spectra and the fitted spectra for different kinds of asteroids are shown in Figures 3–5, from
which one can see that the abnormal noises in some spectral bands were suppressed to a
certain extent.
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Table 3. Description of asteroid spectral datasets used in the experiments.

Class ‘A’ ‘C’ ‘D’ ‘K’ ‘L’ ‘Q’ ‘S’ ‘V’ ‘X’ Total

# Samples 6 45 16 16 22 8 199 17 32 361
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4.2. Experimental Setup and Results

As previously mentioned, the smoothed asteroid spectral curves were fitted using a
high order polynomial, which was furthered sampled in wavelength region from 0.45 to
2.45 µm with an increment step interval of 0.05 µm, obtaining 41 measurements for each
asteroid spectrum. In order to valid the effectiveness of the proposed method, the data
from different classes were firstly approximately equally divided into five groups as shown
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in Figure 6. Afterwards, the five groups of samples from different classes are merged
into 5-folds. Each fold contains five groups of samples with each group from distinct
classes. The data partition of the 5-folds was illustrated in Table 4. Then, the 5-fold
cross validation (CV) strategy was adopted for the performance evaluation of different
methods. Specifically, random 4folds of samples were selected and used as the training
dataset, and the remaining 1 fold of samples was utilized for testing; thus, five experiments
were carried out. A detailed description for the five experiment settings is shown in
Table 5, and the individual and average classification accuracy of different methods on the
five experiments will be reported. All the experiments were conducted under the same
settings and computing platform. Thus, a fair comparison between different methods can
be guaranteed. The proposed NDCA model was compared with several representative
subspace learning methods, including PCA, LDA, LPP and LPDP. Moreover, the sampled
raw asteroid spectral data without feature learning were also included for comparison. In
addition, some baseline classifier models, such as the nearest neighbor (NN), SVM and
ELM, were adopted in the experiments for the classification of the asteroid features.

Table 4. Experimental data partition of 5-folds.

Class Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Total

‘A’ 1 1 1 1 2 6
‘C’ 9 9 9 9 9 45
‘D’ 3 3 3 4 3 16
‘K’ 4 3 3 3 3 16
‘L’ 4 4 4 5 5 22
‘Q’ 2 2 1 2 1 8
‘S’ 40 40 40 40 39 199
‘V’ 3 4 4 3 3 17
‘X’ 6 6 7 6 7 32

# samples 72 72 72 73 72 361

Table 5. Experiment settings with different fold partitions.

Experiments Training Dataset Testing Dataset

Exp. 1 fold 1, fold 2, fold 3 and fold 4 (289 samples in total) fold 5 (72 samples in total)
Exp. 2 fold 1, fold 2, fold 3 and fold 5 (288 samples in total) fold 4 (73 samples in total)
Exp. 3 fold 1, fold 2, fold 4 and fold 5 (289 samples in total) fold 3 (72 samples in total)
Exp. 4 fold 1, fold 3, fold 4 and fold 5 (289 samples in total) fold 2 (72 samples in total)
Exp. 5 fold 2, fold 3, fold 4 and fold 5 (289 samples in total) fold 1 (72 samples in total)
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The performance of different dimension reduction methods under gradually increas-
ing reduced dimension d (from 2 to 41 with an interval of 1) by using different baseline
classifier models, i.e., NN, SVM and ELM, is illustrated in Figures 7–9. In addition, the
highest classification accuracy of different comparative methods under varying dimensions
for each experiment is reported in Tables 6–8, respectively. Based on the experimental
results, all the comparative methods tend to achieve improved classification performance
with the growth of feature dimension. For the proposed NDCA method, the classification
accuracy of NDCA method increases first, then decreases and finally tends to be stable.
This could be due to the fact that too many dimension features might introduce redundant
harmful information and decrease classification performance. It is also notable that the
classification performance of LPP stabilizes first and then increases when the feature dimen-
sion increases to about 33 in the case of SVM and ELM. Meanwhile, when LPP combines
with the NN classifier, the classification performance increases first and, finally, tends to
be stable. Even though LPP can only achieve comparative classification performance in
a relatively high dimensionality, the best classification accuracies for LPP in combination
with NN, SVM and ELM also reached 89.7565%, 92.8158% and 94.4711%, respectively.
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Figure 9. The performance of different dimension reduction methods under different reduced
dimensions using ELM as the classifier.

Generally speaking, the proposed NDAC method can yield the best classification
accuracies of 94.1971%, 93.6377% and 95.1895% with different classifiers. Table 9 further
summarizes the performance improvement of the proposed NDCA method in comparison
with different comparative methods by using different classifiers. Specifically, the maximal
performance improvement of NDCA method is 4.9886% in comparison with raw feature
and the PCA method by using NN as the classifier, and the minimal performance improve-
ment of NDCA method is 0.4521% when comparing with LPDP plus ELM method. In
summary, the average performance improvement in all the experimental settings is 2.045%.
Therefore, the effectiveness and superiority of the proposed NDCA method can be clearly
observed from the perspective of experimental verifications.

In addition, the results show that the raw data without feature learning achieves worse
classification performance among all the comparative methods. In contrast, the proposed
NDCA model can achieve the highest classification accuracy by combining with different
classifier models. Moreover, it should be noted that the highest accuracy can be achieved
when the feature dimension is around nine. Thus, the optimal reduced dimension d can be
searched around the total number of categories for the samples in asteroid spectral dataset.

Table 6. Classification accuracy (%) of different dimension reduction algorithms using NN as
the classifier.

Methods Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Average

Raw 94.4444 84.9315 87.5000 93.0556 86.1111 89.2085
PCA 94.4444 84.9315 87.5000 93.0556 86.1111 89.2085
LDA 95.8333 90.4110 88.8889 97.2222 88.8889 92.2489
LPP 90.2778 87.6712 90.2778 91.6667 88.8889 89.7565

LPDP 95.8333 90.4110 91.6667 97.2222 88.8889 92.8044
NDCA 97.2222 89.0411 93.0556 98.6111 93.0556 94.1971

Table 7. Classification accuracy (%) of different dimension reduction algorithms using SVM as
the classifier.

Methods Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Average

Raw 94.4444 86.3014 93.0556 93.0556 91.6667 91.7047
PCA 94.4444 89.0411 93.0556 93.0556 91.6667 92.2527
LDA 94.4444 90.4110 88.8889 94.4444 91.6667 91.9711
LPP 97.2222 86.3014 90.2778 95.8333 94.4444 92.8158

LPDP 94.4444 90.4110 93.0556 94.4444 91.6667 92.8044
NDCA 94.4444 90.4110 94.4444 95.8333 93.0556 93.6377
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Table 8. Classification accuracy (%) of different dimension reduction algorithms using ELM as
the classifier.

Methods Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Average

Raw 94.8611 89.3151 92.0833 95.6944 91.5278 92.6963
PCA 95.0000 90.4110 92.0833 96.5278 92.3611 93.2766
LDA 95.4167 94.5205 91.8056 97.2222 93.4722 94.4874
LPP 95.8333 90.4110 93.0556 98.6111 94.4444 94.4711

LPDP 95.9722 94.5205 92.6389 97.2222 93.3333 94.7374
NDCA 97.7778 91.7808 93.4722 97.2222 95.6944 95.1895

Table 9. Performance improvement between different pairs methods by using different classifiers.

Classifiers
Comparison Pairs

<Ours, Raw> <Ours, PCA> <Ours, LDA> <Ours, LPP> <Ours, LPDP>

NN ↑ 4.9886% ↑ 4.9886% ↑ 1.9482% ↑ 4.4406% ↑ 1.3927%
SVM ↑ 1.9330% ↑ 1.3850% ↑ 1.6666% ↑ 0.8219% ↑ 0.8333%
ELM ↑ 2.4932% ↑ 1.9129% ↑ 0.7021% ↑ 0.7184% ↑ 0.4521%

Furthermore, the scatter points for the first two dimensions acquired by different meth-
ods are visualized in Figure 10 in order to further intuitively observe the low-dimensional
feature learning performance. In contrast, the scatter points obtained by the comparative
methods have serious data mixture effects between different classes, especially the “K”, “L”
and “Q” classes, which will result in lower classification performance. From Figure 10e,
it can be observed that the scatter points derived by the proposed NDCA model show
better within-class compactness and between-class separation characteristics with relatively
clearer category boundaries. Accordingly, the spectral characteristics within each class and
the discriminant between different classes of asteroids are fully explored and enhanced by
using the proposed NDCA model. By combining with the off-the-shelf classifier models,
the class boundaries between different kinds of asteroid spectral data can be easily found,
which will result in promising generalization and classification performance.
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4.3. Analysis for NDCA Parameters

Apart from the dimensionality of the derived feature subspace d, the proposed NDCA
model has several key other parameters, including the between-class neighboring ratio
Rb, the within-class neighboring ratio Rw and the balance parameters γ and µ in the
model formulation (13). Obviously, different parameter settings will result in fluctuating
performances. Thus, parameter sensitivity analyses were needed to be conducted in
order to show the classification performance variation with respect to these parameters.
Specifically, the four parameters were divided into two groups, i.e., (γ, µ) and (Rw, Rb).
Among them, γ and µ were selected from the candidate parameter set {10g, g = −4, −3, −2,
−1, 0, 1, 2, 3, 4}, while Rw and Rb were selected from the candidate parameter set {0.5, 0.55,
0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1}. As shown in Figures 11–13, one can observe that
the average classification performance change surfaces in sub-figures (a) of Figures 11–13
are smoother and more stable within a wide parameter setting range, which means that the
classification is not very sensitive to the settings of parameter pair (γ, µ). By contrast, the
classification performance changes more acutely with the variations of different parameter
pairs (Rw, Rb).
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4.4. Analysis for ELM Classifier Parameters

The former experiments show that the proposed NDCA method can generally achieve
promising and higher classification accuracy in combination with ELM. As shown in
formulation (6), ELM has two key hyper-parameters, i.e., the number of hidden neurons
L and the balance parameter α. Figure 14 shows that classification performance changes
with different settings of L and α. In general, with the increase in the hidden neurons, the
classification accuracy increases first and then tends to be stable. In the experiments, the
number of hidden neurons L in ELM is empirically set around 9000. As for the trade-off
parameter α, the classification accuracy first improves when α increases from 10−5 to 10
and then degrades when α increases from 10 to 105. In the experiments, α can be set around
10 by which promising performance can be expected.
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From the above experimental results, we observe the following:

(1) The benefits of feature learning for asteroid spectrum classification. In the experi-
ments shown in Tables 6–8, the original observed raw spectral data without feature
learning were directly fed into the classifier models, i.e., NN, SVM and ELM, for
classification. The average classification performances achieved by NN, SVM and
ELM were 89.2085%, 91.7047% and 92.6963%, respectively, which were generally the
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worst performance among all the comparative methods. In contrast, the classification
performance achieved by the same classifier models after feature learning obtained
some improvement. For example, LPP plus NN, SVM and ELM can, respectively,
achieve the improved classification accuracies of 89.7565%, 92.8158% and 94.4711%.
The results can verify the benefits of feature learning for the improvement of asteroid
spectral classification accuracy.

(2) The advantages of the proposed NDCA model. In comparison with several repre-
sentative low-dimensional feature learning methods, the proposed NDCA model
can generally achieve better classification performance by combining with differ-
ent classifier models. Specifically, NDCA plus NN, SVM and ELM can achieve the
highest classification accuracies of 94.1971%, 93.6377% and 95.1895%, respectively.
The improvements are mainly due to the following two aspects. Firstly, the NDCA
model is a supervised dimension reduction method and inherits the merits of the
existing methods, which can fully utilize label knowledge in order to find the key
category-related information of spectral data for discriminative asteroid spectral fea-
ture learning and classification. Secondly, the introduction of neighboring learning
methodology can significantly reduce the side effects of outliers and noised samples
in order to alleviate the overfitting problem, which will enhance the robustness of
the leant low-dimensional features and finally improve the generalization ability and
classification performance of the proposed model in testing.

(3) The superiority of ELM. Three baseline classifier models, including NN, SVM and
ELM, were used in the experiments. In particular, the best results are obtained by
NDCA plus ELM with a classification accuracy of about 95.19%, which is generally
superior to the comparing classifier models. To the best of our knowledge, this
work is the first attempt to apply ELM in asteroid spectrum classification, and very
competitive performance has been achieved, which can provide new application
scenarios and perspectives for ELM community.

(4) Future work discussion. First, future work will consider employing feature selec-
tion methods in order to study the asteroid spectral characteristics. Distinct from
feature learning/extraction methods, which adopts the idea of data transformation,
feature/band selection methods use the idea of selection and aim to automatically
select a small subset of representative spectral bands in order to remove spectral
redundancy while simultaneously preserving the significant spectral knowledge.
Since the feature selection is performed in the original observation space, the specific
selected bands have clearer physical meanings with better interpretability. As a result,
feature/band selection is an important technique for spectral dimensionality reduc-
tion and has room for further improvement. Second, the visualization in Figure 10 for
the scatter points of the first two components acquired by different methods showed
that some classes of asteroid spectra with limited training samples are seriously mixed
and overlapped. One possible reason is that the numbers of training samples from
different classes were unbalanced. For example, the number of samples for ‘S’ class
asteroid is 199, while the ‘A’ class asteroid only has six samples. When classifying
data with complex class distribution, the regular learning algorithm has a natural
tendency to favor the majority class by assuming balanced class distribution or equal
misclassification cost. As a result, the sample imbalance problem will result in learn-
ing bias, and the generalization ability of the obtained model is, thus, restricted. It
is significant to deal with the data imbalanced problem and establish balanced data
distribution by some sampling or algorithmic methods in future works such that the
imbalanced class distribution problem can be well handled and alleviated, which can
improve the accuracy of asteroid spectral data analysis.

5. Conclusions

This paper has introduced a novel supervised NDCA learning model for asteroid
spectral feature learning and classification. The key idea is to distinguish the outliers and
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noised samples in order to alleviate the overfitting problem and to find the significant
category-related features such that the classification performance can be improved. The
goals are technically achieved by simultaneously maximizing the neighboring between-
class scatter, minimizing the within-class scatter and preserving the neighboring principal
components. Experimental results on reflectance spectrum characteristics measured across
the spectral wavelengths ranging from 0.45 to 2.45 µm show the effectiveness of the
proposed model by combining with different baseline classifier models, including NN,
SVM and ELM, and the highest classification accuracy is achieved using the ELM classifier,
which also verifies the superiority of ELM for multiclass classification problem.
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Appendix A

Equation (13) shows the model formulation for the proposed NDCA method and
contains three key components, i.e., Tr

(
PTSNbP

)
, Tr
(

PTXbXT
b P
)

, and Tr
(
PTSNwP

)
. The

three components can be, respectively, derived from Equations (10)–(12). The details are
as follows.

1 Deriving Tr
(
PTSNbP

)
from Equation (10).

Indicate mbc and mb as the local and global centroids in the original space. Similarly,
mbc and mb indicate the local and global centroids in the feature space, which can be
calculated as mbc = PTmbc and mb = PTmb by using the subspace projection matrix P. The
neighboring between-class scatter matrix in feature space is described below.

C

∑
c=1

Nc(mbc −mb)(mbc −mb)
T (A1)

Since mbc = PTmbc and mb = PTmb, the following two formulations can be obtained
via Equation (A1).

C

∑
c=1

Nc

(
PTmbc − PTmb

)(
PTmbc − PTmb

)T
(A2)

PT
C

∑
c=1

Nc(mbc −mb)(mbc −mb)
TP (A3)
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It can be easily observed that ∑C
c=1 Nc(mbc −mb)(mbc −mb)

T is the neighboring
between-class scatter matrix in the original space, which will result in Equation (10) in the
paper as follows.

SNb =
C

∑
c=1

Nc(mbc −mb)(mbc −mb)
T (A4)

Thus, Equation (A3) can be rewritten as below.

PTSNbP (A5)

Furthermore, the trace of Equation (A5) is used for the optimization of subspace
projection matrix P, resulting in the following formulation.

Tr
(

PTSNbP
)

(A6)

Following the above derivations from Equations (A1)–(A6), the component Tr
(
PTSNbP

)
in Equation (13) can be obtained based on Equation (10).

2 Deriving PTXbXT
b P from Equation (11).

Signify xbi as the low dimensional feature of xbi projected by P, i.e., xbi = PTxbi. With
the idea of PCA, the variance of the projected data is maximized as follows.

Nb

∑
i

(
xbi

)(
xbi

)T (A7)

Nb

∑
i

(
PTxbi

)(
PTxbi

)T
(A8)

Equation (A8) can be transformed into the following form.

PT
Nb

∑
i=1

(xbi)(xbi)
TP (A9)

∑Nb
i=1(xbi)(xbi)

T is the covariance matrix of dataset Xb shown in Equation (11) and can
be expressed as XbXT

b . Therefore, Equation (A9) is formulated in the following form.

PTXbXT
b P (A10)

Furthermore, the trace of Equation (A10) is used for optimization as described below.

Tr
(

PTXbXT
b P
)

(A11)

In this way, the component Tr
(

PTXbXT
b P
)

in Equation (13) is obtained based on
Equation (11) via the derivations from Equations (A7)–(A11).

3 Deriving Tr
(
PTSNwP

)
from Equation (12).

Denote xwc and mwc as the samples and within-class centroid for the c-th class in
original space. xwc and mwc denote the samples and within-class centroid for the c-th
class in the feature space, which can be calculated as xwc = PTxwc, mwc = PTmwc using
projection matrix P. The neighboring within-class scatter in feature space is described
as below.

C

∑
c=1

Nwc

∑
i=1

(xwc −mwc)(xwc −mwc)
T (A12)
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Substitute xwc = PTxwc and mwc = PTmwc into Equation (A12),the following two
formulations can be successively obtained.

C

∑
c=1

Nwc

∑
i=1

(
PTxwc − PTmwc

)(
PTxwc − PTmwc

)T
(A13)

PT
C

∑
c=1

Nwc

∑
i=1

(xwc −mwc)(xwc −mwc)
TP (A14)

It can be observed that ∑C
c=1 ∑Nwc

i=1 (xwc −mwc)(xwc −mwc)
T = SNw is the neighboring

within-class scatter matrix in the original space, i.e., Equation (12). Thus, Equation (A14)
can be rewritten as described below.

PTSNwP (A15)

Similarly, the trace of Equation (A15) is used for the optimization of subspace projec-
tion matrix P.

Tr
(

PTSNwP
)

(A16)

According to the above derivations from Equation (A12)–(A16), the component
Tr
(
PTSNwP

)
in Equation (13) can be acquired based on Equation (12). In summary, Equa-

tion (13) was obtained based on Equations (10)–(12) by using the above procedures.
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