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Abstract: The spatial and temporal monitoring of soil organic carbon (SOC), and other soil prop-
erties related to soil erosion, is extremely important, both from the environmental and economic
perspectives. Sentinel-2 (S2) and Landsat-8 (L8) time series increase the probability to observe bare
soil fields in croplands, and thus, monitor soil properties over large regions. In this regard, this work
suggests an automated pixel-based approach to select only pure soil pixels in S2 and L8 time series,
and to make a synthetic bare soil image (SBSI). The SBSIs and the soil properties measured in the
framework of the European LUCAS survey were used to calibrate SOC, clay, and CaCO3 prediction
models. The results highlight a high correlation between laboratory soil spectra and the SBSIs median
spectra, especially for the SBSI obtained by a three-year S2 collection, which provides satisfactory
results in terms of SOC prediction accuracy (RPD: 1.74). The comparison between S2 and L8 results
demonstrated the higher capability of the S2 sensor in terms of SOC prediction accuracy, mainly
due to the greater spatial resolution of the bands in the visible region. Whereas, neither S2 nor L8
could accurately predict the clay and CaCO3 content. This is because of the low spectral and spatial
resolution of their SWIR bands that prevent the exploitation of the narrow spectral features related to
these two soil attributes. The results of this study prove that large S2 time series can estimate and
monitor SOC in croplands using an automated pixel-based approach that selects pure soil pixels and
retrieves reliable synthetic soil spectra.

Keywords: time series; multi-temporal; mosaicking; bare soil; SOC; clay; CaCO3; LUCAS; Sentinel-2;
Landsat-8

1. Introduction

Soil organic matter loss, and consequently soil erosion, is one of the main processes
of land degradation in croplands, often due to increasingly intensive agricultural man-
agement [1,2]. In this regard, The Voluntary Guidelines for Sustainable Soil Management
published by Intergovernmental Technical Panel on Soils [3] indicated the loss of soil or-
ganic carbon (SOC) as one of the main causes of soil degradation and lay down a set of good
practices to enhance the soil organic matter content and improve the soil fertility. These
practices will be used as guidelines for cross-compliance rules for Common Agricultural
Policy (CAP) related to the good agricultural and environmental condition (GAEC) of the
land for the period post-2020 [4].

Other soil properties like topsoil clay, sand, and calcium carbonate (CaCO3) can be
used to quantify the soil vulnerability in terms of erosion [5,6]. Consequently, spatial and
temporal monitoring of SOC and other soil properties related to soil erosion is extremely
important, both from the environmental and economic perspective for sustainable soil
management within the European Green Deal, that aims to reduce the misuse of fertilizers,
and at the same time, to increase the carbon stock in the soil [7,8].

The physical link between soil properties and the electromagnetic spectrum in the
optical spectral domain is well-known [9], and widely exploited in soil spectroscopy for
soil properties estimation and monitoring [10]. This is due to chemical components or
chromophores interacting with visible and infrared radiations and showing well-defined
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absorption features [11]. Clay minerals have typical spectral features in the short waves
infrared region (SWIR) between 2170 and 2360 nm, corresponding to metal-OH bends and
O-H stretch [12,13]. Calcium carbonate (CaCO3) has an absorption peak in the SWIR region
around 2348 nm corresponding to CO3 overtone vibrations [14]. Due to the heterogeneity
of the organic matter components, SOC has not spectral features in narrow spectral regions;
however, it shows a relationship with electromagnetic radiation both in the visible region
around 450, 590, and 664 nm [9], in the near-infrared (NIR) and SWIR region, principally
due to the two main organic compounds that affect the reflectance: Lignin (between
1600 and 1800 nm and around 2100 nm) and cellulose (around 2100) [9]. Laboratory spectra
usually cover the whole optical domain (400–2500 nm) with a high spectral resolution
(≤2 nm)—this fully exploits the narrow spectral features linked to soil variables. However,
the strength of the relationships between spectral features and soil properties decreases
from laboratory to satellite imaging spectroscopy [11]. This is due to the combination of
several factors linked with the sensor characteristic (range and spectral resolution) and the
distance between the sensor and target surface (atmospheric disturbance, signal quality,
spectral and spatial resolution), and the soil surface conditions (moisture, roughness,
vegetation residues). Despite this, many recent scientific papers demonstrated the capability
of the Copernicus Sentinel-2 Multi-Spectral Instrument (MSI) (hereinafter referred to as S2)
and NASA Landsat-8 Operational Land Imager (OLI) (hereinafter referred to as L8) optical
data for soil properties prediction and mapping [15–21], obtaining encouraging results,
especially for the SOC content.

The short revisit time of the S2 (five days) and L8 (sixteen days) constellations increases
the likelihood to observe cloud-free images and a large number of bare soil fields, this is
especially important in the soil imaging spectroscopy context, for the narrow time window
in which we can find bare soil in croplands. In this regard, the collection of multi-temporal
data for the same area can increase the mapped area by mosaicking several images. The
mosaicking process makes a composite or synthetic bare soil image [22–26] that can also
be useful to plan a soil sampling that considers all the soil variability in a certain region
exploiting the link between spectral characteristics and soil properties [27]. However, in
case of non-availability of a robust IT infrastructure with large storage capability and high
computing power, a cloud platform that offers catalogs of satellite imagery and geospatial
analysis capabilities by an Application Programming Interface (API) is necessary to analyze
this plethora of available data within a large time series in a most effective way. In this
regard, Google Earth Engine [28] was successfully employed for obtaining a bare Earth’s
surface spectra using L8 multi-temporal data [29].

However, one of the main challenges for automating the soil properties mapping
and monitoring from multispectral satellite data is the minimization of disturbing factors,
such as green and dry vegetation, roughness, and soil moisture. These disturbing factors
influence the interpretation of the spectra acquired by remote sensing, especially for images
with low or medium spatial resolution, such as those provided by S2 and L8, which involve
the presence of mixed pixels, i.e., pixels containing more than one distinct material, thus
not only soil or vegetation [17,20,23]. To attract new users and exploit the benefits of the
S2 and L8 data, we need to clearly define the conditions under which prediction models
can be developed and applied to produce reliable soil properties maps over a large area.
This includes developing algorithms for detecting bare soils in croplands excluding mixed
spectra and minimizing the disturbing factors. Ideally, the soil properties model should be
built and applied using the spectral information derived from pixels on bare soil without
green or dry vegetation and mimicking the conditions of a dry soil sample with a reduced
roughness (e.g., soil in seedbed condition) [17,20,23].

This work suggests an automated pixel-based approach to select only exposed soil
pixels (pure soil pixels) not strongly affected by disturbing factors in the large satellite
image collection. The proposed method was applied both to the S2 and L8 time series
available in the GEE platform with the aim of investigating how the time interval width
affects the accuracy of the SOC, clay, and CaCO3 estimation models. For these purposes,
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the SBSIs were obtained using images acquired in three different time windows (1, 2, and
3 years), both for S2 and L8 images, and the soil samples collected for the 2015 LUCAS
topsoil survey were used to build multivariate regression models.

2. Materials and Methods
2.1. LUCAS Topsoil Dataset

In the framework of the Land Use and Coverage Area frame Survey (LUCAS), a
topsoil survey is carried out in the Member States of the European Union (EU) every
three years to collect statistical information on soil properties. The 2015 LUCAS database
includes soil samples for all the 28 countries of the EU, and it was carried out over 90%
of the locations sampled in the earlier surveys (2009 and 2012), while the remaining 10%,
5656 samples, were collected over new locations [30].

All the soil samples from the LUCAS surveys in 2009, 2012, and 2015 were collected
following the same standard protocol that entails the collection of a composite sample
(about 500 g and 20 cm depth) taken by a spade in five points: The first point corresponds to
the point location and the other four at 2 m distance following the cardinal directions [31].

Thirteen chemical and physical parameters were measured in the laboratory for each
soil samples from the 2015 LUCAS topsoil database, by the ISO methods (clay [32]; organic
carbon [33]; calcium carbonate [34]).

The spectra were acquired with an XDS Rapid Content Analyzer (FOSS NIR Systems
Inc., Laurel, MD, USA) spectrometer between 400 and 2500 nm with 2 nm resolution
following the protocol described by [35].

To link the most recent and available LUCAS soil data with satellite images, and to
avoid exceeding the user memory limit imposed by GEE, some regions across Europe
were selected, where 815 soil samples were collected in new locations in croplands during
the 2015 LUCAS survey: Great Britain and Ireland, Central Europe (Germany, Austria,
Czech Republic, Slovakia, Hungary, and Poland), Baltic states (Latvia, Lithuania, Estonia),
Western Europe (Great Britain, Ireland, Belgium, Netherlands, Luxembourg, and South
France), and Southern Europe (Italy and Malta) (Figure 1).
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2.2. Satellite Multi-Temporal Series to Select Bare Soil

Synthetic bare soil images (SBSI) were obtained in the GEE environment by a pixel-
based multi-temporal analysis using S2 level 2A (COPERNICUS/S2_SR in GEE) and L8
level 2, collection 2, Tier 1 (LANDSAT/LC08/C02/T1_L2 in GEE) images collections.

Different time intervals were investigated for the satellite collections:

• From May 2018 to May 2021, both for S2 and L8: hereinafter referred to as S2_3Y and L8_3Y
• From May 2019 to May 2021, both for S2 and L8: hereinafter referred to as S2_2Y and L8_2Y
• From May 2020 to May 2021 both for S2 and L8: hereinafter referred to as S2_1Y and L8_1Y
• From May 2015 to May 2016 just for L8: hereinafter referred to as L8_1Y_L.

The 1Y_L collection was added to have satellite data close to the LUCAS survey
period—unfortunately S2 was not yet available.

The selection of the bare soil pixels for each image of the collection was carried out in
the selected regions concerned by the new sampling location of the 2015 LUCAS survey.

This selection entails applying a cloud mask removing pixel affected by clouds and
clouds’ shadows using the products included in the two satellite collections. The ‘QA60
Sentinel-2 bitmask band with cloud mask information was used to mask cirrus and opaque
clouds, and the ‘MSK_CLDPRB’ and ‘MSK_SNWPRB’ bands were used to remove cloudy
and snowy pixels, respectively. The Pixel Quality Assessment Band provide by L8 was
used to mask cloudy pixels.

After that, the Normalized Difference Vegetation Index (NDVI) and Normalized Burn
Ratio 2 (NBR2) Equation (1) indices were computed for the remaining pixels to detect green
and dry vegetation, respectively,

NBR2 =
SWIR1 − SWIR2

SWIR1 + SWIR2
. (1)

The SWIR1 band corresponds to B6 for L8 and B11 for S2, while SWIR2 to B7 for L8
and B12 for S2 (Table 1). The NBR2 index can also remove pixels interested by high soil
moisture content that can affect the soil spectrum shape [22]. Only the pixels which comply
with the following conditions: No clouds, NDVI < 0.35, NBR2 < 0.125 were kept. The
NDVI and NBR2 thresholds were set according to a conservative approach that aims to
find a compromise between the size of the dataset and the estimation accuracy [17,23]. For
each geographical location represented by the center of the satellite pixel, we could get
several dates complying with the above-mentioned conditions. Therefore, we computed
the median value for each band, but only considering the locations that respect all the
conditions at least three times within the time series (Figure 2). The selected bands for S2
and L8 data are listed in Table 1.

The final output is a synthetic bare soil image (SBSI) for each time interval both for S2
(3Y, 2Y, 1Y) and L8 (3Y, 2Y, 1Y, 1Y_L).

To demonstrate the role of the time series to increase the SBSIs area and their reliability
for soil properties mapping, four representative areas of interest from the 2015 LUCAS
survey were selected: Baltic states, Ireland, South Italy, and East Germany-West Poland
(Figure 1). For each sampling location in these areas, we counted how many times the
corresponding pixel complying with the conditions described above—in other words, the
bare soil frequency within a time interval for the same point.
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Table 1. The Landsat-8 Operational Land Imager (OLI) and Sentinel-2 Multi-Spectral Instrument
(MSI) bands selected for the synthetic bare soil image.

Band Central Wavelength nm Bandwidth nm Resolution m

Landsat-8/OLI B2 483 60 30
B3 560 57 30
B4 660 37 30
B5 865 28 30
B6 1650 85 30
B7 2220 187 30

Sentinel-2/MSI B2 490 65 10
B3 560 35 10
B4 665 30 10
B5 705 15 20
B6 740 15 20
B7 783 20 20
B8 842 115 10
B8a 865 20 20
B11 1610 90 20
B12 2190 180 20
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2.3. Soil Properties Estimation Models

The SOC, clay, and CaCO3 content provided by the 2015 LUCAS survey and the
median spectrum of the SBSIs were used to build the prediction models using the Cubist
algorithm. The Cubist is a predicted-oriented regression algorithm with a unique linear
regression model at each node defined by a rule. The rules concern the predictors, here
the reflectance values of the satellite bands, defining a subset at each node that makes a
multi-way tree structure [36]. The Cubist [37] and caret R packages were used to tune the
models to find the best number of neighbors and committees (boosting iterations) that
minimizes the 10-fold cross-validation root mean square error (RMSE). To compare the
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accuracy obtained in this work for the three soil properties and with other results in the
literature, the ratio of performance to deviation (RPD) Equation (2), were computed,

RPD =
Std

RMSE
(2)

where std is the standard deviation of the observed values.
The LUCAS soil properties values were also used with laboratory spectra to build

estimation models that can be used as the reference test, since laboratory spectral data
should represent the best condition for soil properties estimation, where there are no
disturbing effects, due to the distance between sensor and target and the roughness is
negligible. In this case, due to the high number of predictors (bands), the well-known
partial least squares regression (PLSR) algorithm was also tested [38], which has proved to
be powerful for hyperspectral data in soil spectroscopy [39,40]. Cubist and PLSR models
were tested for all satellite and laboratory datasets, and only the best result of the two
was reported. Moreover, the laboratory spectra were resampled using Gaussian models,
according to the L8 (Lab_L8) and S2 (Lab_S2) central wavelengths and bandwidths listed
in Table 1.

3. Results
3.1. Bare Soil Selection

Obviously, the larger the time interval, higher the number of bare soil pixels in all the
selected regions (Table 2). The 3Y collection generally avoids very low bare soil frequency,
especially for the S2 time series. The highest average values were detected in South Italy
and East Germany–West Poland, where the S2 time series provides more bare soil pixels
than the L8 collection. The lowest number of bare soil pixels was obtained in the Ireland
region, mainly due to the high cloudiness.

Table 2. Frequency of bare soil in four representative areas interested by 2015 LUCAS survey for
Landsat-8 Operational Land Imager (L8) and Sentinel-2 Multi-Spectral Instrument (S2). 3Y collection:
From May 2018 to May 2021; 2Y: From May 2019 to May 2021; 1Y: From May 2020 to May 2021; 1Y_L:
From May 2015 to May 2016.

L8 S2

Satellite
Collection Mean Min Max Std Mean Min Max Std

Baltic states 3Y 20.1 8 52 10.5 23.2 7 56 14.3
2Y 13.6 7 31 6.8 13 3 31 8.3
1Y 5.5 2 13 3 4.7 1 13 3

1Y_L 9.4 1 18 4.4

Ireland 3Y 11.1 1 24 7.2 12.8 4 29 9
2Y 7.5 1 20 5.8 5.7 1 11 4.3
1Y 4.2 1 9 2.9 3.7 1 8 2.7

1Y_L 3.4 1 8 2.3

South Italy 3Y 14.8 1 27 2.3 38.3 2 108 36.2
2Y 10 1 22 6.3 30.8 2 92 30.8
1Y 4.8 1 12 3.5 15.3 2 47 15.4

1Y_L 4 1 10 3

Est Germany–West Poland 3Y 17.4 3 42 12.6 48 9 92 30.1
2Y 10 1 22 6.2 25 9 58 19.2
1Y 4.4 1 12 3.1 10.5 3 29 8.7

1Y_L 5.3 3 10 2.2

3.2. LUCAS Subset

Table 3 shows the descriptive statistics of the soil samples (Figure 1), for which it was
possible to retrieve a median bare soil spectrum both for the S2 and L8 time series. Although
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the number of available samples decreases using a narrower time interval (from 3Y to 1Y),
the range, mean, and standard deviation only vary slightly. All three soil properties have
a very large range of values and high variability. These datasets were used to build clay,
SOC, and CaCO3 prediction models.

Table 3. Descriptive statistics of the 2015 LUCAS soil samples used to build SOC, clay, and CaCO3

calibration models for each satellite collection. 3Y collection: From May 2018 to May 2021; 2Y: From
May 2019 to May 2021; 1Y: From May 2020 to May 2021; 1Y_L: From May 2015 to May 2016.

Satellite Collection Soil Property n◦ Min Max Mean Std

3Y SOC g kg−1 144 3.4 261.6 22 28.4
Clay % 144 2 56 23.1 10.9

CaCO3 g kg−1 144 0 712 62.6 128.9

2Y SOC g kg−1 140 3.4 261.6 22 28.7
Clay % 140 2 56 22.9 10.7

CaCO3 g kg−1 140 0 712 59.8 128.9

1Y SOC g kg−1 118 3.4 261.6 23.2 31
Clay % 118 2 56 22.9 11.3

CaCO3 g kg−1 118 0 712 61.3 134.8

1Y_L SOC g kg−1 121 3.4 261.6 22.5 30.5
Clay % 121 2 56 24 11.3

CaCO3 g kg−1 121 0 712 70.6 137

3.3. SOC, Clay, and CaCO3 Estimation Accuracy

The accuracy of the models calibrated using laboratory spectra (Lab) is very high
for CaCO3 (RPD: 2.74) and lower for clay (RPD: 1.83) and SOC (RPD: 1.58). Resampling
the laboratory spectra according to the S2 and L8 spectral characteristics, the accuracy
decreases for all the three soil properties, and, in particular, for CaCO3, for which the
RMSE is almost doubled (Table 4). The models calibrated with the S2 data showed a good
estimation accuracy for SOC content, especially using the S2_3Y time series (RPD: 1.74),
while the RPDs of clay and CaCO3 are quite low. The SOC model using the L8_3Y data
provided a sufficient degree of accuracy (RPD: 1.53), however all the L8 statistics are worse
than those obtained by S2 data. Generally, the 3Y models provided the best results, while
the use of the L8_1Y_L collection did not show any advantage in terms of estimation
accuracy as compared to 1Y.

Table 4. Estimation accuracy of the soil properties prediction models in terms of root mean square
error (RMSE) and the ratio of performance to deviation (RPD). Lab, spectra acquired in laboratory
condition; Lab_L8, laboratory spectra resampled, according to the Landsat-8 OLI sensor; Lab_S2,
laboratory spectra resampled, according to the Sentinel-2 MSI sensor; L8, synthetic bare soil image
obtained by Landsat-8 collection; S2, synthetic bare soil image obtained by Sentinel-2 collection. 3Y
collection: From May 2018 to May 2021; 2Y: From May 2019 to May 2021; 1Y: From May 2020 to May
2021; 1Y_L: From May 2015 to May 2016.

Soil Property Sensor Acquisition Time Model N◦ Samples RMSE * RPD

SOC Lab 2015 Cubist 144 17.96 1.58
Lab_L8 2015 Cubist 144 20.30 1.40
Lab_S2 2015 Cubist 144 20.32 1.40

L8 3Y Cubist 144 18.55 1.53
L8 2Y Cubist 140 20.67 1.39
L8 1Y Cubist 118 22.43 1.38
L8 1Y_L Cubist 121 26.48 1.15
S2 3Y Cubist 144 16.31 1.74
S2 2Y Cubist 140 21.35 1.35
S2 1Y Cubist 118 19.64 1.58
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Table 4. Cont.

Soil Property Sensor Acquisition Time Model N◦ Samples RMSE * RPD

Clay Lab 2015 PLSR 144 5.92 1.83
Lab_L8 2015 Cubist 144 7.58 1.43
Lab_S2 2015 Cubist 144 7.34 1.48

L8 3Y Cubist 144 9.08 1.20
L8 2Y Cubist 140 9.42 1.14
L8 1Y Cubist 118 9.81 1.15
L8 1Y_L Cubist 121 10.94 1.03
S2 3Y Cubist 144 8.25 1.32
S2 2Y Cubist 140 8.38 1.28
S2 1Y Cubist 118 9.07 1.25

CaCO3 Lab 2015 PLSR 144 47.08 2.74
Lab_L8 2015 Cubist 144 96.97 1.33
Lab_S2 2015 Cubist 144 92.57 1.40

L8 3Y Cubist 144 103.54 1.24
L8 2Y Cubist 140 125.05 1.03
L8 1Y Cubist 118 124.69 1.08
L8 1Y_L Cubist 121 137.80 0.99
S2 3Y Cubist 144 109.97 1.17
S2 2Y Cubist 140 108.32 1.19
S2 1Y Cubist 118 118.89 1.13

* RMSE unit of measurement is g kg−1 for SOC and CaCO3 and % for clay.

4. Discussion

Vegetation in cropland fields persists most of the time during the year. Consequently,
the probability of acquiring a clouds free image and to find, at the same time, bare soil
is quite low. In this regard, the composite image increases the investigated area for soil
properties mapping, especially if a long and large time series collection is available, such
as that provided by the Landsat program, and in particular Landsat-5 (started in 1984),
Landsat-7, and the most recent Landsat-8 mission. In this regard, Demattê et al. [23] used
Landsat 5 collection to obtain a synthetic soil image of the Sao Paulo region in Brazil,
Demattê et al. [29] obtained bare Earth’s surface spectra based on Landsat series, and
Safanelli et al. [41] used 37 years Landsat data to map soil properties in Europe. Although
Sentinel-2 constellation delivered the first images in 2015, the short revisit time provided by
the Sentinel-2 already collects a large amount of data worldwide, and some authors started
to explore the capability of the S2 time series. These authors include Vaudour et al. [26],
who used S2 time series to map SOC in the Versailles plain in France, and Silvero et al. [42],
who combined S2 and L8 time series for soil mapping purposes over large areas.

Table 2 showed how the better S2 revisit time (five days), as compared with that
of L8 (sixteen days), entails collecting more bare soil pixels at the same location, and
consequently, obtaining more reliable median reflectance values, smoothing the effect of
extreme values. Moreover, collecting images across more years increases the probability of
including a larger number of exposed soils in the SBSI, thus increasing the mapping area in
croplands. This is particularly important in regions where it is more difficult to acquire
clear-sky images, such as those of North Europe (e.g., the Baltic States and Ireland).

The number of selected pixels, classified as bare soil, depends on the criteria adopted
for the selection, and thus, for the minimization of the disturbing factors. The NDVI
index was widely and successfully used to discriminate between soil (NDVI < 0.25–0.35)
and green vegetation, due to the sharp increase of the reflectance between red and NIR
region in the vegetation spectrum, while the differences between dry vegetation (crop
residues, straw, stubble, etc.) and soil are less showy. The lignin spectral feature in
SWIR (around 2100 nm) could help detect dry vegetation, but it is located very close to
kaolinite and other clay minerals features that characterize soil spectra. Therefore, the
NBR2 has been widely used to detect dry vegetation and spectra affected by high moisture



Remote Sens. 2021, 13, 3345 9 of 15

content [16,23]. This normalized index exploits the spectral region between 1600 and 2100,
which is almost flat for soil spectra, while the dry vegetation curve is descending, and
the slope of the curve is related to the percentage of dry vegetation [23]. The NBR2 was
successfully tested both with L8 data using B6 and B7 and with S2 using B11 and B12 [17,26].
Although lower the NBR2 value, higher the probability of detecting pure soil, there is
not yet a clear agreement about the best NBR2 threshold value for the discrimination,
and the study of Castaldi et al. [17] suggests that the choice should be guided by the
specific requirements of the study trying to find a compromise between prediction accuracy
and spatial coverage of the map. Vaudour et al. [26] compared per-pixel and per-date
approaches for S2 time series, and they gained the best compromise between mapped
extent and SOC accuracy (RPD= 1.50) using a per-date approach selecting the driest soil
based on soil surface moisture index (S2WI).

Another important disturbing factor is the soil surface roughness, which can be
minimized by selecting images acquired when it is more probable to find soil in a seedbed
condition. In this regard, Dvorakova et al. [20] selected the ‘greening-up’ period based
on the NDVI timeline, i.e., the last date of acquisition where the NDVI is lower than 0.25
before the crop develops, and they were able to significantly improve the SOC estimation
accuracy combing the ‘greening-up’ approach with a very strict NBR2 threshold (< 0.07),
which, however, limited the extent of the mapping area.

If, on one the hand, the composite images increase the mapping area, then, on the
other hand, soil imaging spectroscopy should use images acquired as close in time as
possible to ground truth survey to build a reliable prediction model, and this assumption is
not respected using large multi-temporal data. It must nevertheless be noted that most of
the soil properties are quite stable, or change very slowly over time, if no drastic changes
in soil management, land use, or cover occur and where there were not remarkable erosion
processes or extreme meteorological events. The comparison between 2009 and 2015
LUCAS surveys in 17,613 soil points showed limited changes over the six years period [43].
Consequently, the temporal difference between soil survey and satellite data could be
irrelevant for modeling and mapping purposes.

Another important aspect to consider is the consistency between survey area and
pixel size or ground sampling distance (GSD). A composite topsoil sample was collected
for the LUCAS survey within a circular area of 2 m radius, while the ground sampling
distance (GSD) for S2 is 10 m for the visible band, and 20 m in the NIR and SWIR bands.
The discrepancy between soil sampling area and GSD is even more marked for L8: All
the L8 bands have a resolution of 30 m. This incongruity could lead to not reliable soil
estimation models if the measured values do not represent the actual situation within the
pixel area [27,44,45]; this issue may become more pronounced according to the magnitude
of the geometric error and if the investigated soil property has a large short-range spatial
variability. The Pearson’s correlation coefficient between reflectance measured on LUCAS
soil samples in the laboratory and satellite data (Figure 3) highlighted how the S2 SBSIs
are closer to lab spectra than L8 SBSIs, probably due to the lower spatial resolution of the
NASA sensor.

Figure 3 also shows that, in general, the correlation is stronger in the visible region
and that the 3Y SBSI is more correlated to laboratory spectra than 2Y and 1Y for all the
S2 bands and for B2, B3, B4, and B5 of the L8. These outcomes are consistent with [41]
that using L8 found that generating a bare soil composite image by using a time interval
close in time to soil observations did not improve neither the quality of topsoil reflectance
nor the prediction accuracy of soil properties, especially for the more stable soil attributes,
such as clay and CaCO3. Observing Table 4, it is quite evident how the highest accuracy
was obtained using 3Y SBSI, especially for SOC estimation. Thus, both the correlation
investigation and the model accuracy demonstrated that a large time interval leads to a
more reliable SBSI, probably because it can reduce the negative effect of extreme estimates
along with the multi-temporal survey [41]. Figure 4 shows how the S2 SBSI spectra are quite
similar to laboratory spectra for high SOC content and low clay and CaCO3 (Figure 4d–f).
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The observed differences between laboratory and satellite spectra in terms of reflectance
value are probably due to soil moisture that reduces the reflectance over the entire spectrum,
influencing the amount of reflected and emitted energy from a soil surface [13,46]; the
LUCAS soil samples were dried before being scanned in the laboratory, while the satellite
spectra, although the NBR2 was applied to exclude high soil moisture content, still retain a
certain amount of water especially for soil with a high clay content. As proof of the previous
sentence, we have shown the difference between Lab_S2 and the satellite spectrum is bigger
for very high clay content than for low content (Figure 4e).
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Remote Sens. 2021, 13, 3345 11 of 15

The L8 spectra in Figure 4a,b and c clearly highlights how the reflectance of the
synthetic curves is greatly lower than laboratory spectra both for high and low SOC, clay,
and CaCO3 contents—their shape is quite flat and the reflectance values are relatively
low (most of them around 0.1). The 30 m spatial resolution of the L8 bands increases the
probability to include more than one element within the pixel area (e.g., vegetation and
soil), and at the same time, this entails a lower capability to detect the presence of the
two main elements using the spectral behavior [47,48]; in other words, the NDVI, or other
indices, could be not able to discriminate between pure soil and mixed pixels and this
could lead to include not bare soil spectra in a time series. However, the effect of these
mixed spectra can be mitigated by the computation of the median spectra along with the
time series.

The prediction models calibrated with laboratory spectra provided a good accuracy
for all the three soil properties, and, in particular, the CaCO3 showed a very high RPD
(2.74). The resampling process according to the S2 and L8 bands highlighted how a high
spectral resolution is needed for clay and calcium carbonates estimation, while it seems less
important for SOC. This agrees with the observations from the authors of [49] that noted
that the reduction of spectral resolution has not a remarkable effect on SOC estimation
accuracy, while for a bandwidth larger than 40 nm, the clay estimation accuracy decreases
significantly. The authors of [15] and [16] compared Sentinel-2 and airborne hyperspectral
data in terms of SOC estimation accuracy. Both papers concluded that Sentinel-2 estimates
and maps SOC, and that the retrievable accuracy is not significantly different than that ob-
tained by a better spectral and spatial resolution—especially where a large SOC variability
is observable. Whereas, for clay and CaCO3 estimation, only narrow bands can exploit the
spectral features related to these two properties, the heterogeneity of the organic matter
composition entails a spectral response spread over the whole electromagnetic spectrum
and not limited to a specific spectral region. The clay and CaCO3 spectral features are
located in the SWIR region. Figure 5 clearly shows that the most important bands for clay
and CaCO3 Lab models are located between 2100 and 2500 nm and only a few bands in the
visible (Figure 5a).
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The variable importance analysis for 3Y SBSI models confirmed the trend, described
above (Figure 5b,c). However, despite both S2 and L8 have two bands in this SWIR, the clay
and CaCO3 prediction accuracy is much lower than that observed with laboratory data, this
is due on the one hand to the large bandwidth of the S2 and L8 SWIR bands (between 85
and 187 nm), that does not properly exploit the narrow spectral feature of the clay mineral
and those related to CaCO3, and on the other hand to the large pixel size of these bands
(20 m for S2 and 30 m for L8). The most important bands for SOC prediction are mostly
located in the visible region (Figure 5a), this is also clear for 3Y SBSI models both for L8
and S2, where basically only the blue, green, and red bands contribute to the cubist models
(Figure 5b,c). Therefore, the higher accuracy of the satellite SOC models can be explained
by the better spatial and spectral resolution (10 m and bandwidth between 30 and 65 nm)
of the S2 visible bands compared with SWIR bands. The importance of the resolution of the
S2 visible bands can be confirmed by the high correlation between laboratory and satellite
spectra shown in Figure 3b: Around 0.7 for 3Y image and around 0.65 for 2Y and 1Y. As
shown in Table 4, it should be noted that S2 provided a better SOC prediction accuracy
than L8—probably due to the higher spatial resolution of the Copernicus’ sensor. This was
confirmed by the authors of [19], who compared S2 and L8 in terms of SOC prediction
accuracy, and they observed a worsening of the RPD values from 1.53 to 1.40 degrading
the S2 GSD to that of L8.

The hyperspectral sensor of the PRISMA (PRecursore IperSpettrale della Missione
Applicativa) mission of the Italian Space Agency (ASI) [50] has been acquiring freely
available images for the scientific community since 2019. The high spectral resolution
of the PRISMA data could be very useful to exploit the narrow spectral features related
to clay and CaCO3 [49]. However, the capability of the PRISMA data in terms of soil
prediction accuracy should be assessed in relation to the spatial resolution of the PRISMA
hyperspectral sensor (30 m) and the panchromatic camera (5 m). In the future, other
hyperspectral satellite missions, such as the Environmental Mapping and Analysis Program
(EnMAP) [51] of the German Aerospace Center (DLR) and the planned Sentinel-10/CHIME
(Copernicus Hyperspectral Imaging Mission for the Environment) [52], will deliver a large
amount of hyperspectral data making it possible to carry out multi-temporal analysis to
improve soil properties prediction and mapping.

5. Conclusions

This work investigates the capability of the S2 and L8 multi-temporal collection to
estimate soil properties by extracting bare soil spectral data from a composite image: The
synthetic bare soil image (SBSI). Since one of the main challenges for automating the soil
properties mapping and monitoring from imaging spectroscopy is the minimization of
disturbing factors, an automated pixel-based approach to select exposed soil pixels not
affected by clouds, vegetation, and high soil moisture was proposed, with the aim to clearly
define the conditions under which reliable soil properties map can be produced over a
large region.

The high correlation between soil spectra scanned for the 2015 LUCAS dataset and
those retrieved from the three-year SBSI, in correspondence of the LUCAS samples points,
especially for S2 data, demonstrated the goodness of the pixel selection method, although
a clear reflectance shift can be observed, due to the drier condition of the soil samples
scanned in the laboratory.

The SBSIs and some of the samples collected in the framework of the 2015 LUCAS
survey were used to calibrate SOC, clay, and CaCO3. The results highlighted how the three-
year collection increases the number of selected pixels and the SOC estimation accuracy
(RPD: 1.74), smoothing the negative effect of extreme estimates along with the multi-
temporal survey. The comparison between S2 and L8 outputs demonstrated the higher
capability of the Copernicus sensor in terms of SOC prediction accuracy, due to greater
spatial resolution of the bands in the visible region. While the two multispectral sensors
were no able to properly predict clay and CaCO3 content because of the low spectral and
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spatial resolution of their SWIR bands, that does not exploit the spectral features related to
these soil attributes.

The results of this study proved the capability of large S2 time series to estimate and
monitoring SOC in croplands using an automated pixel-based approach that selects pure
soil pixels and retrieves reliable synthetic soil spectra. Future research should be focused
on fine-tuning the methodology to retrieve a composite image of bare soil from large image
collections that aim to find a compromise between SOC prediction accuracy and spatial
coverage of the map.
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