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Abstract: Quantitative remote sensing of leaf traits offers an opportunity to track biodiversity
changes from space. Augmenting field measurement of leaf traits with remote sensing provides
a pathway for monitoring essential biodiversity variables (EBVs) over space and time. Detailed
information on key leaf traits such as leaf mass per area (LMA) is critical for understanding ecosystem
structure and functioning, and subsequently the provision of ecosystem services. Although studies
on remote sensing of LMA and related constituents have been conducted for over three decades, a
comprehensive review of remote sensing of LMA—a key driver of leaf and canopy reflectance—has
been lacking. This paper reviews the current state and potential approaches, in addition to the
challenges associated with LMA estimation/retrieval in forest ecosystems. The physiology and

heck environmental factors that influence the spatial and temporal variation of LMA are presented. The
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scope of scaling LMA using remote sensing systems at various scales, i.e., near ground (in situ),
airborne, and spaceborne platforms is reviewed and discussed. The review explores the advantages
and disadvantages of LMA modelling techniques from these platforms. Finally, the research gaps and
perspectives for future research are presented. Our review reveals that although progress has been
made, scaling LMA to regional and global scales remains a challenge. In addition to seasonal tracking,
three-dimensional modeling of LMA is still in its infancy. Over the past decade, the remote sensing
scientific community has made efforts to separate LMA constituents in physical modelling at the leaf
level. However, upscaling these leaf models to canopy level in forest ecosystems remains untested.
We identified future opportunities involving the synergy of multiple sensors, and investigated the

utility of hybrid models, particularly at the canopy and landscape levels.
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1. Introduction
Publisher’s Note: MDPI stays neutral . .
Forests are a key component of the global biogeochemical cycle, and they harbor the

majority of terrestrial biodiversity. Occupying over 30% of the Earth’s landscape, forests
contribute to 80% of the total primary productivity of terrestrial ecosystems [1]. However,
forests’ health and productivity are under increasing pressure from several biotic and
abiotic stressors that include pests and diseases, climate change, and land-use change.
These factors have hampered biodiversity conservation efforts, in addition to ecological
services that humans derive from forests. Plants’ traits provide a diagnostic pathway for
assessing forest ecosystem processes, functions, and services over space and time [2]. Traits
are largely categorized into plant morphological, biochemical, anatomical, physiological,
and phenological groupings. Biochemicals include chlorophyll, nitrogen, and carotenes,
whereas morphological traits comprise leaf mass per area (LMA) and specific leaf area
Attribution (CC BY) license (https://  (SLA), among several others. Morphological traits such as LMA indicate plant functioning
creativecommons.org/ licenses /by / and productivity [3]. LMA, defined as the ratio of total mass of dry leaf to its surface
40/). area (g m~2), quantitatively expresses the plant economic spectrum strategy in terms
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of nutrients uptake and use, light harvesting, and carbon sequestration. LMA is a key
variable of species traits—one of the six essential biodiversity variable (EBV) classes that are
important for monitoring ecosystem structure and function [4]. As an ecological indicator,
LMA is vital in examining, monitoring, reporting, and managing biodiversity change [5].

The enduring threats to forests require monitoring the state of forest health and
productivity using key proxies such as LMA and other leaf traits [6]. Several studies
demonstrated the intrinsic relationship between LMA, canopy photosynthetic capacity,
and subsequently forest productivity [7-9]. Plant physiological studies also demonstrated
changes in LMA constituents, including foliar nitrogen due to biotic disturbances such
as pest infestation [10]. Therefore, timely and accurate monitoring of LMA is essential
for the management of ecological systems. Although in situ measurements are the most
accurate method of determining LMA, this approach is costly, time-consuming, inefficient,
and spatially handicapped. Previous efforts to understand vegetation adaption to climate
change and disturbance have been based on assessing patterns of trait data collected and
archived in plant databases such as TRY (not an acronym) [11]. Although this approach
can reveal changes in vegetation physiological pattern over time, it lacks the ability to
understand plant trait dynamics at the landscape and regional scale. In situ measurements
undeniably play a role in interpreting spectral signatures at both leaf and canopy levels.
Data collected from field measurements play a key role in parameterizing, calibrating, and
scaling traits using remote sensing models. LMA measured at the leaf level and upscaled
to canopy level using the leaf area index (LAI) can be retrieved and mapped over large
spatial extents using remotely sensed data [12]. Given its importance to ecology and
biodiversity, the retrieval and estimation of LMA from spectral signals mandates more
attention, especially in forest ecosystems, to complement the information on other key
drivers of foliar reflectance.

Remote sensing instruments mounted on different platforms continue to acquire
spectral data, which are critical for retrieving leaf traits, such as LMA, which mirror
forest health and productivity over space and time [13]. Understanding the mechanism
linking vegetation physiological properties and spectral signature acquired from satellite
imagery dates to the 1970s, with the launch of Landsat in 1972, although research on
vegetation-radiation can be traced to the 1920s [14]. Variations in LMA are known to
control foliar optical properties, especially in the shortwave infrared (SWIR) region and
therefore, spectral indices developed to estimate LMA have been predominantly optimized
based on spectral data in the SWIR region of the spectrum [15-17]. For example, Wang
et al. [18] successfully developed a normalized dry matter index (NDMI) centered on
1649 and 1722 nm based on PROSPECT simulations (R? = 0.85, RMSE = 0.0019 g cm™2).
The need to enhance the interpretation of spectral data has advanced physical modelling
of vegetation using radiative transfer models (RTM) such as the leaf PROSPECT model
(PROpriétésSPECTrales) [19,20]. LMA, as a key input into the PROSPECT model, has
successfully been retrieved through model inversion at both leaf and canopy scales [21-24].
LMA constituents such as nitrogen, lignin, and cellulose have received commendable
attention in research. Recent efforts have successfully separated LMA into carbon-based
constituents, i.e., cellulose, lignin, hemicellulose, starch, and sugars, and nitrogen-based
constituents (proteins), in the PROSPECT PRO model [22]. The PROSPECT model has been
intricately coupled with canopy models such as Scattering by Arbitrary Inclined Leaves
(SAIL) in PROSAIL and subsequently inverted to retrieve LMA [21,25].

Improvements in sensors’ design technology have enhanced the spectral, radiomet-
ric, spatial, and temporal resolutions of available data. As such, strategically positioned
spectral measurements in the red-edge spectrum of remote sensing sensors (RapidEye
and WorldView) and the expansion in the use of unmanned aerial systems (UASs) have
increased the sensors’ capabilities and improved the spatial, spectral, and temporal resolu-
tions of imagery data. These advancements, which have progressively expanded during
the past two decades, have augmented the retrieval and estimation accuracy of LMA
over time and space in different vegetation ecosystems. Despite progress made in remote
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sensing of LMA and findings indicating the potential to retrieve LMA across different
global biomes [26], scaling LMA from leaf to canopy scales, and subsequently to a global
scale, using multi-source remote sensing datasets calls for further research. There is a need
to leverage remote sensing datasets of different spatial and spectral resolutions to improve
LMA mapping from small study sites to regional and global scales. One major challenge
with multi-source optical data is wavelength calibration, because different sensors have
varying central wavelengths for each spectral band [27]. Spectral resampling of the spectral
bands to new wavelengths is data and process intensive, and demands expert knowledge
on spectral response functions.

There are several reviews on remote sensing of plant traits [12,28-30] covering various
aspects of current technology; however, a comprehensive review focusing on LMA in
the context of the forest ecosystem is not available. Therefore, the goal of this review
paper is to present the contribution of remote sensing in the estimation and retrieval of
LMA in forested ecosystems, and to provide a review of current approaches in LMA
retrieval/estimation and their relative strengths and weaknesses. This review includes
several inter-related sections. Following this introduction, LMA chemical composition and
variations are described in Section 2. In Section 3, remote sensing of vegetation and leaf trait
estimation is reviewed. In Section 4, remote sensing systems used for the LMA retrieval
and estimation are introduced and discussed. Section 5 focuses on models available to
estimate LMA from remote sensing data and their advantages and limitations. Finally,
research gaps are identified and the future outlook is presented.

2. LMA Chemical Composition and Variation over Space and Time

LMA is a morphological trait that indicates the leaf economic spectrum (LES) with
regard to a plant investment in leaf mass and storage strategies [31,32]. It is a functional trait
that depicts plant performance with regard to growth strategies, reproduction, and survival,
and provides a picture of vegetation dynamics and response to environmental change
over space and time [33]. LMA is a key input parameter in dynamic global vegetation
models and nutrient budget simulations. It is also a bio-indicator of water stress, pest
infestation, and forest fire fuel availability [32,34,35]. Quantitative knowledge on LMA is
critical in improving our understanding of the taxonomy of plant functional groups, plant
physiological regulation, and the impact of environmental controls on ecosystem structure
and functioning [36].

LMA (g cm~2) is the product of leaf density (LD, g cm %) and the leaf volume to
area ratio (LVA, cm® cm~2) (Equation 1) [3,37]. There is no consensus on which of the
two variables (LD or LVA) control variations in LMA, as the relationship between LD and
LVA is species- dependent [38]. However, LD and LVA are determined by several factors,
including airspaces in the spongy mesophyll layer, leaf chemical composition, thickness of
the epidermis, and the size and number of cells within a leaf volume (Figure 1) [9]. Alterna-
tively, LMA can be considered to be the total weight of the compounds that constitute leaf
dry mass divided over its surface area (Equation 2). It is important to highlight that terms
such as specific leaf weight (SLW) and mass-based leaf dry matter content (LDMC) have
been used to refer to LMA in some studies [18,39-41]. The reciprocal of LMA is the specific
leaf area (SLA, cm? g~ !). Measuring LMA as the ratio of dry weight and leaf surface is
relatively easy and is widely used in the remote sensing of this trait.

LMA (g cm_z) = LVA x LD )
LMA (gem~2) = % @)

where DW (g) is dry weight and LA (cm?) is leaf surface area.
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Figure 1. Anatomical variation in leaf characteristics at cell (purple), tissue (yellow), and leaf (green)
levels that govern variation in LMA. Vascular + scler tissue = vascular tissue plus sclerenchymatous
tissue. Adapted from [9].

Leaf dry mass consists of at least eight groups of compounds, i.e., minerals, organic
acids, total non-structural carbohydrates (TNC; starch, soluble sugars, fructans), total
structural carbohydrates (TSC; cellulose), soluble phenolics, proteins, lignin, and lipids.
These compounds constitute approximately 90-95% of foliage dry biomass [3]. This entails
a high concentration of LMA-related constituents in high-LMA vegetation communities
compared to vegetation communities of low LMA. However, it is crucial to understand
that these compounds do not increase proportionally with an increase in LMA. Minerals,
lipids, and organic acids increase marginally from low to high LMA compared to TSC and
lignin [3].

Explicitly, the relationship between LMA and its constituents is complex and depends
on the expression used, i.e., concentration (mg g’l) or content (g cm™?) (Figure 2). In
some instances, low-LMA species contain a high concentration (mg g~!) of proteins and
minerals, and a low concentration of lignin and other secondary compounds. However, in
general, the relationship between LMA and related constituents’ content is usually positive,
i.e,, high LMA yields high content (g cm~2) of protein, minerals, and lignin. Plants having
low LMA have a short lifespan and are associated with an increased rate of photosynthesis
and respiration per unit leaf dry mass. LMA controls forage quality and, subsequently,
habitat selection and utilization of herbivores. Herbivores avoid species having high LMA
as forage quality and digestibility declines with an increase in LMA due to an increase in
lignin and TSC [42].

LMA varies widely between forest ecosystems. Poorter et al. [3] reported a 30-330 g m 2
variation in LMA, whereas other studies have reported maximum values of over
400 g m~2 [26,43,44]. Research demonstrates that LMA varies by over 70% between
species [36], with over 26% variation occurring within an individual plant [45]. Although
variation in LMA between species is determined by their respective growth strategies and
anatomical composition, variation within an individual plant is primarily a function of
the light gradient within a canopy [46,47]. Higher LMA contributes to a longer life span
and nutrient retention of foliage material. For example, longer life-spanned evergreen
foliage is characterized by high LMA, whereas short-seasoned deciduous foliage yields
low LMA. Intrinsically, plants allocate more nutrients such as proteins to the upper illu-
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minated leaves that receive the highest photon flux density compared to lower shaded
leaves of low LMA [48]. The non-uniformity in LMA across the canopy vertical profile
(three-dimensional space) improves plant photosynthetic capacity and light use efficiency
by 20% and 30%, respectively [49]. The mechanisms behind the non-uniformity in nutrients
across the canopy vertical profile are explained in detail by the optimization [47] and
coordination theories [46]. LMA also phenologically varies between seasons due to ageing
and changes in photoperiod, especially for deciduous vegetation. In evergreen coniferous
forests, needles from the previous season are associated with higher LMA compared to
young and fresh needles [50]. However, LMA gradually decreases with needle age. Across
space and between ecosystems, LMA increases concomitantly with an increase in total
photon irradiance integrated over the daily photon irradiance (DPI) [3]. Tropical forests
and temperate evergreen forests generally yield higher LMA (Figure 3).
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Figure 2. Correlation coefficients between LMA (g cm~2) and other leaf traits based on the Leaf
Optical Properties Experiment (LOPEX) dataset (n = 126). Crops and vegetables were not included
in the analysis. Cab = total chlorophyll (ug cm~2), Car = carotenoid concentration (in ug/ cm?),
EWT = equivalent water thickness (cm), LT = leaf thickness (in um), Carea = area based car-
bon (g cm~2), Cmass = mass based carbon (mg g~!), Nmass = mass based nitrogen (mg g~ '),
Narea = area based nitrogen (g cm~2), Cell_mass = mass based cellulose (mg g~!), Cell_area = area
based cellulose (g cm~2), Lign_mass = mass based lignin (mg g~'), Lign_area = area based
lignin (g cm~2), Star_mass = mass based starch (mg g_l), Star_area = area based starch (g cm2),
SLA = specific leaf area (cm? g 1).



Remote Sens. 2021, 13, 3352

6 of 25

Latitude (degrees)

T T : T T T T T T T T
-150 -120 -90 -60 -30 0 30 60 90 120 150 180

Longitude (degrees)

Figure 3. Global variation in LMA generated from MODIS reflectance product (MCD43A4) and
WorldClim climatic data (temperature and rainfall) at 500 m spatial resolution using the random
forest machine learning technique (R? = 0.58). Inversely retrieved from SLA based on [51].

Soil properties such as nutrient and water availability affect spatial patterns in LMA.
For example, LMA is known to increase with a gradient of decreasing soil water availability.
Generally, plants thriving in water-limited environments are associated with low leaf
expansion rates and are subsequently exhibit high leaf density [52]. The high leaf density
results from tightly packed cells and limited air spaces within the leaf volume [53]. Soil
nutrients, especially nitrogen and phosphorous, also affect leaf density, plant development,
and growth. Inadequate soil nutrients substantially affect canopy biomass and LAI, and
subsequently reduce overall canopy LMA. Plants extract less nutrients from depleted soils,
which influences the net nutrients accumulated per leaf area and leaf density. Other soil
properties that influence variation in LMA include type, salinity, and compactness [3].
Atmospheric composition, especially CO, and ozone [54], also affects LMA over space
and time. Above an ambient concentration of atmospheric CO;, leaves accumulate starch,
resulting in increased leaf thickness and subsequently high LMA. However, the effect of
atmospheric gases is negligible compared to soil fertility.

Finally, understanding the factors that influence spatial and temporal variations
in LMA is essential in designing sampling protocols that can adequately capture the
variation in LMA within a study site [3]. Representative samples from each vegetation
type, elevation, and soil thematic class should constitute the complete dataset available
for LMA modelling [55]. Sampling should be performed in vegetation communities that
represent the key environmental gradients within a landscape. Accordingly, stratified
random sampling remains a popular technique in the selection of sampling locations for
vegetation trait estimation.

3. Remote Sensing of Forest LMA and Its Scaling

The optical domain (380-2500 nm) is widely used in vegetation bio-physical and
chemical assessment because of known characteristic absorption features in this spectral
region. Vegetation optical properties are controlled by well-defined absorptions in the
visible spectrum (VIS, 400-700 nm) caused by photosynthetic pigments such as chlorophyll,
carotenoids, and anthocyanins. Scattering in the near-infrared (NIR, 700-1300 nm) at leaf
and canopy scales is dominated by leaf structure and leaf area index, respectively. Optical
properties in the shortwave infrared (SWIR, 1300-2500 nm) are driven by moisture content
and dry matter-related traits such as protein, starch, and lignin. Several other factors at
leaf level, such as the ratio of mesophyll cell surface to intercellular air spaces and leaf
thickness, influence leaf optical properties [56]. Curran’s [57] pioneering work presents
distinct absorption features within the electromagnetic spectrum (400-2500 nm). Most of
the wavelengths related to compounds that constitute LMA are located in the NIR and
SWIR regions (Table 1).
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Table 1. Absorption features linked to compounds that constitute LMA.

Wavelength (nm) Electron Transition Absorbing Compound
910 C-H stretch, 3rd overtone Protein
970 O-H bend, 1st overtone Starch
990 O-H stretch, 2nd overtone Starch
1020 N-H stretch Protein
1120 C-H stretch, 2nd overtone Lignin
1200 O-H bend, 1st overtone Cellulose, starch, lignin
1420 C-H stretch, C-H deformation Lignin
O-H stretch, 1st overtone
1450 C-H stretch, Starch, sugar, lignin
C-H deformation
1490 O-H stretch, 1st overtone Cellulose, sugar
1510 N-H stretch, 1st overtone Protein, nitrogen
1530 O-H stretch, 1st overtone Starch
1540 O-H stretch, 1st overtone Starch, cellulose
1580 O-H stretch, 1st overtone Starch, sugar
1690 C-H stretch, 1st overtone Lignin, s.tarch, protein,
nitrogen
1730 C-H-stretch Protein
1736 O-H stretch Cellulose
C-H stretch, 1st overtone
1780 O-H stretch Cellulose, sugar, starch
H-O-H deformation
1820 O-H stretch, C-O stretch, 2nd Cellulose
overtone
1900 O-H stretch, C-O stretch Starch
1924 O-H stretch, O-H deformation Cellulose
1940 O-H stretch, O-H deformation .Water, lignin, protein,
nitrogen, starch, cellulose
1960 O-H stretch, O-H bend Sugar, starch
1980 N-H asymmetry Protein
O-H deformation
2000 C-O deformation Starch
N=H bend, 2nd overtone
2060 N=H bend Protein, nitrogen
N-H stretch
2080 O-H stretch, O- deformation Sugar, starch
O-H bend/ C-O stretch
2100 C-O-C stretch, 3rd overtone Starch celhilose
2130 N-H stretch Protein
N-H bend, 2nd overtone, C-H
2180 stretch, C-O stretch, C=O Protein, nitrogen
stretch
C-N stretch
2240 C-H stretch Protein
2250 O-H stretch, O-H deformation Starch
2270 CH Sg:i;’ COP-II;ISS:ESCC}? , CH, Cellulose, sugar, starch
2280 C-H stretch, CH, deformation Starch, Cellulose
N-H stretch, C=0 stretch, . .
2300 C-H bend, 2nd overtone Protein, nitrogen
2310 C-H bend, 2nd overtone QOil
2320 C-H stretch, CH, deformation Starch
C-H deformation, O-H
deformation, C-H
2340 deformation, O-H Cellulose
deformation
2350 CH; bend, 2nd overtone, C-H Cellulose, protein, nitrogen

deformation, 2nd overtone

Compiled from [56,57].
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Remote sensing estimation of LMA is often challenging because most of the absorption
features related to LMA are concealed by water, especially in the SWIR region [23,58]. The
SWIR region is difficult to characterize with high fidelity from space due to low signal to
noise ratio [36]. The most important wavelengths sensitive to LMA have been identified in
1500-1850 nm and 2100-2300 nm, which overlap with water absorption bands [58]. How-
ever, spectral indices related to LMA have been developed based on wavebands between
1200 and 2400 nm [15,19,59-61] (Figure 4). Chlus et al. [62] observed that a 2000-2450 nm
spectral subset generated the highest accuracy (%RMSE = 15.37) compared to the other spec-
tral subsets (400-2450, 800-2450, 1600-2450 nm) in estimating top of the canopy LMA using
National Ecological Observatory Network (NEON)’s Airborne Observatory Platform—an
AVIRIS-NG like spectrometer. Wavelet features centered at 1639 and 2133 nm yielded
the most accurate model for LMA estimation using several datasets [63]. Although the
biophysical constituents governing optical properties at leaf level are well understood, de-
coupling canopy reflectance from several confounding factors remains a challenge. Canopy
structure (quantified as LAI or crown biomass) controls variations in reflectance in the
NIR. Soil background, understory vegetation, leaf angle distribution, non-photosynthetic
material such as tree trunk and deadwood, and sensor and illumination geometry also
influence canopy reflectance properties [64,65]. The ultimate challenge of LMA estimation
and retrieval at the canopy level is to minimize the effect of these confounding factors and
obtain spectra sensitive to LMA. Studies that have estimated LMA from remote sensing
at both leaf and canopy scales have generally generated inconsistent results with low to
very high accuracy (R% = 0.24—0.96, RMSE =45 + 30%, Table 2) [12]. An RMSE of <25% is
generally sufficient and acceptable in remote sensing vegetation studies [66,67].

171+ . . ]
[63] . . |
[21]F . |
] R NN SR S—_— . . - |
[16] . .
[18] .. ]
[23] F . . ]

Reference

[15] F . o sNSme e e . R

[41] F . . . J

1 l 1 1 J

1 1 1 1 1

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
Wavelength (nm)

Figure 4. An overview of spectral wavelengths used in the literature to develop spectral indices to
estimate LMA. A typical green leaf reflectance is plotted to improve clarity.

A spatial scale mismatch exists between in situ measured LMA and canopy reflectance.
To match air- and space-borne spectral measurements, the spatial mismatch necessitates
scaling LMA from leaf to canopy level [68,69]. In pure forest stands, this is accomplished
by multiplying LMA determined from dominant trees by LAI to obtain canopy LMA. In
mixed-species stands, in contrast, LMA varies significantly between species [3]. Therefore,
a weighted community LMA that represents the dominant species has to be determined
prior to scaling the LMA to the canopy scale [70]. The community weighted LMA is
derived by weighting LMA by the proportion of the crown biomass or basal area of each
dominant species within a plot. Asner et al. [71] evaluated three approaches of determining
the LMA community mean: unweighted, weighted by stem density, and weighted by
basal area. When compared to the stem density (RMSE: 5.14 g m~2) and unweighted
(RMSE: 5.86 g m~2) approaches, the basal area weighted LMA produced the lowest RMSE
(4.95 g m~2) from remote sensing prediction using Carnegie Airborne Observatory-2 data.



Remote Sens. 2021, 13, 3352

9 of 25

The community weighted mean LMA is then scaled by LAI to obtain a canopy integrated
trait value, which is compatible with canopy reflectance. Homolova et al. [12] provide
extensive details on scaling traits to canopy level. Similar scaling consideration and
challenges for upscaling general traits, as presented by Serbin and Townsend [27], also
apply to LMA estimation.

4. Remote Sensing Systems in LMA Retrieval and Estimation

Conventionally, LMA is retrieved from leaf samples collected from representative
trees at fixed sampling locations before upscaling to canopy scale using biomass or LAI [12].
Enabled by advancements in technology, leaf surface area can be measured in situ us-
ing portable leaf surface area scanners. For decades, remote sensing has provided an
opportunity to augment and upscale LMA measurements from localized points to canopy
and landscape scales enabled by the availability of numerous remote sensing data ac-
quired through airborne and satellite spectroradiometers over large spatial scales. Broadly,
three remote sensing systems based on their viewing platforms are used to link LMA
and remote sensing signal. These systems are near-ground, airborne, and spaceborne
(satellite) platforms.

4.1. Near-Ground Based Platforms

Near-ground based platforms allow in situ proximal sensing of vegetation traits
using field spectrometers. The earliest efforts of linking spectroscopic measurements to
vegetation traits date back to the 1950s and 1960s, when researchers in the US Department of
Agriculture (USDA) measured spectra of dried and ground leaves, and identified 42 minor
absorption features linked to several traits that include LMA-related constituents [57].
Through advanced research, these features were successfully linked to the concentration
of LMA-related organic compounds such as protein, starch, cellulose, and lignin. Sensors
mounted on near-ground platforms have three advantages over sensors onboard air- and
spaceborne platforms. Firstly, the target can be manipulated to examine the spectral
response of each treatment. For example, Nunes et al. [72] examined the effect of soil type
on LMA estimation using in situ hyperspectral measurements within the 1100-2500 nm
spectral range. Secondly, the mixed-pixel effect can be reduced or eliminated by ensuring
the field of view (FOV) is covered entirely with vegetative material [73]. Thirdly, spectral
measurements using these sensors are not affected by atmospheric conditions because
the distance between the sensor and the target is often short. Thus, in situ hyperspectral
measurements are often spectrally “pure”, because measurements are not constrained
by the atmosphere that attenuates radiation in airborne and spaceborne remote sensing
systems. Thus, proximal sensors are reliably independent systems often used to calibrate
airborne and spaceborne sensors [74].

Near-ground hyperspectral data measurements provide invaluable insights for new
sensor design, in addition to the development and optimization of new spectral indices [75,76].
Researchers have the opportunity to investigate a wide range of band combinations at
both leaf and canopy levels. Several studies have developed new indices for estimating
LMA based on field spectral measurements [15,18,77]. Furthermore, techniques requiring
contiguous wavebands, such as red-edge inflection positioning (REIP) [78], continuum
removal, wavelets [63], and spectral derivatives are adequately examined using in situ
hyperspectral measurements.

In situ hyperspectral data are typically used to validate simulated spectral responses
during the development or modification (addition of other biochemical traits) of leaf
RTM. For example, the recent addition of protein and cellulose + lignin to the PROSPECT
model was first investigated using in situ hyperspectral measurements [79] before the
modified PROSPECT model was coupled with the Invertible Forest Reflectance Model (IN-
FORM) [80] and upscaled to canopy and landscape levels [81]. In addition, the PROSPECT
leaf radiative transfer model has been modified to include carotenoids, brown pigments,
and anthocyanins in PROSPECT-D [82], and the recent PROSPECT PRO disentangled LMA
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into protein and carbon-based constituents [22]. Simulated spectra after model modifica-
tion require in situ measured spectra to assess model sensitivity and robustness for which
in situ hyperspectral measurements are required.

4.2. Airborne Platforms

Airborne campaigns have traditionally been used to estimate plant traits at canopy
and landscape levels, mainly in temperate forest ecosystems [83,84]. Multispectral, hy-
perspectral, and thermal scanners fitted on aircraft have been used to retrieve vegetation
biophysical properties with great success. For example, recently, Singh et al. [85] estimated
LMA at canopy scale (R? = 0.88, RMSE = 15.06 g m~2) using 51 time-series AVIRIS-Classic
images acquired between 2008 and 2011. This study demonstrated the utility of imaging
spectroscopy and partial least squares regression (PLSR) in predicting and mapping LMA
across different functional types, sites, and years. Chadwick and Asner [86] estimated LMA
(R? = 0.43, NRMSE = 0.12) using PLSR based on hyperspectral measurements obtained
from a High-Fidelity Imaging Spectrometer (HiFIS) sensor mounted on an aircraft in a
tropical forest of Peru. Airborne spectral measurements have been instrumental in testing
spaceborne sensors before their launch.

Unmanned aerial systems (UASs), also known as drones, have revolutionized air-
borne remote sensing of vegetation. The influx of commercial vendors, in addition to
novel software and hardware, has boosted UAS data acquisition and analysis [87]. Sub-
sequently, the past decade has seen a shift from aircrafts towards relatively low-cost and
operation-friendly UAS [88]. These instruments are operation-friendly in terms of flight
planning and provide immediate access to data compared to satellite and aircraft imagery
acquisition. The prompt access to data is critical for “near real-time” ecosystem assessment,
particularly after disturbances such as fire or landslides. Drones have the capability to
provide imagery of high spatial resolution with a short temporal resolution. Thomson
et al. [89] used hyperspectral data (450-950 nm) acquired using a UAS to estimate LMA
(R? = 0.24 RMSE = 18%) in a managed forest in Ghana, West Africa. The absence of the
full NIR and SWIR potentially affected the accuracy generated from this study. The util-
ity of UASs in estimating LMA across the entire spectrum requires further testing in
forest ecosystems.

4.3. Spaceborne Satellite Platforms

Spaceborne or satellite-based platforms enable spectroradiometers to monitor vegeta-
tion’s spectral signatures at varying spatial and temporal scales from space. Instruments on
board satellites scan vegetation communities from localized pixels to landscape and global
scales at various temporal scales of monthly, biweekly (Landsat), near weekly (Sentinel-2s),
and approximately daily (MODIS-Moderate Resolution Imaging Spectroradiometer).

Currently, operational satellite instruments of moderate spectral and spatial resolu-
tions, such as Sentinel- 2 Multi-Spectral Instrument (MSI) and Landsat-8 Operational Land
Imager (OLI), are used with considerable success to estimate LMA in various biomes,
including temperate forest [44] and tropical rainforest [90]. These multispectral instru-
ments have spectral bands strategically positioned to increase plant trait response. For
example, Sentinel-2 and WorldView-3 instruments measure radiance in the red-edge spec-
trum (680-780 nm). The red-edge spectral region is highly sensitive to variation in foliar
nitrogen, a constituent of LMA [78]. Recent research demonstrates that the red-edge band
improves plant trait mapping [91]. Red-edge indices, such as the Red-edge Chlorophyll
Index (Clrededge) and Sentinel-2 Red-edge Position (S2REP), have been successfully used
to estimate LMA [44]. The launch of commercial high spatial resolution sensors, such as
IKONOS (4 m), Quickbird (2.88 m), and WorldView (1.24 m), has ostensibly provided
researchers with opportunities to link spectral data with LMA at very fine spatial scales,
such as individual tree crowns compared to Landsat and Sentinel-2. The inclusion of the
panchromatic band (at very fine resolution <50 cm) and the red-edge spectral band has
provided an immense opportunity to map LMA at even finer resolutions. To the best of
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our knowledge, the application of these high spatial resolution sensors remains untested in
estimating LMA.

The launch of spaceborne hyperspectral sensors, such as Hyperion in November 2000,
established the capability of spectroscopic imaging of plant traits from space. Hyperion on
Earth Observing One (EO-1) provided 220 spectral bands between 357 and 2576 nm with a
10 nm bandwidth before decommissioning in March 2017. le Maire et al. [15] demonstrated
the utility of a PROSAIL-derived normalized difference index (ND1490,2260) validated on the
Hyperion imagery (RMSE = 35.3 g m~2) in estimating LMA in two deciduous temperate
forests in France. Although a few studies have shown the utility of Hyperion data to
estimate foliar nitrogen [66,92], the utility of Hyperion data to estimate LMA requires
further investigation. Future missions, such as the German Environmental Mapping and
Analysis Program (ENMAP) and NASA’s Hyperspectral Infrared Imager (HyspIRI) [93],
have the potential to provide high quality hyperspectral data for tracking plant traits from
space. HyspIRI instrumentation has a visible-to-short-wave-infrared (VSWIR) imaging
spectrometer within the 380-2510 nm spectral range at 10 nm contiguous spectral bands
and a multispectral imager within the range of 3-13 pm with eight discrete bands across
the mid- and thermal-IR (TIR) portion of the spectrum. This dataset will present an
opportunity to sense LMA and related constituents in the thermal spectral domain, which
remain untested at the canopy and landscape levels.

4.4. Challenges in the Estimation of LMA using Air- and Space-borne Systems

Although remote sensing of LMA using air- and space-borne sensors has received
increased attention in the past decade, scientists continue to face several challenges during
vegetation remote sensing using these tools. Primarily, finding a dataset with optimal
spectral, spatial, and temporal resolution at low cost remains a daunting challenge [27,94].
Ideally, accurate estimation and retrieval of LMA from remote sensing require imagery
of higher spatial resolution comparable to the average size of individual tree crowns. In
addition to the fine grain size, spectral and temporal resolutions are also key in accurately
estimating LMA. Subtle absorption features associated with LMA and related constituents
(Table 1) require hyper-spectral data with strategically positioned spectral bands across the
electromagnetic spectrum. However, hyperspectral datasets are costly and require expert
knowledge to process due to their high dimensionality.

Available LMA-related data products, particularly at regional scales, are derived
from coarse resolution datasets such as MODIS (Figure 3) [51]. These coarse resolution
datasets are vulnerable to the problem of mixed pixels, especially in environments where
vegetation communities are patchy and scattered. Despite having a global footprint and
a high temporal resolution (daily), which are important for large scale trait monitoring,
datasets such as MODIS and Advanced Very High Resolution Radiometer (AVHRR) have
high estimation errors [95]. Alternative options, such as Landsat data, have a low temporal
resolution (16 days), whereas ideal high spatial resolution imagery, such as WorldView, is
expensive, and UAV systems are virtually impractical on larger scales. The discontinuity of
broadband sensors, such as Landsat (TM and MSS), AVHRR, and the ENVISAT MERIS
missions, has made time-series analysis of leaf traits difficult. Subsequently, there is a
tradeoff between the high temporal, coarse spatial resolution datasets and low temporal
resolution of moderate spatial resolution systems. However, the European Space Agency’s
Sentinel-2 MSI is potentially a game changer in mapping LMA [44] due to its high temporal
(5 days at the equator) and moderate spatial resolution (10/20 m), in addition to the
inclusion of red-edge spectral bands.

Utilizing multi-source datasets of varying resolutions to characterize LMA across large
spatial extents has the potential to generate global maps of this important trait. However,
the main challenge with multi-source optical data is wavelength calibration, as different sen-
sors have varying central wavelengths for each spectral band [27]. Resampling of spectral
bands to new wavelengths is data and process intensive, and demands expert knowledge
on spectral response functions of images of varying signal-to-noise ratio. Generating global
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maps of LMA using multi-source remote sensing imagery requires species abundance data
at optimal resolution across the globe to accurately compute the community weighted
mean [51]. Global species abundance data at desired resolution facilitate upscaling LMA to
spatial scales compatible with coarse resolution imagery with a global footprint. However,
global-scale species abundance products at the desired resolution (<1 km) are not available.

5. Models to Estimate/Retrieve LMA from Remote Sensing Data

Two key modelling approaches, i.e., statistical (empirical) and physical modelling
techniques, are often used to link traits such as LMA to remote sensing data at three different
scales, i.e., leaf, canopy, and landscape level [28]. Recently, hybrid-modelling techniques,
which combine elements of empirical and physical modelling, have received notable
reception [59]. An overview of methods and techniques used in LMA retrieval/estimation
is presented in Figure 5. Table 2 summarizes studies that have used these models and the
results they have obtained.

LMA
Estimation/Retrieval

Y A
Regression > Hybrid __J«—{RTM modelling

3

Spectral indices

Numerical
optimization

[ Linear ]
PLSR, SMLR,
PCR
A

Fitting functions
e.g linear, power

Spectral
transforms e.g
REIP, CR,
wavelets

Decision trees
e.g RF, BRT

Neural network
e.g ANN, BPANN

Kernel based e.g
SVM, GPR

Figure 5. An overview of methods and techniques used in leaf trait retrieval /estimation. Modified
based on [29] REIP: red edge inflection position, CR: continuum removal, PLSR: partial least squares
regression, SMLR: stepwise multiple linear regression, PCR: principal component regression, RF:
random forest, BRT: boosted regression trees, ANN: artificial neural network, BPANN: back propaga-
tion artificial neural network, SVM: support vector model, GPR: Gaussian process regression, LUT:
lookup table, RTM: radiative transfer model.

5.1. Statistical Modelling

Empirical models explore statistical relationships between traits and remote sensing
data (spectral bands, vegetation indices, texture metrics, spectral derivatives, i.e., contin-
uum removed spectra, wavelets, band depth). The approach relates remote sensing data
to in situ or in vitro measured traits at both leaf and canopy scales to identify the optimal
predictors using fitting functions (linear, logarithmic, polynomial, etc.) via regression
analysis [96]. There are two types of empirical models: parametric regression and non-
parametric regression. The parametric regression models assume an explicit relationship
between remote sensing data and traits. They employ parameterized expressions (fitting
functions) to link a small number of independent variables to traits. For example, Cheng
et al. [63] used simple regression to estimate LMA using continuous wavelets across a wide
range of plant species at leaf scale using the ANGERS, LOPEX, and PANAMA datasets.
Wavelet features allow the identification of absorption features using multi-scale analysis of
spectral signatures [97]. In the study of Cheng et al. [63], the wavelet feature that generated
the least RMSE (19.66 g m~2) was centered at waveband 1639 nm, demonstrating the
importance of the SWIR in LMA estimation. Several other studies have used parametric
models to develop indices to estimate LMA [15,18].

Non-parametric regression, by comparison, optimizes the traits’ remote sensing model
through a learning phase of the training data, i.e., the process is data driven. These models
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can use the entire spectrum or data from different sources by assigning weights to each
spectral band, and subsequently determine the relative importance of each predictor
variable [29]. Two classes of non-parametric regression models i.e., linear and non-linear
non-parametric models, have been identified and are widely used in remote sensing of
LMA. Linear models include partial least squares (PLS) [98], stepwise multiple linear
regression (SMLR) [99], and principal component regression (PCR) [100], whereas non-
linear models include decision tree learning (random forest, bagging decision trees) [101],
artificial neural networks (ANNSs) [102], kernel (support vector machines), and Bayesian
methods [103]. PLSR remains the most widely used model in LMA estimation across
biomes (Table 2) because of its ease of calibration and assessment of the contribution of
each waveband [104]. Recently, Serbin et al. [26] used PLSR to calibrate a multibiome model
using leaf reflectance to predict LMA (R? = 0.89 and RMSE = 15.45 g m~2). Random forest,
by comparison, has recently gained popularity in the vegetation remote sensing community.
Moreno-Martinez et al. [51] demonstrated that random forest outperformed five other
models (Extreme Learning Machine (ELM), kernel ridge regression (KRR), Gaussian Process
Regression (GPR), and regularized linear regression) in LMA prediction using MODIS
at a global scale. In addition, Gara et al. [44] used random forest to estimate canopy
LMA (R? = 0.67 NRMSE = 0.16) based on Sentinel-2 across three seasons in Bavaria Forest
National Park in Germany.

5.2. Physical Models

Physical models or radiative transfer models (RTMs) are superior to empirical models
due to their contextualization, transferability, and robustness [12]. RTMs simulate absorp-
tion and scattering of radiation in foliage material at both leaf and canopy levels using
well-established physical laws and knowledge. The operation of RTMs involves parameter-
izing a model with its respective input parameters and then executing (running) the model
in forward mode to generate a synthetic spectral library or a look-up table (LUT). The
spectral library (of m x n dimensions) is composed of variables of the input parameters,
including traits and the corresponding spectra. Model inversion through querying the
spectral library remains the most intelligent avenue of retrieving traits, such as LMA using
in situ, airborne, and satellite spectra [28,105]. Several RTMs with LMA as an input have
been developed and subsequently modified at both leaf and canopy levels.

At leaf scale, Gara et al. [24] successfully retrieved LMA from PROSPECT-4 simu-
lations across canopy (sunlit: NRMSE = 0.154 and shaded: NRMSE = 0.176) through-
out the growing season (spring: NRMSE 0.154, summer: NRMSE 0.148, and autumn:
NRMSE = 0.159) in a temperate forest using in situ leaf spectral measurements. The widely
used leaf RTM, PROSPECT, has been modified to include carotenoids, brown pigments,
anthocyanins, protein, and cellulose + lignin [79,82]. Recently, Féret et al. [22] developed
PROSPECT-PRO, a recalibrated PROSPECT model separating LMA into nitrogen and
carbon-based constituents (CBCs). CBCs include lignin, cellulose, hemicellulose, and non-
structural carbohydrates (sugars and starch). Jiang et al. [106] recently developed FASPECT,
a leaf radiative transfer model that simulates reflectance and transmittance of upper and
lower leaf faces. In LMA retrieval, FASPECT produced a lower RMSE (0.0017 g cm~2)
compared to PROSPECT-5 (0.0028), PROSPECT-D (0.0029 g cm~?2), and Dorsiventral Leaf
Model (0.0033 g cm2). Leaf radiative transfer models such as PROSPECT can be intrin-
sically coupled with canopy models, such as Scattering by Arbitrarily Inclined Leaves
(SAIL) and INFORM, to simulate reflectance at canopy scale [20,80]. For example, recently,
Miraglio et al. [107] achieved low accuracy (R? = 0.14, RMSE = 0.0022 g cm~2) using a
synergy of 3D DART and 1D PROSAIL based on AVIRIS-C airborne hyperspectral data.
However, a related study [108] successfully retrieved SLA, a reciprocal of LMA (R? = 0.76,
RMSE = 5.33%), from Landsat-8 multispectral data based on INFORM RTM simulations.
To the best of our knowledge, few studies [21,107] have used RTMs to retrieve LMA at the
canopy scale (Table 2). As a result, there is an urgent need to evaluate the utility of existing
canopy RTMs to retrieve LMA in forest ecosystems.
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5.3. Hybrid Modelling

Hybrid models combine the properties of empirical (especially non-parametric mod-
els) and physical models [96]. The procedure often entails calibrating an empirical model
based on synthetic data generated from an RTM in forward mode. The hybrid model is
subsequently validated using field-collected data. Hybrid modelling can be performed at
both leaf and canopy scale using leaf and canopy radiative transfer models. The hybrid
modelling approach is fast and computationally inexpensive compared to inverting RTMs
using LUT or numerical optimization [29]. Few studies have explored the synergy between
empirical models and radiative transfer models in estimating LMA at both leaf and canopy
scales. Such studies include le Maire et al. [15], who successfully developed spectral indices
to estimate LMA at leaf and canopy level from PROSPECT and PROSAIL simulations.
Their study observed that normalized indices utilizing wavebands centered at 2295 and
1500 nm yielded the most accurate model at leaf level (RMSE = 15.9 g cm~2), whereas 2280
and 1395 nm wavebands yielded the lowest RMSE of 14.4 jig cm 2 at canopy scale. Wang
et al. [18] developed a normalized dry matter index (NDMI) based on PROSPECT simu-
lations (R? = 0.85, 0.0019 g cm~2) that were also validated using the LOPEX dataset [109]
with an R? = 0.68 and RMSE of 0.0014 g cm 2. Féret et al. [23], by comparison, calibrated
partial least squares (PLS) models based on PROSPECT-5 simulations and generated RMSE
ranging between 0.002 and 0.0025 g cm~2 on synthetic data and 0.0007 g cm~2 on an
experimental dataset. Using Sentinel-2 multispectral data, Hauser et al. [110] successfully
demonstrated the utility of PROSAIL-D/support vector regression hybrid technique in
retrieving LMA (R? = 0.59, RMSE = 5.77 mg cm~2) in a forest and shrubland ecosystem at
canopy scale. It is worth noting that very few studies have evaluated the utility of hybrid
modelling in the retrieval of LMA, particularly at the canopy level in forest ecosystems.

In the mid-1990s and early 2000s, several studies demonstrated the utility of ANN
models trained using RTM synthetic data in estimating leaf traits using remotely sensed
data at different scales. Faurtyot and Baret [111] demonstrated the utility of the ANN
over multiple regression using simulated canopy spectra (880-2380 nm) generated from
the PROSAIL RTM in estimating LMA at both leaf and canopy scale. At an operational
level, the European Space Agency’s SNAP (Sentinel Application Platform) toolbox inverts
PROSAIL simulations based on Sentinel-2 MSI using ANN to retrieve several traits that
include LMA, etc. For example, Hauser et al. [110] recently used SNAP to retrieve LMA
(R? = 0.51, RMSE = 5.5 mg cm~?2) in a forest and shrubland ecosystem in a temperate forest
in Portugal using Sentinel-2 data. More research is required to determine the utility of the
SNAP toolbox in LMA retrieval in forest ecosystems.

5.4. Challenges in Remote Sensing Modeling of LMA

Although the three models described above have shown great potential in estimating
LMA from remote sensing, they are associated with a number of challenges. The challenges
associated with each model are outlined below.

Empirical models: The performance of parametric models is influenced by the selected
band combination, the form of the index used, and the chosen fitting algorithm. Band opti-
mization (all possible band combinations), especially with hyperspectral data, is required
to select a band combination that yields the best fit (R?) and the lowest error (RMSE) [112].
However, one challenge with band optimization is that the bands that yield the lowest
accuracy may be located outside the known absorption features of a particular trait. Multi-
collinearity is also a major challenge in parametric regression because remotely sensed
data are often highly correlated [113]. The use of parametric models, especially using
vegetation indices as predictors, has been documented to be affected by model saturation,
where an index reaches an asymptote and any further increase in trait content does not
trigger a response in the model. However, some studies [96] have demonstrated that
three-band indices are less affected by model saturation than two-band indices. A recent
study by Moreno-Martinez et al. [51] showed that the inclusion of bioclimatic data, such as
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temperature and precipitation, improves LMA prediction and thus mitigates the model
saturation effect.

The identification of spectral bands that match known absorption features of biochem-
icals remains a common problem with empirical models [114]. Matching spectral bands to
known absorption features feeds into the generic knowledge of vegetation spectroscopy
and is subsequently critical in explaining the cause—effect relationships between spectral
bands and vegetation biochemicals. Model saturation of traditional indices, such as the
NDV], is a well-known challenge reported extensively in the literature. For example, Stre-
her et al. [115]] observed that spectra measurements collected using a field spectrometer
failed to accurately estimate LMA values above 300 gm 2 in a study conducted in tropical
Brazil. Although narrowband indices have been demonstrated to ameliorate the satura-
tion challenges [116], hyperspectral datasets at the landscape and regional scales remain
unobtainable for most remote sensing researchers.

Table 2. Studies that estimated /retrieved LMA from remote sensing data.

Category Method Spectral Data Sensor Scale Main Findings Reported Reference
Parametric Contlmllci[us h Leaf tral Field leaf Wavelet features at 1639 nm and 2133 nm, yielded the most accurate [63]
regressions t:;;:fofm }r]gg;zf:rfc? spectrometer ea model to estimate LMA (R? = 0.74, RMSE = 18.97 g m~2) -

Non- A multibiome leaf spectra-LMA PLS model was built explaining 85%
parametric PLS In situ leaf Field leaf variance in LMA. The model incorporating vegetation from the [26]
linear reflectance spectrometer Arctic to the tropics, included broad- and needle leaf species, sunlit
regressions and shade foliar yielded a RMSE of 15.45 g m 2
In situ optical Field Synergy of Visible Short Wave Infrared (VSWIR) and Thermal
PLS and thermal leaf Infrared spectrum (TIR) improve LMA prediction (RMSEP = 18.31) [117]
reflectance spectrometer compared to using the spectral regions in isolation
Leaf Wavebands selected by the SMLR did not match known absorption
reflectance Field features of LMA and other related traits.
SMLR and derive spectrometer leaf The SMLR performed differently depending on the expression used [114]
spectra P i.e., more accurate models were generated using content (g m~2)
compared to concentration (g g~ ')
Al Carnegie . 2 _ o
PLS irborne Airborne canopy VSWIR and LiDAR generated R*=0.69 and RMSE = 9.99% in [32]
hyperspectral Observatory LMA estimation
EEI:():Z) 1:]112 Combining top-of-canopy (R? = 0.57, RMSE = 10.8 g m~2) and within
Airborne Observatory canopy (R? = 0.78, RMSE = 8.3 g m~2) LMA, significantly improved
PLS hyperspectral Platform- canopy three-dimensional PLSR modelling (R? = 0.82, RMSE = 8.5 g m2) of (62]
and LIDAR AVIRIS-NG- LMA. The 2000-2450 nm spectral subset generated the highest
like accuracy (%RMSE = 15.37) compared to the other spectral subsets
sensor (400-2450, 800-2450, 1600-2450 nm)
I{:ﬁ;ﬁgﬁ_ ?z SVM In situ leaf Field leaf SVM using spectral data between 900—2420() nm generated a RMSE of [59]
regressions reflectance spectrometer 2.52 mg cm
LMA varied significantly (p < 0.05) across the canopy between sunlit
Raw bands and shaded. A weighted canopy expression outperformed (R? = 0.67,
RF and spectral Sentinel-2 canopy NRMSE = 0.16) the traditional sunlit based expression (R* = 0.54, [44]
indices NRMSE = 0.18). predictive maps of LMA were generated using
Sentinel-2 bands and vegetation indices.
PROSPECT PRO separates LMA into the nitrogen-based constituents
- ' Leaf (proteins) and C].;C (cartl)lor;—based co}r:stittcllents i.e.), cellulose, lignin,
ysica . emicellulose, starch, and sugars
models (RTM PR%?{IgECT_ reﬂz;tgnce s eclzf)lrieter leaf CBC was accurately estimated for both fresh (R? = 0.96, [22]
based) transmittance P NRMSE = 9.6%) and dry leaves samples (R? = 0.95 and 13.4%) while
the sum of CBC and proteins (LMA) was estimated (R? = 0.90 and
NRMSE = 0.165)
LMA across the vertical canopy profile throughout the growing
Leaf Field season was successfully retrieved (R? 0.54-0.82, NRMSE 0.15-0.24)
PROSPECT reflectance spectrometer leaf from PROSPECT simulations using the LUT inversion. The best [24]
P retrieval was obtained for the summer (R? = 0.82, NRMSE= 0.15) and
for upper canopy leaf samples (R? = 0.61 NRMSE = 0.15)
PROSAIL hy‘;;‘zggc‘fml AVIRIS canopy PROSAIL inversion yielded a RMSE of 0.004. [21]
. . A PLS model calibrated using PROSPECT-5 spectral simulations
E);zrelli PI;?EEIECSFT reﬂ]gce’?zaf nce s eclzzlrfleter leaf yielded an RMSE of 0.007 g cm 2 on experimental data compared to [23]
P spectral index (NDpma = 0.0021 g cm~2)
Spectral Leaf A narrow band index (normalized dry matter index, NDMI) centered
ig dices hyperspectral Field leaf at 1649 and 1722 nm developed from PROSPECT simulations [18]
}rlgﬂecfance spectrometer (R? = 0.85 RMSE 0.0019 g cm 2 and validated on the LOPEX dataset

(R% = 0.68, RMSE = 0.0014 g cm~2) yielded the lowest estimation error

RMSE = root mean square error; NRMSE = normalized root mean square error; RMSEP = root mean square error of prediction.



Remote Sens. 2021, 13, 3352

16 of 25

Although non-parametric models have received increased use in the past decade,
they are associated with a challenge of overfitting the training dataset, especially when
using a small size or a dataset that has missing values. The overfitting challenge can be
addressed by tuning the model, including optimal selection of the number of predictors
that minimize the estimation error. This approach has the advantage of reducing model
complexity and achieving model parsimony. Rocha et al. [118] developed a valuable tool
(Naive Overfitting Index Selection) to detect, quantify, and reduce overfitting in seven
non-parametric regression models for estimating leaf traits using hyperspectral data.

Despite the availability of empirical models and their ease of calibration and subse-
quent validation, they are associated with model transferability and robustness challenges.
Parametric and non-parametric models are not generic and are thus sensor, time, and
ecosystem dependent [119]. A model calibrated using data collected in one ecosystem for
a particular season using a specified sensor often underperforms when tested in another
setup. However, Nakaji et al. [120] demonstrated the potential of building a multi-biome
PLSR model (R? = 0.85 and RMSE = 14.9 g m~2) to predict LMA at different leaf devel-
opmental stages using in situ leaf hyperspectral data across 14 deciduous and evergreen
forests in Japan, Thailand, and Malaysia. Therefore, there is a need to ascertain whether
similar results are obtainable at canopy and landscape levels using air- or space- borne sen-
sors. Moreover, the robustness of empirical models is affected by the representativeness of
the reference samples used for calibration and validation partitions. However, techniques
such as cross-validation and bootstrapping are known to correct for sample imbalance
between calibration and validation datasets [121].

Physical models: A major challenge of RTMs is that different combinations of the input
parameters can yield similar spectra (ill posedness), thus compromising model inver-
sion [122]. However, a few techniques have been proposed to ameliorate the ill-posedness
problem. Firstly, spectral sub-setting has been demonstrated to yield a better accuracy com-
pared to using the full wavelength [123,124]. For example, Féret et al. [59] demonstrated
that using spectral information between 1700 and 2400 nm decreased the LMA estimation
error by 33%. Secondly, selecting the mean or median of several best solutions compared
to using a single solution has been documented to yield a better result for LM A-related
constituents, such as protein and cellulose+ lignin [79]. Finally, Verrelst et al. [96] proposed
adding a Gaussian noise component to compensate for model uncertainty.

The collection of a suite of traits to calibrate and validate an RTM is a daunting ac-
tivity in itself that requires considerable investment in both time and resources [105]. A
virtuous trait dataset that captures variability in LMA within a study site is collected based
on a proper sampling design stratified across biophysical factors described in Section 2.
However, this approach is expensive and labor demanding. In addition, recalibrated
RTMs [22,82] require additional biochemicals as input variables to parameterize a model.
The equipment required to measure these leaf traits is often expensive and are not available
to most remote sensing vegetation scientists. Engaging the services of independent labo-
ratories is also expensive, especially for non-funded research projects. These challenges
have a bearing on in situ measurement and subsequent retrieval of LMA, especially using
physical and hybrid modelling.

Hybrid models: Hybrid models are associated with challenges related to both empirical
and physical models, as described in detail for each model above. The need to collect a set
of traits required to parameterize an RTM is a significant challenge with hybrid models.
For example, the recently published PROSPECT PRO requires at least six traits as input
variables [22]. Measuring these traits is time consuming and very expensive due to the
high-tech laboratory instruments required. Model overfitting also affects the performance
of hybrid models due to collinearity and spectral dependence [29]. However, Rivera-
Caicedo et al. [125] demonstrated that dimensional reduction techniques. such as canonical
correlation analysis (CCA) or ortho-normalized PLS (OPLS), significantly improve the
performance of the PROSAIL-ANN hybrid model compared to using all bands in LAI
estimation. Nevertheless, these dimensional reduction techniques remain untested in LMA
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estimation using hybrid models. Furthermore, the robustness of the RTM, signal-to-noise
ratio of the spectral data, and prior knowledge used in model parameterization have an
impact on hybrid model performance.

6. Research Gaps and Future Outlook

The gaps identified by our review can be classified into four categories, i.e., field
data availability, model development, remote sensing data availability, and scaling issues.
Increased cooperation between sensor designers, the vegetation remote sensing commu-
nity, and plant physiologists is critical for monitoring LMA from space. The Group on
Earth Observations Biodiversity Observation Network (GEOBON) emphasize increased
coordination between ecologists and remote sensing scientists, particularly regarding stan-
dardization and harmonization of trait measurements and subsequent integration of Earth
Observation (EO) products [126]. Agreeing on a list of biodiversity variables and their
respective indicators that can be monitored from space has been an achievement in the
past decade [127]. However, the availability of ground truthing data through field mea-
surements or data stored in trait databases remain a major challenge. Scaling LMA from in
situ leaf measurements to regional and global scales is difficult due to the patchiness and
scarcity of field data across the globe.

Most data (approximately 60%) archived in trait databases, such as the TRY plant
database, lack an explicit georeference and are thus difficult to use from a remote sensing
perspective [51]. Scaling LMA to canopy, and subsequently to regional and global scales,
requires species abundance data to compute the weighted community mean of each
sampling unit. Weighted community data that correspond to coarse spatial resolution of
sensors with a large footprint, such as MODIS, are largely unavailable. The commendable
efforts by the US NEON project to collect hyperspectral and LiDAR data in 20 ecoregions
during the past 30 years [27], coupled with field measurements of several traits, are
important steps towards addressing these issues, and emphasize the need to replicate these
efforts around the world to create global maps of LMA.

Decoupling LMA in radiative transfer modelling remains an ongoing challenge in
quantitative remote sensing. The unbundling of LMA into various constituents in the
physical modelling of vegetation has made somewhat progress in the last decade. The
specific absorption coefficient spectrum used in the PROSPECT model is a weighted aver-
age of the molecular absorption spectra of a wide-range of LMA constituents [58]. This
has resulted in relatively poor retrieval of LMA compared to other parameters because
different components of LMA can yield different specific absorption coefficients in differ-
ent vegetation types [59]. The recent separation of LMA constituents, such as nitrogen,
cellulose + lignin [79], and other carbon-based constituents (CBCs) [22] in the PROSPECT
leaf radiative transfer models has improved spectral matching and subsequent retrieval
of LMA in broadleaf samples. Although the incorporation of nitrogen was demonstrated
using the LIBERTY radiative transfer model [128], the model is specifically designed for
needles. The robustness of retrieving LMA and its related constituents using the revised
PROSPECT models requires further testing in several ecosystems and vegetation types
using multiple optical sensors.

There is also a need to develop new indices based on recalibrated leaf RTM models
such as PROSPECT-D and PROSPECT PRO coupled with canopy models (SAILH and
INFORM). Determining the form and wavelengths related to LMA is essential for landscape
and ecosystem modelling. Previous work conducted by le Maire et al. [15] demonstrated
the capability of calibrating and validating new indices from synthetic data generated from
PROSAIL and validated against airborne and in situ hyperspectral measurements. This
approach requires further testing in different forest ecosystems and biomes.

Although advanced non-parametric modelling approaches, such as ANN, PLSR, ran-
dom forest, and GPR, have proven to yield better estimation accuracy in estimating leaf
traits compared to traditional parametric regression in the past decade, most of these
non-parametric techniques remain black boxes and are not grounded in theory. However,
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training non-parametric models based on RTM simulations (hybrid modelling) has opened
up opportunities for further research and experiments [129]. Hybrid models are fast and
thus save computation time compared to conventional RTM inversion using LUT and
numerical optimization [96]. However, the utility of hybrid models requires further valida-
tion in different ecosystems, especially in tropical vegetation communities, where research
on remote sensing of LMA has been lacking. Féret et al. [59] successfully demonstrated
the retrieval of LMA based on the SVM trained model using the PROSPECT-D at leaf
level. Our literature search showed that the retrieval of LMA using machine-learning
techniques trained using simulated spectra remains understudied across forest ecosystems.
Chlorophyll content remains the most retrieved trait using hybrid modelling across various
ecosystems [129-131]. Therefore, there is a need for further research on other traits, such
as LMA and trace elements, especially using new generation sensors such as Sentinel-2
and WorldView.

The integration of different sensors (multi-source), particularly optical and thermal
sensors, promises exciting results for the future of remote sensing of LMA. Several LMA
constituents have been linked to thermal spectra at the laboratory level. For example,
Meerdink et al. [117] successfully estimated LMA together with other traits, such as lignin,
cellulose, and nitrogen, at leaf level using a synergy of in situ hyperspectral shortwave
infrared spectrum (0.3-2.5 um) and thermal infrared spectrum (2500-15,400 nm) across
multiple seasons. Similarly, Ullah et al. [132] demonstrated the utility of TIR (2500-1400 nm)
collected in a laboratory to estimate water content (R? = 0.67, RMSE = 13.27%). Several
other studies have demonstrated the utility of thermal spectra in leaf thickness estimation
in laboratory measurements [133]. There is a need to upscale these studies to landscape
and regional scales using thermal scanners mounted on aircraft (such as Hyperspectral
Thermal Emission Spectrometer) and spaceborne platforms. Forthcoming sensors, such as
HysplIRI, which will provide both optical and thermal spectra, will provide opportunities
for integration of VSWIR and TIR at large footprints for monitoring LMA and other
leaf traits. HyspIRI will provide spectral measurements in the visible to short wave
(380-2500 nm) and eight multispectral channels in the mid- to thermal infrared domain
(2500-12,000 nm) with a spatial resolution of 60 m and a revisit time of 5 days [93]. To
date, experimental studies have demonstrated the utility of simulated HyspIRI data in
estimating leaf traits [117,134-136]; however, landscape mapping using TIR multispectral
data at short temporal resolution remains on the horizon.

Most studies conducted to date have predominantly quantified the two-dimensional
variation in LMA, without capturing the three-dimensional structure of canopies. Two-
dimensional mapping based on LMA of foliar samples collected from the top of the
canopy is the predominant approach used in modelling LMA. Research has demon-
strated that LMA significantly varies across the canopy vertical profile [137,138]. There-
fore, functional traits such as LMA vary across the three-dimensional space in forest
ecosystems. Few studies have successfully incorporated the three-dimensional variation
in LMA modelling [44,62,139]. For example, Chlus et al. [62] demonstrated that com-
bining top-of-canopy (R? = 0.57, RMSE = 10.8 g m~2) and within-canopy (R? = 0.78,
RMSE =83 ¢ m~2) LMA significantly improved three-dimensional PLSR modelling
(R? = 0.82, RMSE = 8.5 g m~2) of LMA using imaging spectroscopy and LiDAR in a temper-
ate broadleaf forest. The National Ecological Observatory Network’s Airborne Observation
Platform (NEON AOP) in the United States, has been simultaneously collecting LiDAR
and hyperspectral data to improve our understanding of the three-dimensional modelling
of functional traits and vegetation structure across a variety of ecoregions. For example,
Kamoske et al. [139] demonstrated the fusion of LIDAR (Riegl Q780 Laser Measurement
System; 9.48 points/m?) and hyperspectral data (380-2500 nm; 5 nm band sampling in-
terval) in modelling LMA for the entire canopy volume (R? = 0.5) in a mixed forest using
PLSR. In light of this background, the integration of optical imagery and LiDAR in esti-
mating 3D patterns in LMA requires further research across sensors, functional types, and
biomes. With increased access to NEON AOP, NASA Goddard’s LiDAR, Hyperspectral,
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and Thermal Imager (G-LiHT), the Global Ecosystem Dynamics Investigation (GEDI), and
the proposed Surface Biology and Geology Mission (SBG) collecting hyperspectral and
LiDAR data across a variety of biomes, there is a unique opportunity to improve our
understanding on forest functioning across horizontal and vertical space and multiple
temporal domains.

The unmanned aerial system (UAS) will continue to modernize airborne and space-
borne multi- and hyperspectral imaging of traits. UASs are likely to become powerful in
the near future because of their advantageous revisit time and the continuous improvement
in the spectral quality of sensors that can be mounted on these systems. In addition to
providing a high throughput of data at localized spatial scales, these sensor-based platform
systems will also play a significant part in calibrating and providing reference data for
LMA mapping from spaceborne sensors.

7. Conclusions

The estimation/retrieval of LMA using remote sensing has gained considerable atten-
tion in the past decade. Accurate and timely prediction of LMA is important to understand
the forest’s photosynthetic capacity and health, and for fire risk management. Remote sens-
ing has the capacity to upscale and augment the labor-intensive field measurement across
space and time. Our review presented the status, challenges, and future opportunities
of remote sensing of LMA in forest ecosystems. The main findings of the review are as
follows:

i Studies on remote sensing of LMA are mainly based on leaf reflectance measured
using field spectrometers. A number of studies have been conducted using airborne
and spaceborne sensors. With the availability of multispectral sensors, such as
Sentinel-2 and Landsat-8, and new generation sensors, such as World View and Geo-
Eye, further research is required to assess the utility of these sensors to characterize
a key EBV at a large spatial scale.

ii. Most studies on the estimation/retrieval of LMA have been conducted using the
optical range of 400-2500 nm. A few studies have assessed the utility of sensor
integration, especially data in the thermal spectrum for LMA estimation. Upcoming
sensors such as HyspIRI, which sense radiance in the thermal domain, will provide
an opportunity to test and upscale LMA estimation in the thermal domain over
large spatial extents.

iii. Optical imagery can be used to estimate LMA in two-dimensional space. Studies
have demonstrated that LMA significantly varies across the canopy vertical profile
due to variation in radiance. Therefore, the characterization of LMA in three-
dimensional space by synergizing optical sensors and LiDAR products requires
further investigation in different forest types at various temporal domains.

iv. Despite recent achievements in the separation of LMA constituents in radiative
models such as PROSPECT, continuous efforts to unbundle LMA constituents
remain an ongoing process. The modified PROSPECT models require further
testing by scaling them to canopy and landscape scale in forest ecosystems.

V. The advancement in novel non-parametric algorithms, such as GPR, and the im-
provement in physical models, such as PROSPECT PRO, have provided oppor-
tunities for validating the utility of hybrid models in LMA retrieval from RTM
simulations. Currently, hybrid models for LMA retrieval have been calibrated
based on earlier versions of radiative transfer models and non-parametric models
such as PLS.

vi. There is potential confusion regarding the terminology used in scientific reports in
referring to LMA. Terms such as mass-based leaf dry matter content (LDMC) and
specific leaf weight have been used interchangeably with LMA. Consistent use of
the term LMA to refer to the area-based dry matter is encouraged.
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