
remote sensing  

Article

Quantification of Phycocyanin in Inland Waters through
Remote Measurement of Ratios and Shifts in Reflection
Spectral Peaks

Gibeom Nam 1 , Hyunjoo Shin 1 , Rim Ha 2, Hyunoh Song 1, Jaehyun Yoo 1, Hyuk Lee 1, Sanghyun Park 1,
Taegu Kang 1 and Kyunghyun Kim 1,*

����������
�������

Citation: Nam, G.; Shin, H.; Ha, R.;

Song, H.; Yoo, J.; Lee, H.; Park, S.;

Kang, T.; Kim, K. Quantification of

Phycocyanin in Inland Waters

through Remote Measurement of

Ratios and Shifts in Reflection

Spectral Peaks. Remote Sens. 2021, 13,

3335. https://doi.org/10.3390/

rs13163335

Academic Editor: Ana C. Brito

Received: 21 April 2021

Accepted: 18 August 2021

Published: 23 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 The National Institute of Environmental Research, 42 Hwangyeong-ro, Seo-gu, Incheon 22689, Korea;
gbnam@korea.kr (G.N.); max0216@korea.kr (H.S.); roiz@korea.kr (H.S.); jhyoo0127@korea.kr (J.Y.);
ehyuk72@korea.kr (H.L.); pbaby75@korea.kr (S.P.); taegu98@korea.kr (T.K.)

2 The Seoul Institute of Technology, 37 Maebongsan-ro, Mapo-gu, Seoul 03909, Korea; rim486@sit.re.kr
* Correspondence: matthias@korea.kr; Tel.: +82-32-560-7353

Abstract: This study introduces a semi-empirical algorithm to estimate the extent of the phycocyanin
(PC) concentration in eutrophic freshwater bodies; this is achieved by studying the reflectance
characteristics of the red and near-red spectral regions, especially the shifting of the peak near
700 nm towards longer wavelengths. Spectral measurements in a darkroom environment over the
pure-cultured cyanobacteria Microcystis showed that the shift is proportional to the algal biomass. A
similar proportional trend was found from extensive field measurement data. The data also showed
that the correlation of the magnitude of the shift with the PC concentration was greater than that with
chlorophyll-a. This indicates that the characteristic can be a useful index to quantify cyanobacterial
biomass. Based on these observations, a new PC algorithm was proposed that uses the remote sensing
reflectance of the peak band around 700 nm and the trough band around 620 nm, and the magnitude
of the peak shift near 700 nm. The efficacy of the algorithm was tested with 300 sets of field data,
and the results were compared to select algorithms for the PC concentration prediction. The new
algorithm performed better than the other algorithms with respect to most error indices, especially
the mean relative error, indicating that the algorithm can reduce errors when PC concentrations are
low. The algorithm was also applied to a hyperspectral dataset obtained through aerial imaging,
in order to predict the spatial distribution of the PC concentration in an approximately 86 km long
reach of the Nakdong River.

Keywords: hyperspectral remote sensing; cyanobacteria; phycocyanin; spectral shape algorithm;
water quality

1. Introduction

Cyanobacteria, also known as blue-green algae, are the most common organisms
that form blooms in eutrophic inland waters. Some cyanobacterial species can be highly
harmful to aquatic species and even humans [1–3]. Increasing incidence of cyanobacteria-
dominated blooms owing to the increase in anthropogenic nutrient inputs and perhaps
enhanced by climate warming has become a critical global issue [4,5]. This problem can be
more serious in countries such as the Republic of Korea, which depend heavily on surface
water resources for their drinking water.

Reliable algal monitoring is a key factor for the effective control of cyanobacterial
bloom. Traditional methods to identify cyanobacterial profusion include cell counting
under a microscope, high-pressure liquid chromatography (HPLC), and fluorometric
methods. These methods provide relatively accurate results, but are labor-intensive and
inadequately cover spatio-temporally heterogeneous algal blooms [6,7]. Remote sensing
techniques can be effective in this regard, as they can cover a broad geographical range;
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they also have an advantage with respect to temporal repeatability [8–10]. Remote sensing
is especially suited to monitoring cyanobacteria because of the surface concentration
of the cells and definitive photosynthesizing pigments [11–14]. Among the pigments,
phycocyanin (PC), an accessory pigment of chlorophyll, is unique to cyanobacteria, and
thus has been commonly used as an indicator of cyanobacterial presence in algal remote
sensing [14–16].

There have been many research studies during the past few decades dedicated to
quantifying cyanobacterial biomass in turbid inland waters using remote sensing tech-
niques. The methods used in these studies include base-line algorithms [17], band-
ratio algorithms [13,18], semi-analytical algorithms [11,14], and quasi-analytical algo-
rithms [12,19,20]. Most studies have focused on the wavelengths near 620 nm, the absorp-
tion trough for PC [21], while some algorithms have concentrated on the PC florescence
peak near 650 nm.

Meanwhile, the reflectance in the red-wavelength region, which is less sensitive to
colored dissolved organic matter (CDOM), has been commonly utilized to quantitatively
detect algal biomass [22]. The characteristics of the reflectance spectra near 700 nm have
been well recognized; the height of the peak and its shift towards longer wavelengths are
positively correlated with chlorophyll-a (Chl-a) concentrations [23–27]. These changes in
characteristics are the result of complex relationships among the particulate backscattering
from cellular materials, chlorophyll absorption, and fluorescence in the red-wavelength
band [22]. As algal biomass increases, stronger backscattering results in higher reflectance,
while growing absorption in the vicinity of 685 nm naturally shifts the reflectance peak to
longer wavelengths despite the higher fluorescence at the same wavelengths.

These characteristics of the spectral peak can be particularly useful for estimating
cyanobacterial biomass because backscattering can be greater for cyanobacteria, especially
Microcystis, the most common and problematic cyanobacterial species, owing to their
spherical shape, small size, and the presence of internal gas vacuoles [28,29]. Moreover, ab-
sorption in water dominated by small-sized cyanobacteria can be higher than that in water
dominated by large-sized eukaryotic phytoplankton with the same level of chlorophyll [30].
Despite all the advantages, these characteristics have been utilized merely for the direct
estimation of cyanobacterial biomass. This is because most studies used multispectral data
that only provided select wavelength bands close to the peaks, but not bands at the exact
peak locations.

In this study, a novel algorithm to predict PC concentrations, which is a simple function
of the reflectance band ratio for 620 and 700 nm, and the magnitude of the peak shift, is
suggested. This study utilized the shift in peak near 700 nm for remotely quantifying
cyanobacterial biomass, using hyperspectral data to overcome the aforementioned hurdle
regarding data availability. A functional relationship representing the magnitude of the
peak shift to the PC concentration was formulated from a laboratory culturing experiment.
Specifically, Microcystis aeruginosa, which frequently appears as the dominant species
in the Nakdong River in Korea during summer, was pure-cultured first and spectral
measurements were conducted in a darkroom environment. Its parameters were calibrated
using field monitoring data from a river where M. aeruginosa frequently emerges as the
dominant species during summer. The performance of the suggested algorithm was
evaluated by comparison with select algorithms that have been successful in previous PC
concentration predictions.

2. Materials and Methods
2.1. Study Area and Data

Originating from the central-eastern mountainous region of South Korea, the Nakdong
River flows southward until it meets the South Sea (Figure 1). Within the watershed with a
total area of 23,380 km2, there are two metropolitan cities, one located along the middle
stretch of the river, and the other located further downstream close to the river mouth.
Several small and large industrial complexes are also distributed along the course of the
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river, discharging a significant pollution load into it. The climate of the area within this
watershed is characterized as East-Asian monsoon climate, with frequent heavy rainfall
from late June to mid-July, followed by a long dry period that normally lasts until late
August with high temperatures (maximum of approximately 40 ◦C) during summer. Since
the completion of a major engineering project on the river, during which the river became
deeper and wider thanks to the construction of eight large weirs, the river has frequently
experienced thermal stratification and significant cyanobacterial blooms during dry pe-
riods in summer, leading to the depletion of dissolved oxygen at the river bottom and
supersaturation at the surface. Thus, systematic monitoring is critical for cyanobacterial
bloom control in this area.
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Figure 1. River sections (marked as rectangles) representing the sampling zones along the Nakdong
River (left). An enlarged image of zones E and F is presented (right).

The middle stretch of the Nakdong River was selected as the study site; this site is
divided into reaches, with each reach defined by two adjoining weirs of the eight large
weirs constructed in series along the main channel. There are six sampling zones, each
located in a different river reach between two adjacent weirs, except the last two, which are
located in the same reach (Figure 1). Zone A is located upstream of the Gumi Weir (GM),
while zone B is located upstream of the Chilgok Weir (CG), upstream of which a large
industrial complex discharges its effluent. Zone C is located upstream of the Gangjeong-
Goryeong Weir (GG), and zone D is located upstream of the Dalseong Weir (DS), which
receives significant pollutant loads from the metropolitan city of Daegu. The last two zones,
E and F, are located in the reach upstream of the Hapcheon-Changnyeong Weir (HC).

2.1.1. Field Data Sampling

On-site sampling and radiance measurements were conducted on the six sampling
zones during the cyanobacterial blooming periods (June to November) from 2015 to 2018.
We collected 300 water samples from points distributed among the sampling areas (each
of the sampling points of the sampling zones is shown in Figure S1 in the Supplementary
Data). For each sampling, surface water was collected from the layer extending from the
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surface to a depth of 0.5 m. The sample was divided into several volumes for different
purposes. To measure PC concentrations, the 5 L sub-sample (the volume varied from 5 to
20 L based on the phytoplankton concentration) was concentrated to 125 mL (a detailed
explanation of the pigment extraction is presented in Section 2.1.3); the 2 L and 50 mL
sub-samples were used to determine Chl-a concentration and cell density, respectively. The
50 mL samples were immediately preserved on-site using Lugol’s iodine solution (2% final
concentration), and all samples were stored in a box with ice and transferred to a laboratory
for further analysis.

2.1.2. Remote Sensing Reflectance Retrieval

Reflectance measurements were conducted at each sampling point. The Fieldspec-4
spectroradiometer (ASD Inc., Boulder, CO, USA), which can detect a wavelength range of
350–2500 nm, was used for the reflectance measurements. The downwelling irradiance (Ed)
was measured using a remote cosine receptor (RCR). The water surface and sky radiances
(LT, Lsky) were measured with a bare fiber. The measurement geometries of LT and Lsky
were maintained within a zenith angle of 135◦ and 45◦, respectively. The relative azimuth
angle of the sensors to the sun was maintained at 135◦ to minimize sun glint and shading
interference [31,32].

The remote sensing reflectance Rrs (λ) on the surface water was defined as follows

Rrs(λ) =
Lw(λ)

Ed(λ)

[
sr−1

]
(1)

where Ed(λ) is the downwelling irradiance from the sun and Lw(λ) is the water-leaving
radiance corrected for the sky effect at the surface water. Lw(λ) is calculated from

Lw(λ) = LT(λ)− ρ·LSky(λ) (2)

where LT(λ) is the total upwelling water surface radiance and Lsky(λ) is the sky radiance. ρ
is the skylight correction factor, which is defined as 0.025 according to a field wind speed
of less than 5 m/s [33].

2.1.3. Pigment Extraction

For determination of the PC concentration, the pigment was extracted using the
freezing and thawing technique from [34], and the concentration was calculated using the
equation from [35]. The PC extraction was based on a previously published method [36].
Pre-concentrated samples were homogenized with a 200 W Ultra-Sonicator (SIBATA Inc.,
Seoul, Korea). Thirty milliliters of each homogenized sample was centrifuged at 4000 rpm
and 5 ◦C for 15 min. The supernatants were discarded. Phosphate buffer (5 mL) was
added to the pellets. The samples were frozen at −20 ◦C for 24 h and then thawed at room
temperature to lyse the algal cells. A shaking incubator (JEIOTECH Inc., Daejeon, Korea)
was used to extract the PC pigment at 150 rpm for 15 min. The samples were centrifuged
under the same conditions as above to separate the supernatants. The optical density of the
supernatant samples was measured using a Cary-300 ultraviolet-visible spectrophotometer
(Agilent Inc., Santa Clara, CA, USA). Then, the PC concentration was estimated as follows:

PC
(

mg/m3
)
=

OD620 − (0.474×OD652)

5.34
(3)

where ODw is the optical density at the specific wavelength w.
Chl-a concentrations were analyzed by the standard method for the examination of

water and wastewater [37]. The water samples were filtered using a glass microfiber filter
(Whatman) with a pore size of 0.7 µm. The residues were ground in 9:1 acetone/water and
stored in a −4 ◦C refrigerator for 24 h. After the samples were centrifuged at 500× g and
20 ◦C for 20 min, the optical densities of the sample supernatants were measured using a
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Cary-300 ultraviolet-visible spectrophotometer (Agilent Inc., Santa Clara, CA, USA). The
Chl-a concentration was estimated as follows:

Chl− a
(

mg/m3
)
=

(11.64 X1 − 2.16 X2 + 0.10 X3)×V1

V2
(4)

where X1, X2, and X3 are (OD663 − OD750), (OD645 − OD750), and (OD630 − OD750),
respectively. V1 and V2 represent the supernatant and the volume of filtrate, respectively.

Cell density was measured with a Sedgwick Rafter counting chamber under a magni-
fication of ×200–×400 and calculated as cells/mL.

2.2. Darkroom Spectral Measurements

Spectral measurements were conducted on various concentrations of pure-cultured
cyanobacterial species under darkroom conditions to identify the location shift of the
peak near 700 nm proportional to the amount of cyanobacterial biomass (Figure 2). M.
aeruginosa, the dominant cyanobacterial species during algal bloom periods in the Nakdong
River, was pure-cultured in flasks in CB medium. The cells in exponential phase were
diluted to one million cells per mL (sample VI in Table 1). This was further diluted to
compose the final set of six samples with different biomass levels of the PC concentration
(Table 1). The concentrations of the samples were determined to be relatively high to
consider the very weak illumination in the darkroom; otherwise, the reflectance signal
would be undetectable.
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Table 1. Sample design for spectral measurements in a darkroom setup.

I II III IV V VI

Phycocyanin (mg/m3) 89.1 178.2 890.8 2227.0 3117.8 8908.1

Cell counts (×103 cells/mL) 10 20 100 250 350 1000

The spectral measurements were conducted using the ASD Fieldspec-4 spectrora-
diometer, the same one used for the field measurements, which provides radiance values
within a wavelength range from 500 to 800 nm in 1 nm intervals. Each sample was placed
in a 100 mL beaker, the interior of which was painted matte black to minimize the effects of
extraneous light reflections [38–40]. The light source inside the darkroom consisted of three
35 W halogen lamps, fixed at a 45◦ angle to the water surface of the beaker, minimizing the
shadow of the sensor inside the beaker and light reflectance from the surface of the water.
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The distance between the sensor and beaker was set at 10 cm considering the field of view
(FOV) of the sensor and the diameter of the beaker. The distance between the lamps and
beaker was set at 50 cm.

In the darkroom experiment, the positions of the target and light source were fixed and
there was no effect of weather. Therefore, the reflectance of the sample can be calculated by
the following Equation (5).

Rrs(λ) =
Ls(λ)

Ld(λ)

[
sr−1

]
(5)

where Ls(λ) is the sample radiance and Ld(λ) is the reference radiance from a diffuse plate
with 99% reflectance (SRT-99-100 Reflectance Target, Labsphere, North Sutton, NH, USA).

2.3. Development of the Band-Ratio and Peak-Distance (BRPD) Algorithm

In a typical spectral curve observed for eutrophic inland waters, distinct features
in the red and near-red region related to cyanobacteria include the trough near 620 nm
corresponding to maximum absorption by the PC [13,18,20] and the peak near 700 nm due
to backscattering from cellular particles. The trough can deepen as cyanobacterial biomass
increases not only owing to the increase in absorption by the PC, but also owing to the rise
of the peak adjacent to 650 nm from increased PC fluorescence [41]. Similarly, the peak near
700 nm can rise as a result of stronger backscattering from the increased number of cellular
particles; in addition, the peak tends to shift towards longer wavelengths with increased
cell density, as mentioned previously. Therefore, the amount of cyanobacterial biomass in
the water can be represented by the product of the ratio of the reflectance corresponding to
the peak to that of the trough, and the magnitude of the peak shift, which is incorporated
in the algorithm proposed in this study.

The algorithm adopted the band-ratio of the reflectance at the peak near 700 nm
Rrs(700peak) to the reflectance at the trough near 620 nm Rrs(620trough), which is similar to the
ratio used in the semi-analytical embedded band-ratio algorithm of [14]. The magnitude
of the peak shift is defined as the wavelength difference of the near 700 nm peak of the
current measurement and the minimum wavelength among all the measurements (∆λpeak).

The difference value can be normalized to the maximum difference max
(

∆λpeak

)
, that is,

the wavelength difference of the maximum wavelength and the minimum wavelength of
the 700 nm peak among all the measurements. This normalization was applied to avoid
the index value being determined only by the peak shift term in exponential form because
the value of the peak shift term is sometimes significantly larger than the band ratio term.
Therefore, the algorithm proposed to estimate cyanobacterial biomass can be expressed by
the product of the band-ratio and the peak shift (Equation (6)), which we call the band-ratio
and peak-distance (BRPD) index.

PC ∝
Rrs

(
700peak

)
Rrs

(
620trough

) ×( ∆λpeak

max(∆λpeak)

)a

(6)

where a indicates a power constant that needs to be calibrated with the observed data. In
this study, we used 200 out of 300 field datasets for calibration, and the remaining 100
datasets for validation; the datasets were grouped in such a way that data from high to low
concentrations were evenly distributed between the two groups. The BRPD was developed
as a semi-empirical algorithm using the wavelength associated with algal pigments and
the power constant was empirically determined.

2.4. Model Evaluation

The performance of the proposed algorithm was evaluated by comparing it with the
selected existing algorithms, HU10 [11], MM09 [42], and Si05 [14], which showed relatively
high accuracy in the review by [42]. Their equations are listed in Table 2.
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Table 2. Algorithms from existing studies for estimating the PC concentration used for comparison
with the proposed algorithm.

HU10 (Hunter et al., 2010) PC ∝
[
R−1

rs (λ615)− R−1
rs (λ600)

]
× Rrs(λ725)

MM09 (Ogashawara et al., 2013) PC ∝ Rrs(λ724)/Rrs(λ600)

Si05 (Simis et al., 2005) PC ∝ Rrs(λ709)/Rrs(λ620)

Note: These indices are ranked as the three most accurate among the PC algorithms in [42].

The same calibration and validation procedures were applied to the four algorithms,
including the BRPD algorithm proposed in this study. The calibration for each algorithm
utilized the same calibration dataset for model development through linear regression
analysis between the index and PC concentration. Then, each algorithm was validated
with the same validation dataset.

2.5. Error Analysis

To compare the estimated and observed values, we used R square, mean relative
error (MRE), root-mean-square error (RMSE), and mean absolute error (MAE). They were
calculated as follows:

R2 = 1− ∑n
i=1(Yi − Ei)

2

∑n
i=1
(
Yi −Y

)2 (7)

RMSE =

√
1
n

n

∑
i=1

(Yi − Ei)
2 (8)

MAE =
1
n

n

∑
i=1
|Yi − Ei| (9)

MRE =
1
n

n

∑
i=1

|Yi − Ei|
Yi

(10)

where Yi and Ei denote the observed and estimated values, respectively, for the ith mea-
surement of the PC concentration. Y is the mean of the observed values. |Yi − Ei|/Yi
in Equation (10) is the relative error. We used these multiple error statistics because they
have different characteristics. Among the four statistics, RMSE and MAE are absolute
measures of the goodness of fit, while R square and MRE are relative measures. Moreover,
because R square and RMSE are calculated using the square of error, they tend to give
larger penalization to big prediction errors, while MRE does this to small observed values.
MAE deals with all errors equivalently.

2.6. BRPD Application to Aerial Hyperspectral Images

The proposed BRPD algorithm was applied to the data obtained through airborne
hyperspectral remote sensing from an approximately 86 km long reach in the mid to
downstream part of the Nakdong River to assess its applicability for remote monitoring of
cyanobacteria. The aerial sensing operation was conducted on 11 August 2016 using the
Eagle hyperspectral image sensor (Specim Inc., Oulu, Finland) mounted under a Cessna
aircraft. As sufficient numbers of water sample datasets, whose collection times matched
exactly with the aerial sensing times, were not available, the estimated values of the PC
concentration using the airborne hyperspectral image could not be evaluated with the
point sampling data. Therefore, we decided to compare the overall distribution of the PC
concentration to the corresponding red-green-blue (RGB) images from the digital mapping
camera installed together with the image sensor. The ATCOR-4 was used to perform
atmospheric correction of the images [43], and the BRPD algorithm was applied after
masking the river portion.
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3. Results and Discussion
3.1. Spectral Characteristics Observed from Darkroom Experiment

The results of the reflectance spectral measurements in the darkroom experiment
on the M. aeruginosa samples, which cover a range of biomasses representing various
PC concentrations, are shown in Figure 3. The overall reflectance spectra showed an
increasing tendency as the PC concentration increased. The authors of [44] indicated that
spectroscopy of a water body dominated by algae shows two peaks and two troughs
in the 600–750 nm range. As peaks and troughs are clearly observed in the results of
the darkroom experiment, the experimental environment was considered suitable. The
first trough near 620 nm and the second one near 675 nm represent the PC and Chl-a
pigment absorptions, respectively [18,41,45–47]. The first peak near 650 nm appears due
to the relative reflectance trough from the two pigments [18]. The second peak appears
near 700 nm, representing the reflectance from scattering by suspended matter including
algae [18,48]. The peak near 700 nm showed an interesting characteristic of migrating in the
direction of the long wavelength with respect to the increase in PC concentration, while the
other peaks showed very little migration (within 5 nm) [23–27]. From the results, Equation
(6) was formulated by selecting the best functional relationship to the experimental data
among several different candidate forms (Figure S2).
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Figure 3. Spectral measurement results from the darkroom experiment. The reflectance spectra of
samples with six different PC levels show a strong trend of peak shift being proportional to PC
concentration in cultured Microcystis aeruginosa.

3.2. Results of BRPD Application to Field Data

The descriptive statistics for the PC and Chl-a data are shown in Table S1, including the
mean, maximum, and minimum. The PC concentration ranged from 0.1 to 333.7 mg/m3,
with a mean of 25.8 mg/m3. The highest concentrations of PC and Chl-a were measured
on 25 August 2016 at the Hapcheon-Changnyeong area, with concentrations of 333.7 and
243.9 mg/m3, respectively.

Figure 4 shows the relationship between the near 700 nm peak shifts (∆λpeak) and
the PC or Chl-a concentrations using all 300 datasets. The peak shift showed a strong
correlation with PC concentration (R2 = 0.68) and a relatively weak correlation with Chl-a
concentration (R2 = 0.48). The reasons for this are as follows: (1) the component that has the
maximum contribution to the peak is the backscattering from cellular particles, which can
be greater for small-sized cyanobacteria such as Microcystis than for large-sized eukaryotic
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phytoplankton species belonging to Chlorophyceae and Bacillariophyceae [30]; and (2) dis-
tinctive characteristics of Microcystis such as its spherical shape and presence of internal
gas vacuoles increase the backscattering intensity [28,29]. Microcystis is the dominating
species in the Nakdong River and can represent over 90% of the total algal composition
(cell counts) during summer [49]. Therefore, the trend indicated in Figure 4 implies that
peak shift can be a suitable index for quantifying the PC concentration, especially when
Microcystis is the dominating species.
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a concentration.

Figure 5 shows the application of the algorithms using scatter plots of the estimated
versus measured PC concentrations. The results show that BRPD performed better than the
other methods with respect to all error indices, except the RMSE value, which was slightly
higher than that for Si05. Particularly, the MRE of the proposed method was 177.3%, which
was much lower than the 635.1% of Hu10, the second best method in terms of MRE. A
similar tendency was observed in the results using the 100 validation datasets (Figure 6).
Again, BRPD was found to be better to Hu10 and MM09 with respect to all the error indices.
The BRPD method showed a similar performance to Si05 in terms of RMSE and MAE, but
showed a much lower MRE value.

The MRE is sensitive to the accuracy of low data values because they render the
denominator of the MRE expression to be small; hence, the MRE can be large even with
small variations in the numerator. Thus, the results indicate relatively high accuracy of
BRPD for estimating PC concentration values when these values are low. The comparatively
high accuracy of the method in regions of low PC concentrations can be confirmed by
examining the variation in the relative error across the range of PC concentrations. In
Figure 7, although the relative errors (log %) corresponding to the relatively low estimated
PC concentrations were high with BRPD, they were lower than the relative errors for the
other algorithms. Unlike the other algorithms, applying BRPD produced a relative error of
less than 1 in the low PC concentration ranges. We inferred that such an improvement was
caused by the exponential component of the equation in the BRPD algorithm, which clearly
differentiates between high and low PC concentrations based on the distance at which the
peak appears. Most algorithms used for estimating PC concentrations are known to have
low accuracy at concentrations below 50 mg/m3 [12]. The authors of [14] indicated that,
when the PC concentration is below 15 mg/m3, the results can be overestimated by 2.5 to
15 times.



Remote Sens. 2021, 13, 3335 10 of 16
Remote Sens. 2021, 13, 3335 11 of 18 
 

 

 
Figure 5. Results of applying four different algorithms to the calibration datasets. BRPD per-
formed better than the other three methods in all of the error indices except RMSE, which was 
slightly higher than the Si05 value. 

 

Figure 5. Results of applying four different algorithms to the calibration datasets. BRPD performed
better than the other three methods in all of the error indices except RMSE, which was slightly higher
than the Si05 value.

Remote Sens. 2021, 13, 3335 11 of 18 
 

 

 
Figure 5. Results of applying four different algorithms to the calibration datasets. BRPD per-
formed better than the other three methods in all of the error indices except RMSE, which was 
slightly higher than the Si05 value. 

 
Figure 6. Results obtained by applying four different algorithms to the validation datasets. Similar
to the results of the calibration case, BRPD performed better than the other three methods in all of
the error indices except the RMSE and MAE values, which were slightly higher than those of Si05.



Remote Sens. 2021, 13, 3335 11 of 16

Remote Sens. 2021, 13, 3335 12 of 18 
 

 

Figure 6. Results obtained by applying four different algorithms to the validation datasets. Similar 
to the results of the calibration case, BRPD performed better than the other three methods in all of 
the error indices except the RMSE and MAE values, which were slightly higher than those of Si05. 

The MRE is sensitive to the accuracy of low data values because they render the de-
nominator of the MRE expression to be small; hence, the MRE can be large even with small 
variations in the numerator. Thus, the results indicate relatively high accuracy of BRPD 
for estimating PC concentration values when these values are low. The comparatively 
high accuracy of the method in regions of low PC concentrations can be confirmed by 
examining the variation in the relative error across the range of PC concentrations. In Fig-
ure 7, although the relative errors (log %) corresponding to the relatively low estimated 
PC concentrations were high with BRPD, they were lower than the relative errors for the 
other algorithms. Unlike the other algorithms, applying BRPD produced a relative error 
of less than 1 in the low PC concentration ranges. We inferred that such an improvement 
was caused by the exponential component of the equation in the BRPD algorithm, which 
clearly differentiates between high and low PC concentrations based on the distance at 
which the peak appears. Most algorithms used for estimating PC concentrations are 
known to have low accuracy at concentrations below 50 mg/m3 [12]. The authors of [14] 
indicated that, when the PC concentration is below 15 mg/m3, the results can be overesti-
mated by 2.5 to 15 times. 

 
Figure 7. Comparison of relative error (log %) for each algorithm used in this study. Blue circles, 
red squares, red triangles, and green circles represent errors from the BRPD, Hu10, MM09, and 
Si05 algorithms, respectively. 

It may be argued that the improvement in the model fit by BRPD may benefit from 
using a wavelength-sliding algorithm that is only possible because of the hyperspectral 
nature of the data. This could be true because the exact wavelength of the trough near 620 
nm and the peak near 700 nm could be selected for the band ratio in Equation (6), while 
the wavelengths of the other algorithms were fixed as in Table 2. However, some portion 
of the improvement should be attributed to the peak shift part in the equation. Thus, the 
effect of considering peak distance on the prediction accuracy was further explored by 
regression of only the band-ratio part of BRPD, and applying the same 200 datasets used 
for calibration (Figure 8). Regression was carried out to achieve the best fit. Compared 
with the results of BRPD in Figure 5, all other error indices were worse; the change in MRE 
was more prominent, being three times greater than that of BRPD. This may be a clear 
indication that including the shift of the reflectance peak in the algorithm can improve 
prediction accuracy, especially for low PC concentrations. 

Figure 7. Comparison of relative error (log %) for each algorithm used in this study. Blue circles, red squares, red triangles,
and green circles represent errors from the BRPD, Hu10, MM09, and Si05 algorithms, respectively.

It may be argued that the improvement in the model fit by BRPD may benefit from
using a wavelength-sliding algorithm that is only possible because of the hyperspectral
nature of the data. This could be true because the exact wavelength of the trough near
620 nm and the peak near 700 nm could be selected for the band ratio in Equation (6), while
the wavelengths of the other algorithms were fixed as in Table 2. However, some portion
of the improvement should be attributed to the peak shift part in the equation. Thus, the
effect of considering peak distance on the prediction accuracy was further explored by
regression of only the band-ratio part of BRPD, and applying the same 200 datasets used
for calibration (Figure 8). Regression was carried out to achieve the best fit. Compared
with the results of BRPD in Figure 5, all other error indices were worse; the change in MRE
was more prominent, being three times greater than that of BRPD. This may be a clear
indication that including the shift of the reflectance peak in the algorithm can improve
prediction accuracy, especially for low PC concentrations.
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3.3. Application of Hyperspectral Images from Remote Sensing

Figure 9 shows that high PC concentrations were estimated in some parts of the river
that are recognized as areas where frequent blooming occurs [50–52]. The distribution
pattern of the PC concentrations in the areas (I) and (II) marked in the figure closely matches
the distribution of algal blooms in the RGB images. High PC concentrations were found
over the entire area owing to an influx of nutrients from tributaries as well as channels
originating from agricultural fields at the end of the rainy season. The image of the mid- to
downstream part of the Nakdong River indicated as area (II) in Figure 10 shows areas of
high PC concentrations, and is an excellent record of wind-generated algal waves on the
water surface.
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Figure 10. Comparison of estimated PC concentrations (right) and corresponding RGB images (left)
at selected areas along the Nakdong River.

4. Conclusions

A new algorithm for the estimation of PC concentrations in eutrophic freshwater
bodies, which utilizes the characteristics of reflectance spectra in red and near-red regions
corresponding to algal blooms, was proposed. Among the characteristics, the magnitude
of the forward shift of the peak near 700 nm toward longer wavelengths proportional to
the cyanobacterial biomass present was considered to lead to a more accurate estimate
of the PC concentration. The shift in the peak showed a strong correlation with the PC
concentration and a relatively weak correlation with the Chl-a concentration, suggesting
that it can be a good indicator of PC concentration. The proposed algorithm performed
better than the other PC estimation algorithms selected for comparison, with the peak shift
component contributing significantly to the overall accuracy of the algorithm.

As hyperspectral image data become more easily available, utilizing this new tech-
nology to predict spatial distributions and concentrations of cyanobacteria with increased
accuracy will become more widespread. The results of this study show that hyperspectral
image data including information on the peak shift provide many opportunities to utilize
detailed information on spectral characteristics corresponding to cyanobacterial blooms in
developing algorithms that can predict their distribution and concentration with greater
accuracy. However, the drawback of this algorithm, as is the case with some other PC esti-
mation algorithms, is that its applicability may be limited to situations where cyanobacteria
are the dominant algal class. Thus, future studies should also focus on the categorization
of algal species using hyperspectral observations to overcome this drawback.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/rs13163335/s1, Figure S1: Map of sampling points in zones A–F. The sky blue, light green,
yellow, and red dots are sampling points in 2015, 2016, 2017, and 2018, respectively. Figure S2. Plot of
the predicted values by candidate equations versus measured data from the lab experiment: 1© band
ratio of 700peak/620trough, 2© distance of peak shifting, 3© band ratio × distance, 4© power function
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of distance, and 5© band ratio × power function of distance. As seen in the figure, model 5©, which is
identical to Equation (6), shows the best fit (although the 700peak/620trough model (green dots) also
showed a good fit, but was slightly worse). Note that, although samples of six different concentrations
of phycocyanin were tested in the experiment (Table 1), we used only four of these concentrations
above; for the other two concentrations, the reflectance signals were too weak to distinguish peaks
or troughs. Table S1: Descriptive statistics of phycocyanin and chlorophyll-a concentrations for the
samples collected in the Nakdong River from 2015 to 2018.
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