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Abstract: Defining stream channels in a watershed is important for assessing freshwater habitat
availability, complexity, and quality. However, mapping channels of small tributary streams becomes
challenging due to frequent channel change and dense vegetation coverage. In this study, we used an
Unmanned Aerial Vehicle (UAV) and photogrammetry method to obtain a 3D Digital Surface Model
(DSM) to estimate the total in-stream channel and channel width within grazed riparian pastures.
We used two methods to predict the stream channel boundary: the Slope Gradient (SG) and Vertical
Slope Position (VSP). As a comparison, the same methods were also applied using low-resolution
DEM, obtained with traditional photogrammetry (coarse resolution) and two more LiDAR-derived
DEMs with different resolution. When using the SG method, the higher-resolution, UAV-derived
DEM provided the best agreement with the field-validated area followed by the high-resolution
LiDAR DEM, with Mean Squared Errors (MSE) of 1.81 m and 1.91 m, respectively. The LiDAR DEM
collected at low resolution was able to predict the stream channel with a MSE of 3.33 m. Finally,
the coarse DEM did not perform accurately and the MSE obtained was 26.76 m. On the other hand,
when the VSP method was used we found that low-resolution LiDAR DEM performed the best
followed by high-resolution LiDAR, with MSE values of 9.70 and 11.45 m, respectively. The MSE
for the UAV-derived DEM was 15.12 m and for the coarse DEM was 20.78 m. We found that the
UAV-derived DEM could be used to identify steep bank which could be used for mapping the
hydrogeomorphology of lower order streams. Therefore, UAVs could be applied to efficiently map
small stream channels in order to monitor the dynamic changes occurring in these ecosystems at a
local scale. However, the VSP method should be used to map stream channels in small watersheds
when high resolution DEM data is not available.

Keywords: DEM; LiDAR; UAV; stream bank; VSP; Slope Gradient

1. Introduction

Freshwater ecosystems provide critical habitat for insects, amphibians and other
wildlife. Many terrestrial species travel through or settle for a short period of their life
cycles in these areas as they seek suitable shelter [1,2]. The riverine forest provides an
important niche for many wildlife species and is also used as a travel corridor for other
species, such as birds and small mammals [3–6]. The shoreline vegetation offers shade and
wind protection that helps regulate water temperature and increases the dissolved oxygen
concentration [7–10].

One of the most important physical indicators related to freshwater ecosystem assess-
ments is stream location and stream bank condition. In order to evaluate the environmental
condition of riparian corridors, it is necessary to quantify vegetation coverage and stream
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bank morphologic characteristics (stream bed slope and sinuosity) and predict bank erosion
rates [11–13]. The presence and distribution patterns of specific plant species growing
on stream banks are closely related to fluvial geomorphic processes, bankfull discharge
and natural dynamics occurring in these areas [14,15]. Additionally, the distribution of
herbaceous plant species, woody shrubs and tree species can significantly influence the
hydromorphic roughness of the floodplain. It can also affect the transition between the
main channel and the floodplain, and modify the dynamics of flood waves [16–18].

The removal of streamside vegetation due to land use activities, such as cattle grazing,
can lead to dramatic changes in stream channel size and morphology. Previous studies
concluded that grazing activities not only trigger increases in sediment load, but also cause
channel incision and widening [19–21]. As a consequence, the effects of increased turbidity
and channel widening can severely affect channel morphology and threat fish habitat.

In order to apply management strategies to mitigate the environmental concerns in
these areas, the first step is to pinpoint the bank slope position, which can serve as the
starting point of further analysis of stream conditions and water quality. Satellite-derived
imagery and images obtained with traditional high-altitude aerial photography have been
widely used since they cover broad areas. However, the vegetation overhanging on top
of a stream channel can partially shade the stream’s boundaries and make it difficult to
ascertain the exact location of boundaries. This fact becomes particularly exacerbated over
small streams where image resolution becomes the limiting factor [22,23].

Digital elevation models (DEMs) have been widely used as a source for landscape mod-
elling and solving various environmental problems, as an alternative to satellite-derived
imagery. The accuracy of DEMs could have a major impact on the quality of DEM-derived
landscape matrices, including surface drainage patterns and channel geomorphology pre-
diction [24,25]. In addition to DEM accuracies, the resolution of DEMs is also critically
important for the mapping of small streams and narrow conduits in floodplains. Therefore,
coarse-resolution DEMs obtained with traditional photogrammetry cannot preserve fine
topographical terrain features, such as small stream channels, bank locations and bank
slopes [26–30]. Additionally, water level fluctuations coupled with stream erosion and
sedimentation processes over time can lead the datasets derived from aerial photography
to be rapidly outdated, since they are unable to reflect these changes periodically [31–33].

High-resolution LiDAR (Light Detection and Ranging) DEMs can provide more detail
to detect and locate microtopographic features at the sub-meter scale [34–36]. Therefore,
they have been used as a source to implement mitigation strategies at critical locations
to prevent pollutant transfer and increase pollutant retention [37,38]. However, LiDAR
presents some drawbacks: the dataset production can be costly due to the expensive sensors
employed, and the broad geographical areas covered require lengthy software processing
times and the need of trained personnel. As a consequence, LiDAR datasets are updated
periodically every five years, or longer, which is insufficient to accurately capture the
frequent changes often occurring in freshwater ecosystems.

Latest developments in computer science have developed dynamic algorithms capable
of data-driven decisions, i.e., Machine Learning (ML), which have been applied to environ-
mental sciences [39–41]. With the help of ML technology, Islam et al. [42] found that higher
resolutions of image and elevation detail could have generated more accurate data for
environmental risk assessment. Martinez-Santos et al. [43] used Random Forest (RF) and
Super Vector Machines (SVM) to predict and classify the presence of water bodies. Whilst
the algorithm performed well over flat areas, the authors reported some imprecisions over
ridges due to the absence of accurate DEMs [43].

Recent advances, availability and affordability of Unmanned Aerial Vehicles (UAV)
coupled with computer algorithms have made their usage a cost-effective alternative to
Airborne Laser Scanning (ALS) [44–46]. Manfreda et al. [47] pointed out that UAVs could be
used as the connection device between field observations and spatiotemporal constraints,
which could remarkably improve environmental monitoring over small low-order streams.



Remote Sens. 2021, 13, 3380 3 of 21

The integration of a UAV-derived Digital Terrain Model (DTM) can consistently
improve the classification accuracy of (1) land cover/image classification and (2) change
detection [48–50]. In this sense, Schumann et al. [51] used UAVs to generate a bare-Earth
model and extract floodplain and river cross-section geometries of a small stream in the U.S.
They concluded that UAVs were precise and could extract highly detailed topographical
data over significantly small scales. Chen et al. [52] compared satellite, LiDAR and UAV-
derived DEMs to estimate the vertical errors among these topographic models in order to
assess their feasibility in water balance estimations over a wetland area. They concluded
that photogrammetric UAVs were a cost-efficient approach for bathymetry estimations.

The proliferation of UAV-based remote sensing techniques has been applied for moni-
toring and managing natural and sensitive ecosystems, such as peat bogs. For example,
Lendzioch et al. [53] sampled groundwater levels (GWL) and soil moisture (SM) in two
different locations in Czechia. They concluded that UAV-based thermal data estimations
combined with DSMs can accurately predict spatial distribution of these GWL and SM
parameters on peat bogs.

In order to predict stream channel geomorphology, several authors have used different
algorithms to locate abrupt changes in channel slope, or areas of rough terrain, using
DEMs as a source. Meng et al. [54] elaborated an algorithm called Vertical Slope Position
(VSP) which produced realistic delineations of small-scale catchment areas, flow channels,
depressions and wet areas. Based on this algorithm, the soil saturation is predicted to be
higher in areas close in elevation to their assigned surface water, which decreases the VSP.
Thereby, the VSP has been implemented to delineate hydrologic sensitive areas (HSAs)
and critical source areas (CSAs) in agricultural catchments, with especial detail in areas
intersecting the stream [37]. Cartwright and Diehl [55] used the Slope Gradient (SG) to
classify Topographic Position Index (TPI) and predict steep bank slope areas sensitive
to geomorphic instability and estimate indicators associated with fluvial erosion risk.
They concluded that highly localized areas of high profile curvature and steep slope were
probably excessively small to be resolved by 1 m DEMs.

Based on these previous studies, we believe that UAVs could be used as a cost-effective
method to map the stream geomorphology and channel boundaries in small watersheds
and provide this critical landscape structure parameter that was not easily available in the
past. The main aim of this study is to assess the feasibility of precisely mapping lower
order stream bank locations with UAV in comparison to LiDAR. We used two algorithms
to map the bank location: (i) Slope Gradient (SG) and (ii) Vertical Slope Position (VSP). The
accuracies of these two methods in predicting stream bank location were assessed using
four different DEMs: a UAV-derived DEM and three provincial DEM sources; (1) Traditional
coarse resolution DEM; (2) LiDAR at 1.2 pulses m−2; and (3) LiDAR at 6 pulses m−2.

2. Materials and Methods
2.1. Study Area

The study was conducted at the Ridge Brook Watershed, which is a small sub-
watershed of the Canaan River Watershed in southeastern New Brunswick, Canada
(46◦01′29.0′ ′ N, 65◦18′32.5′ ′ W; Figure 1). The climate in this Canadian maritime province
is considered warm-summer humid continental (categorized as Dfb in the Köpen-Geiger
system classification; Figure 1), with freezing snowy winters and warm summers. The
cold winter is generally caused by air masses coming from interior coupled with cold
currents coming from the sea. Temperatures are expected to drop to −30 ◦C or even lower.
Summer highs are expected around 32 ◦C, most likely in the southern part of the province.
Precipitation is distributed throughout the year, with expected amounts of 1300 mm over
the southern coast, and about half of total precipitation is in the form of snow.
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The sub-watershed where the study was conducted covers an area of 7020 ha, with a 
small-scale limestone extraction operation near the small town of Havelock. The soil type 
has been classified as Luvisolic, which is commonly found in depressions with poorly 
drained sites coupled with Regosolic soils. These soils may have an Ah or Ae horizons as 
top mineral horizons. An Ah horizon is enriched with organic matter often combined with 
eluvial platy A horizons (Ae). Often, silicate clay has been leached by percolating water 
to illuvial horizons (Bt) of clay deposition and organic matter storage in imperfectly 
drained sites. Therefore, Luvisols are typically well supplied with base cations, such as 
calcium and magnesium, and have loamy or clay-dominated soil textures. Clay in Bt hori-
zon can be restrictive to air and water movement as well as to root growth. These types of 
soils are often classified as rapidly to imperfectly drained (Canadian soil classification 
system). The pH detected in the field is close to 5.5. In agriculture area, mix crops, includ-
ing grasses, barley and legumes, are commonly observed. 

The stream bank is mostly dominated by reed canary grass (Phalaris arundinacea), Joe-
pye weed (Eutrochium purpureum), horse tails (Equisetum sp) and cattails (Typha sp) as the 
herbaceous layer. On the other hand, speckled alder (Alnus incana), green alder (Alnus 
viridis), red osier dogwood (Cornus sericea) and willows (Salix sp) dominated the woody 
shrub strata. The upstream riverine area adjacent to the farm is surrounded by two sec-
tions of planted conifer species, red pine (Pinus resinosa) and Jack pine (Pinus banksiana). 
These planted species may increase the acidity of the soil in the natural riparian forest, 
located in the southernmost part of the study area. 

Figure 1. (a) Köppen-Geiger climate types of Atlantic Canada and the location of The Ridge Brook sub-watershed within
the province of New Brunswick (NB, Canada); and (b) the location of the study area (Hicksville settlement, Havelock, NB).
In red, the area covered by the bioengineered buffer. Yellow triangles show common areas where cattle cross the stream.
The stream follows a South to North direction.

The sub-watershed where the study was conducted covers an area of 7020 ha, with
a small-scale limestone extraction operation near the small town of Havelock. The soil
type has been classified as Luvisolic, which is commonly found in depressions with poorly
drained sites coupled with Regosolic soils. These soils may have an Ah or Ae horizons as
top mineral horizons. An Ah horizon is enriched with organic matter often combined with
eluvial platy A horizons (Ae). Often, silicate clay has been leached by percolating water to
illuvial horizons (Bt) of clay deposition and organic matter storage in imperfectly drained
sites. Therefore, Luvisols are typically well supplied with base cations, such as calcium
and magnesium, and have loamy or clay-dominated soil textures. Clay in Bt horizon can
be restrictive to air and water movement as well as to root growth. These types of soils are
often classified as rapidly to imperfectly drained (Canadian soil classification system). The
pH detected in the field is close to 5.5. In agriculture area, mix crops, including grasses,
barley and legumes, are commonly observed.

The stream bank is mostly dominated by reed canary grass (Phalaris arundinacea),
Joe-pye weed (Eutrochium purpureum), horse tails (Equisetum sp) and cattails (Typha sp) as
the herbaceous layer. On the other hand, speckled alder (Alnus incana), green alder (Alnus
viridis), red osier dogwood (Cornus sericea) and willows (Salix sp) dominated the woody
shrub strata. The upstream riverine area adjacent to the farm is surrounded by two sections
of planted conifer species, red pine (Pinus resinosa) and Jack pine (Pinus banksiana). These
planted species may increase the acidity of the soil in the natural riparian forest, located in
the southernmost part of the study area.
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Over the past decades, the stream assessments of the Canaan River have reported
tremendous development pressures due to forestry and agricultural activities, which have
affected the quality and quantity of the adjacent water bodies. Within the study area cattle
had access to the stream as a watering source which partially removed the streamside
vegetation. As a consequence, sedimentation of sand and gravel deposits increased in
stream which led to degradation of water and habitat quality. After a detailed fluvial
geomorphic assessment, a bioengineered buffer zone was implemented over a decade ago
to re-align the channel based on the natural hydraulic characteristics. This bioengineering
buffer zone project added stability to the stream and allowed the recovery of the riverine
corridor close to natural condition. Natural pool/riffle spacing was developed, allowing
fish to move freely through this section of the brook during any flow conditions, which
led to a progressive recovery of aquatic habitat for salmonids. However, due to the lack
of an off-stream watering system for cattle and absence of a dedicated livestock crossing,
vegetation is still removed from grazing activities over the streamside areas outside of the
bioengineered buffer.

2.2. Data Collection and Data Processing

In order to delineate the riverbank and estimate the channel surface area, four different
types of datasets obtained with different methods and resolutions were applied: (1) UAV-
derived DEM; (2) coarse resolution DEM, obtained with traditional photogrammetry;
(3) LiDAR-derived DEM at 1.2 pulses m−2; (4) LiDAR-derived DEM at 6 pulses m−2.

2.2.1. Unmanned Aerial Vehicle (UAV) and Sensors

A DJI Phantom 4 Pro (Nanshan, Shenzhen, China; Da-Jiang Innovations, SZ DJI
Technology Co., LTD; Figure 2) was used for this study. The Phantom 4 Pro is a vertical
takeoff and landing aircraft with total payload of 1388 g including battery and camera. This
UAV uses four 2312S Brushless motors powered by a 15.2 V battery with a cruising speed
of 72.0 km h−1 (s-mode) and a maximum climb speed of 6 m s−1. The maximum wind
speed resistance is up to 10.0 m s−1. The reported transmission range with no obstruction f
or interference is up to 7000 m and the maximum service ceiling is 6000 m asl. The stated
maximum flight time with a single battery is 30 min. In our tests, we observed a practical
flight time of nearly 25 min, depending on wind speed and temperature (<10 km h−1;
>4 ◦C).
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Figure 2. The DJI Phantom 4 Pro set up in the field.

The onboard camera is a 1” complementary metal oxide semiconductor (CMOS) with
20M effective pixels (5472 × 3648). The lens has a field of view (FOV) of 84◦ and the
focal length is 8.8 mm/24 mm (35 mm format equivalent) f/2.8–f/11 auto focus at 1 m–∞.
During the flight, the image trigger can be activated automatically in autopilot flight mode,
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with simultaneous timestamps. The sensor registers either vertical images captured at
nadir angle, for 2D maps, or off-nadir angles (up to 90 degrees) for 3D Digital Surface
Model (DSM) reconstructions. Due to its multiple satellite position navigation system (GPS
& GLONASS), the aircraft can automatically record GPS locations. Images and metadata
are automatically stored with a 64 GB Lexar high performance 633x MicroSDXC UHS-I
Secure Digial Card (SD-Card).

This DJI Phantom 4 Pro was chosen due to its recognized camera stability [56,57].
This UAV outperformed other UAVs (e.g., DJI Mavic Pro, DJI Matrice 210 and DJI Inspire
1) tested in a previous study led by Rogers et al. [58]. It provided the highest prediction
accuracy in four of the six land covers tested (forest, vines, bare soil and mowed grass).
This study also stated that the Phantom 4 Pro provided the best balance between size and
sensor resolution. Kuželka and Surový [59] concluded that the images acquired with this
UAV had higher quality and detail than DJI Mavic Pro due to its larger sensor and higher
sensor resolution.

2.2.2. UAV Data Collection

Parallel flight grid missions were programmed in order to collect images with the
UAV. We used a side image and frontal overlap rate of 80%, during pre-leaf conditions
to cover 36 ha, in May 2019. We acquired 1027 images in two flights, with an average
flight speed of 7 m s−1 at near-ground elevation (80 m); all images were captured at nadir
camera angle. Wind speed was less than 10 km h−1 during flight time and the sky was
partially overcast, with few clouds and low sunlight intensity. This particular season
provided the best field conditions to obtain aerial images of the stream, since the stream
bank’s herbaceous vegetation was still snow-flattened, but without residual snow cover
on the ground. This helped to reduce the potential elevation error caused by the height of
streamside vegetation observed during summer and fall. Therefore, no seasonal analysis
was performed.

The captured images were processed under the Structure-from-Motion (SfM) algo-
rithm to generate geo-rectified orthomosaic images using software package Pix4D 4.4
(Prilly, Switzerland; Pix4D S.A.). The latitude, longitude and altitude (WGS84 projection)
recorded in metadata with onboard GPS of UAV were used to position the aerial photos
first. Common points from different images in the overlap areas were used as keypoints
to build a 3D projected point through aero-triangulation [60]. In order to improve the
software image stitching, 10 manual tie points (mtps) were added in the planted forest
area upstream. Additional errors originating from lens distortion, GPS position error,
aircraft attitude uncertainty and errors in time domain can lead to decreased accuracy in
the relative UAV map geolocation [61]. Therefore, the overall geolocation was corrected
using the target coordinates as checkpoints, acquired with handheld GPS as relative accu-
racy [62]. Six ground control markers (square targets of 1.44 m2) were equally distributed
across the site and at the boundaries of the study area, including next to the watercourse
at different elevations (Figure 3). In order to mark the positions of the panels with geo-
metrical precision, a ground control point (GCP) of each target’s corners was recorded
with a Trimble Geoexplorer 6000 Series handheld GPS for georeferencing accuracy. For
each record, the GPS device was connected to a minimum of 16 satellites available and the
precision observed during the geolocation acquisition was 10 cm. The GPS was placed on
a static position for 30 s on each GCP using Real Time Kinematics (RTK) mode.

2.2.3. Point Cloud Editing

Overall, the software can automatically classify different land uses, such as pastures,
road, buildings, high vegetation and roads, with acceptable accuracy. However, finer
manual classification was undertaken in order to correct potential 3D point punctual
misclassifications of ground or vegetation, to avoid errors in the digital ground surface
model [63]. In addition to the error caused by stream bank vegetation, another source of
error was found within the stream channel. This was potentially caused by floating objects
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moving on the water’s surface as well as light/illumination changes between images
captured at different times (i.e., reflection, absorption and refraction). In some areas, the
UAV camera could penetrate the water surface and captured the stream bed, while in
other high-reflection conditions the light could not penetrate the water’s surface. This
is a common source of error, or noise, in the estimation of surface elevation [46,64]. For
these reasons, points classified as water were removed in order to reduce the elevation
uncertainties for the estimation of the stream channel, the triangulation, and the effects on
the quality of the DEM [64]. The resulting point cloud had an average density of 833 points
m−2 and it was further interpolated at 0.3 m resolution, using the LAStools commercial
software suite (Martin Isenburg, LAStools-efficient tools for LiDAR processing).
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2.3. Traditional DEM and LiDAR DEMs

The coarse resolution DEM obtained with traditional photogrammetry was acquired
from the Service New Brunswick (SNB; http://www.snb.ca/geonb1/e/dc/catalogue-E.
asp, accessed on 1 July 2021). The accuracy of a single elevation point was approximately
2.5 m and the spacing between the elevation points was nearly 70 m on average, with
increased density in more complex terrain areas. We generated a DEM at a 2 m cell size
using the Inverse Distance Weighted (IDW) interpolation method.

The LiDAR DEMs were obtained from SNB geographic database. The point cloud
density of the LiDAR dataset collected in 2013 was 1.2 points m−2, with horizontal accuracy
of 0.3 m and vertical accuracy of 0.133 m at 95% confidence level. The point cloud density of
the LiDAR dataset collected in 2018 was 6 points m−2, with horizontal accuracy of 0.20 m
and vertical accuracy was RMSE Z = 10.5 cm, equating to ±20.6 cm at 95% confidence level.

It is essential to remove points being classified as water when processing LiDAR DEM.
The elevations of water points (such as depressions) are lower than their surroundings,
and as such the overall accuracy of the interpolated surface between points may decrease
if a significant number of these points are present but not resolved. Thus, the LiDAR

http://www.snb.ca/geonb1/e/dc/catalogue-E.asp
http://www.snb.ca/geonb1/e/dc/catalogue-E.asp
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hydrologic enhancement correction was applied prior to DEM generation, as recommended
by previous researchers [65,66]. The DEM raster was generated with Natural Neighbor
interpolation with 30 cm resolution.

2.4. Stream Network

Spatial hydrology tools of ArcGIS (10.5) were used to generate stream networks
using the previously described DEMs as inputs. For the coarse resolution DEM, “stream
burning” of the provincially field-mapped open drainage channel network (SNB Geospatial
Database) was used to lower cells in the interpolated DEM to invigorate overland flow
through mapped feature locations [27]. The resolution of this topographic model was
excessively coarse to capture and represent narrow topographic features such as stream
channels due to surface generalizations of the terrain [67,68].

Although LiDAR- and UAV-derived DEMs do not require stream burning due to high
point cloud density, hydro-conditioning was still required to remove local depressions
created by natural or artificial landscape features. The eight-direction flow model (D8
algorithm [69]) was used to derive the flow network and calculate the flow accumulation.
The minimum flow initiation threshold for flow accumulation was set as 4 ha (equivalent
to 444,444 DEM cells for high-resolution DEMs and 2500 cells for coarse DEMs), to remove
seasonal streams from the map and to geographically represent drainage of only the main
channel with average water flows year-round.

2.5. Stream Channel Boundary Prediction Methods

In this study, two methods were used to represent stream hydrogeomorphology and
to predict stream channel boundaries: the Slope Gradient (SG) and the Vertical Slope
Position (VSP). The Slope Gradient method assumes that a marked degree of change in
elevation along the land/water interface could be detected by the steep slope of a stream
bank, and this abrupt steep slope could be detected with high-resolution DEMs. Average
zone slope threshold values were extracted by overlaying a line feature that intersected the
land/water border predicted by the DEM. Due to the relatively small extent of interest, it
was assumed that the natural slope gradient was negligible and this was the average value
used. With “ground” class selected in high-resolution point clouds (LiDAR and UAV), the
area between both stream bank sides would be estimated as water surface, in the particular
time of data collection, for each data source. In higher-resolution datasets, target raster
zones were cleaned (filtered) by a series of raster functions to (1) remove small zones (using
shrink function), (2) perform an area-based threshold of remaining zones (region group and
zonal geometry functions) and (3) expand remaining zones back to their original extent.

The Vertical Slope Position (VSP) is defined as the elevation differences between the
land and the nearest water surface and calculated by integrating the elevation difference
for each cell alone to the nearest water body [54]:

VSP = min ∑(d ∗ s)VSP = min ∑(d ∗ s) (1)

where “d” is the distance between two adjacent cells (m) and “s” is slope steepness (m m−1).
The groundwater table thresholds set in DEMs are representative of the depth to water

or elevation difference to water. Cells with a VSP below a threshold value were classified
as stream channel and the threshold value was calibrated with field data.

2.6. Field-Validation and Statistical Analysis

The Trimble Geoexplorer 6000 GPS unit (10 cm accuracy) was used to record the
stream bank location in RTK mode with a minimum of 16 satellites available and a reported
error of 10 cm. We recorded the location where herbaceous emergent aquatic species were
found. The distribution and density of these plant species could be used as an indicator
of the most representative long term processes occurring on the stream bank [14,15]. In
sections where high dense riparian vegetation impeded proper human access to the stream,
150 singular GPS waypoints were collected to complete the field delineation. In addition,
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we also measured 25 field-cross sections selecting the areas partially covered by the dense
canopy where the human access was difficult. Within a distance of 1.04 km of the stream
surveyed, field-cross sections ranged from 5.5 m in the partially restored area to 19 m in
the widest section of the stream, near the section where cattle grazed more intensely.

The LiDAR hydrologic enhancement correction, detailed previously, reduced the
natural land features, such as rock outcrops and small stream islands, detected by LiDAR
within the stream channel. This fact isolated the slope gradient maximal change detection
towards the longitudinal narrow boundary and improved its prediction. We obtained the
same effect by removing the points classified as water from the UAV point cloud.

For the VSP map, different elevation thresholds were tested in order to maximize the
correctness and minimize both errors of omission (false negative) and commission (false
positive) by using the field-validated GPS transect as a reference.

The receiver operating characteristic (ROC) curves optimized the trade-off between
the false positive rate (error) and the true positive rate in predicting the stream boundary,
at various threshold settings (shown as cumulative probability [70,71]). Intervals of 0.5 m
of error were used to estimate the correctness (cumulative probability extracted from ROC
curves) of each DEM, in order to determine the percentage of agreement between the
predicted and observed stream bank locations. Mean squared errors (MSE) were used to
measure of the degree of agreement between predicted and observed stream bank locations:

MSE =
1
n

n

∑
i=n

(Yi − Ŷi)
2 (2)

where Y is the vector of observed values (precise location recorded with GPS) of the i
variable predicted and Ŷ are the predicted DEM values, measured in meters. Figure 4
summarizes the methodology used in this study.

Mean relative error (MRE) was used as the second indicator to assess the goodness of
fit:

MRE =
1
n

n

∑
i=n

∣∣Ŷi −Yi
∣∣

Yi
(3)

The Kling-Gupta Efficiency (KGE) proposed by Kling et al. [72] was calculated to
measure the goodness-of-fit. This indicator has been widely used in recent years to ensure
that the bias and variability ratios were not cross-correlated [73,74]:

KGE = 1−

√
(PC− 1)2 +

(
sdp
sdo
− 1
)2

+
(mp

mo
− 1
)2

(4)

where PC corresponds to the Pearson Coefficient value, mo is the average of observed
values and mp is average of predicted (DEM) values. The standard deviation of observed
values is represented as sdo and standard deviation of predicted values is represented in
sdp.

3. Results
3.1. UAV-Derived DEM Geolocation Accuracy

Since the Phantom 4 Pro was capable of automatically recording GPS locations, we
used this product as the relative geolocation. However, adverse factors such as lens distor-
tion, GPS position error, aircraft attitude uncertainty and errors in time domain can lead to
decreased accuracy in the relative UAV map geolocation, as reported by Fabian et al. [61].
Therefore, the overall geolocation was corrected using the target coordinates as checkpoints,
acquired with handheld GPS as relative accuracy. The elevation Root Mean Squared Error
(RMSE) for these GCPs was 0.075 m, and the horizontal RMSE for longitude and latitude
were 0.078 and 0.066 m, respectively. These results indicate high precision between the
measured coordinates (GCPs registered in the field) compared with the software-calculated
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position. Elevation ranges predicted for each DEM for the study area can be seen in a
previous study [62], where the same elevation sources were used.
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3.2. Stream Channel Boundaries Prediction by Slope Gradient Method

The stream bank predicted using the Slope Gradient method is shown in Figure 5. As
shown, the highest density among these datasets can be observed in the UAV point cloud
(Figure 5i). This dataset covered the entire study area except for a few narrow sections
(empty gaps) due to presence of high vegetation located by the streamside. The LiDAR 6.0
also covered the entire study area (Figure 5f), except the area where the high vegetation of
the bioengineered buffer was found. Conversely, due to the remarkably lower density of
points collected by LiDAR 1.2 (Figure 5c), the portions of ground without data increased
significantly. The coarse-resolution DEM was not only unable to determine the location of
the stream bank’s boundaries (Figure 5a) but also insufficient to reflect the width changes
along the flow network with acceptable accuracy just by visual assessment.

Before filtering, the channel predicted by the LiDAR 1.2 DEM was significantly more
accurate than that of the coarse DEM (Figure 5d). However, there were considerable
isolated pocket areas in riparian zones being classified as stream channel based on LiDAR
1.2 DEM. This fact resulted in a significant overestimation of the stream bank boundary.
After filtering, the prediction accuracy was significantly improved because those isolated
pocket areas were eliminated. However, there were still remarkable errors in area with
fenced riparian zones and the predicted stream channels resulted considerably wider (light
blue areas in Figure 5e) compared to the field-mapped stream channel within red lines.



Remote Sens. 2021, 13, 3380 11 of 21Remote Sens. 2021, 13, x FOR PEER REVIEW 12 of 22 
 

 

 
Figure 5. Point clouds (“ground” class) of the four different DEM sources are represented in (a) 
coarse DEM, (c) LiDAR 1.2, (f) LiDAR 6.0 and (i) UAV. Stream channels predicted with Slope Gra-
dient method before applying the Region Group filter represented in (b) for coarse DEM, (d) LiDAR 
1.2, (g) LiDAR 6.0, (j) UAV and after applying the Region Group filter represented in (e) for LiDAR 
1.2, (h) LiDAR 6.0 and (k) UAV. 

Figure 5. Point clouds (“ground” class) of the four different DEM sources are represented in (a) coarse
DEM, (c) LiDAR 1.2, (f) LiDAR 6.0 and (i) UAV. Stream channels predicted with Slope Gradient
method before applying the Region Group filter represented in (b) for coarse DEM, (d) LiDAR 1.2,
(g) LiDAR 6.0, (j) UAV and after applying the Region Group filter represented in (e) for LiDAR 1.2,
(h) LiDAR 6.0 and (k) UAV.

The stream bank delineated with LiDAR 6.0 DEM resulted in a smoother and more
explicit channel compared with that of LiDAR 1.2 (Figure 5h). However, errors in area
with fenced riparian zones and predicted stream channels were still considerably wider
than field mapped stream channel, which was similar to the stream channel predicted by
LiDAR 1.2. The stream channel predicted by the UAV-derived DEM was more accurate
than LiDAR 1.2 and LiDAR 6.0, even before the filtering method was applied (Figure 5j).
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The cumulative probabilities (correctness) of the stream channel boundary predicted
before filtering are shown in Figure 6. Channel boundary was predicted with 89% accuracy
within an error of 2 m for the UAV-derived DEM, compared with the accuracy of 80%
and 67% for the LiDAR 6.0 and LiDAR 1.2 DEMs, respectively. For the coarse DEM, the
accuracy was only 26% for the probability of estimating the stream channel within 2 m of
error.
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Figure 6. Receiver Operating Characteristic (ROC) curves representing cumulative probability of the Slope Gradient in
predicting stream channel associated to error (m) prior to applying filter.

The cumulative probabilities (correctness) of stream channel boundary predicted after
filtering are shown in Figure 7. After application of filtering, channel boundary predicted
by the LiDAR 6.0-derived DEM had a probability of 88% within an error of 2 m, which
represents an increase of 8% with respect to the same probability before applying the filter.
A fact worth mentioning is the improvement experienced by the LiDAR 1.2-derived DEM,
which was able to predict the stream bank boundary with a probability of 82% within
an error of 2 m. This represents an increase of 15% in accuracy with respect to the same
probability prior to applying the filter. However, the percentage of improvement post
applying the filter did not change substantially for the UAV-derived DEM compared to
LiDAR, since the filter did not increase the accuracy significantly.

Mean relative errors (MRE) and Kling-Gupta efficiencies (KGE) regarding the stream
bank prediction for each DEM can be seen in Table 1. As shown, the coarse DEM registered
the highest mean relative error (0.50) of all the topographic models used, and predicted
the stream bank boundary with the lowest KG efficiency of only 34%. These results agree
with the MSE values obtained previously, due to the low resolution of this elevation
model. Among the high-resolution DEMs, the UAV-derived DEM predicted the stream
bank boundary with an efficiency of 82%, followed by LiDAR 6.0 (KGE = 70%), prior to
applying the filter. The LiDAR 1.2 was able to predict the stream bank boundary with an
accuracy of 67% before applying the filter.

The KG efficiencies improved significantly after applying the Region Group filter.
When the LiDAR 1.2 was used as a source the KGE value increased by 13%, from 67% to
80%, which reduced the MRE error by, practically, 0.1 units. A similar trend was observed
in the LiDAR 6.0, where the KGE increased by 15%, from 70% to 85%. In this case, the
MRE was reduced from 0.24 to 0.15 post applying the filter. The changes observed for
the UAV-derived DEM were not as significant, and the MRE value was reduced from 0.17
to 0.14 post filtering. Nonetheless, the KGE achieved the highest precision among the
high-resolution DEMs with 86%.
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Table 1. Mean Squared Errors (MSE), Mean Relative Errors (MRE) and Kling-Gupta Efficiencies
(KGE) before filtering (BF) and after filtering (AF) for each DEM; (N/A = not applicable).

Estimator Coarse DEM LiDAR 1.2 LiDAR 6.0 UAV DEM

MSE BF 26.76 7.87 5.27 2.32
MSE AF N/A 3.33 1.91 1.81
MRE BF 0.50 0.29 0.24 0.17
MRE AF N/A 0.20 0.15 0.14
KGE BF 0.34 0.67 0.70 0.82
KGE AF N/A 0.80 0.85 0.86
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3.3. Stream Channel Boundaries Prediction by Vertical Slope Position (VSP)

The stream channel, classified with the VSP thresholds method, is shown in Figure 8.
With VSP = 0.2 m threshold, the MSE between predicted and actual stream channel was
9.70 for LiDAR 1.2, which was the optimal threshold for this dataset. With the same VSP
threshold, the MSE was 11.85 for LiDAR 6.0 and 18.68 for the UAV-derived DEM. The
optimal threshold for LiDAR 6.0 and UAV was 0.25 m with MSE = 11.45 and MSE = 15.12,
respectively. For the coarse resolution DEM, MSE was 20.78 using 1.0 m as optimal
classification threshold and 32.62 with 1.5 m as threshold classifier.

In general, predicted errors measured with MSE were substantially higher than that
of the Slope Gradient method for all high-resolution DEM sources (9.70 to 15.12 compared
to 1.81 to 3.33). Nonetheless, the results for the coarse-resolution DEM improved when
the VSP method was applied (from 26.76 to 20.78). With the Slope Gradient method, the
UAV-derived DEM produced the best results, followed by LiDAR 6.0 and LiDAR 1.2.
However, with the VSP method the LiDAR 1.2 DEM performed the best, followed by
the LiDAR 6.0 and UAV-derived DEMs. A related point to consider is the MSE obtained
for the coarse DEM was fairly close to the performance of the UAV-derived DEM. This
result indicated that the VSP method is not as sensitive to DEM accuracy and resolution
compared to the Slope Gradient method. Based on the visual assessment of the image
(Figure 8), the coarse DEM appeared to be more accurate over the narrow section of the
stream than in the wider section without dense vegetation cover along the stream bank
(Figure 8a). Similar performance was observed when the UAV-derived DEM was used as a
source, where higher discrepancies were observed in areas with open water sections of the
stream (Figure 8d).
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Figure 8. Results for the VSP thresholds tested in order to predict the channel surface overlayed on a
UAV image using (a) Coarse DEM; (b) LiDAR 1.2; (c) LiDAR 6.0 and (d) UAV with the corresponding
mean squared errors (MSE) in meters. In red lines, the field-validated stream bank location.

As reflected by MSE values, LiDAR 1.2 provided high agreement with the VSP method
and was able to predict the area occupied by the stream channel better than LiDAR 6.0.
This was especially true in the narrowest section of the stream, located at the bottom section
of Figure 8b. We also noticed that with the VSP method, the UAV-derived, DEM-predicted
stream channels did not agree with the field survey, and this was especially true in the
widest section of the stream channel. This is likely due to DEM errors caused by light
reflection of water surfaces due to the lack of high vegetation coverage on the stream bank
(Figure 8d).

Receiver Operating Characteristic curves also confirmed that the VSP did not perform
as accurate as the SG when high resolution DEMs were used as a source (Figure 9). As
shown, the LiDAR 1.2 provided the most reliable estimation and was able to predict the
channel surface with 60% agreement within an error of 2 m. When the LiDAR 6.0 was used
as a source the probability of defining the stream bank with this topographic model was
57% within an error of 2 m. The UAV-derived DEM was able to predict the stream channel
with a probability of 56% with the same reported error of 2 m. When the coarse DEM was
used as a source, the probability of intersecting the stream edge was 20% within an error of
2 m.
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(VSP) thresholds in mapping the channel surface using the following DEMs: Coarse DEM, LiDAR 1.2, LiDAR 6.0 and UAV.

Results for the MRE and KGE for each of the VSP thresholds tested for each DEM can
be seen in Table 2. As shown, the coarse DEM was unable to precisely detect the stream
bank’s location. When this topographic model was used as a source, the boundaries of the
stream were predicted with an accuracy of 28% using 1 m as a VSP threshold. The MRE for
this cut-off point was remarkably high, at 0.45.

Table 2. Mean Squared Errors (MSE), Mean Relative Errors (MRE) and Kling-Gupta Efficiencies
(KGE) for each VSP threshold tested; (N/A = not applicable).

Threshold Coarse DEM LiDAR 1.2 LiDAR 6.0 UAV DEM

MSE VSP 0.50 m 37.54 N/A N/A N/A
MRE VSP 0.50 m 0.47 N/A N/A N/A
KGE VSP 0.50 m 0.24 N/A N/A N/A
MSE VSP 1.00 m 20.78 N/A N/A N/A
MRE VSP 1.00 m 0.45 N/A N/A N/A
KGE VSP 1.00 m 0.28 N/A N/A N/A
MSE VSP 1.50 m 32.62 N/A N/A N/A
MRE VSP 1.50 m 0.48 N/A N/A N/A
KGE VSP 1.50 m 0.27 N/A N/A N/A
MSE VSP 0.10 m N/A 15.75 22.29 29.64
MRE VSP 0.10 m N/A 0.28 0.32 0.34
KGE VSP 0.10 m N/A 0.59 0.40 0.38
MSE VSP 0.20 m N/A 9.70 11.85 15.68
MRE VSP 0.20 m N/A 0.29 0.30 0.31
KGE VSP 0.20 m N/A 0.67 0.55 0.47
MSE VSP 0.25 m N/A 11.86 11.45 15.12
MRE VSP 0.25 m N/A 0.33 0.29 0.28
KGE VSP 0.25 m N/A 0.64 0.63 0.53
MSE VSP 0.30 m N/A 14.10 11.98 15.59
MRE VSP 0.30 m N/A 0.37 0.35 0.35
KGE VSP 0.30 m N/A 0.57 0.58 0.50

Among the high-resolution DEMs, LiDAR 1.2 was able to predict the stream bank
with higher precision, followed by the LiDAR 6.0- and UAV-derived DEMs. When the
LiDAR 1.2 was used, the VSP predicted the location of this parameter with a precision of
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67% when the VSP threshold used was 0.20 m. When LiDAR 6.0 was used, the optimal
efficiency (63%) was registered with a threshold of 0.25 m of depth. With this breakpoint,
the boundaries of the stream bank were predicted within an error of 0.29 when this DEM
was used as a source. Finally, the same threshold proved optimal for the UAV-derived
DEM and was able to predict the stream bank’s location with an accuracy of 53%.

4. Discussion
4.1. Slope Gradient Method

Based on the results obtained, the Slope Gradient derived from the coarse DEM did not
provide accurate results when predicting the stream’s boundaries. This can be explained by
the significantly lower number of points recorded in this dataset used to derive the DEM
(Figure 5) compared to higher-resolution DEMs. This reflects its inability to locally adjust
the grid size to the dimensions of the topographic land surface features and resulted in its
unsuitability for the parameterization of precise drainage features, a situation exacerbated
in low relief landscapes [75]. The absolute elevation accuracy of this provincial topographic
model was reported to be 2.5 m, which makes it unable to accurately represent average
elevation change per pixel [37,76].

Conversely, the UAV achieved the highest accuracy of all data sources, followed by
high-resolution LiDAR 6.0 and LiDAR 1.2. This is likely due to the higher point cloud
density generating a more precise topographic model (DEM). Furthermore, the UAV-
derived DEM was obtained during the leaf-off conditions and snow-flattened stream bank
vegetation, which could potentially increase the precision. Additionally, due to more
sunlight penetrating these vegetated areas, the land/water boundaries were particularly
discernible and represented this edge accurately. This result indicated that the accuracy
of the Slope Gradient method to identify the stream channel is highly dependent on the
DEM’s resolution and accuracy; this is in agreement with results reported by previous
researchers [27,77–79]. In general, these studies found that higher-quality vertical in-
formation resulted in appreciable improvements in the smooth representation of subtle
topographic surfaces, more precise delineations of hydrologically relevant parameters and
more appropriate model outputs. The findings of this study provide evidence that UAVs
can be applied to monitor stream bank shift, erosion and sedimentation processes over time.
It could be used as a suitable means to address the limitations of field-based approaches
(resource constraints and land-access restrictions) for stream bank assessments [64,80,81].

We observed that LiDAR (both 1.2 and 6.0) tended to overestimate the stream bank
location in areas, partially those covered by high vegetation. This is likely caused by
insufficient ground elevation points due to vegetation coverage. On the other hand, the
stream edge was slightly underestimated in areas covered by herbaceous species. This can
be explained by the season when LiDAR was acquired; LiDAR sources were acquired in
summer during leaf-on conditions, when the stream’s herbaceous vegetation was denser
and taller compared with early spring. Therefore, LiDAR-derived DEMs performed slightly
less accurately in detecting exact land/water boundaries.

4.2. Vertical Slope Position Method

Similar to the Slope Gradient method, the coarse DEM acquired with traditional
aerial photographs did not perform as precisely when predicting the stream’s boundaries
compared to higher-resolution sources used. This is likely due to the lack of topographic
detail (Figure 5a). However, VSP-predicted stream channels were substantially more
accurate than the Slope Gradient method, with MSE = 20.78 vs. 26.76 m. We observed
that the accuracy of the VSP method decreased dramatically for all higher-quality DEMs,
from LiDAR 1.2 to UAV-derived DEMs. These results seem to agree with the findings
reported in previous studies; very high-resolution DEMs may also become inappropriate
for groundwater flow predictions [82,83]. Groundwater paths are assumed to follow more
general landscape topographies rather than small-scale surface variations. Thus, smoother
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topography represented in LiDAR 1.2 performed better to represent near-surface flow
pathways and water table positions [84,85].

The VSP method with the UAV-derived DEM as data source performed better over
the bioengineered buffer but failed to predict the correct stream boundary in sections with
wider channels. These mismatches can be caused by two factors: (i) mapping the stream in
areas partially covered by the canopy proved the main disadvantage of photogrammetry,
since the camera could not penetrate the dense canopy and would not detect the ground
surface elevation [86,87]. As a consequence, these canopy-shaded areas would have either
unprecise elevation estimations or would have been classified as areas with missing data.
This would lead to a significant reduction of data point information in these specific areas.
Thus, the photogrammetric software was unable to create sufficient terrain points in these
particular areas and became less accurate when interpolating the DEM, as reported by
previous studies [64,81,88]. Secondly, (ii) imagery acquired during daylight hours led to
some distortion when flying the UAV over water surfaces, since water has a tendency to
selectively reflect, refract or absorb light. This would increase the noise in the section of
open water. As a result of these low-quality photogrammetry sections, the stream channel
became significantly more distorted and uneven.

5. Conclusions

This study assessed the feasibility of using a UAV to map the stream geomorphology
and stream banks over an agricultural watershed. The accuracy of the UAV-derived DEM
was also compared with other commonly used DEMs including high-density LiDAR,
low-density LiDAR and traditional high-altitude, orthophoto-derived coarse-resolution
DEM. Two methods were used to predict stream channel surface areas, namely the Slope
Gradient and Vertical Slope Position methods.

When the Slope Gradient method was used, the UAV-derived DEM achieved the
highest accuracy in the mapping of the stream channel and defining the stream bank
locations, with a MSE of 2.33 m (KGE = 82%), followed by LiDAR 6.0 (MSE = 5.27 and
KGE = 70%) and LiDAR 1.2 (MSE = 7.87 m and KGE = 67%). The coarse-resolution DEM
was unable to accurately predict this parameter and the error was significantly higher,
at MSE = 26.76 m (KGE = 34%). The application of a filtering method to post-process
the classified topographic model could significantly improve the prediction accuracy for
LiDAR-based DEMs. The value of the MSE reduced from 7.87 to 3.33 (KGE = 80%) for
LiDAR 1.2, and from 5.27 to 1.91 (KGE = 85%) for LiDAR 6.0. The value of MSE for the
UAV-derived DEM was modestly reduced from 2.33 to 1.81 (KGE = 86%).

We found that the VSP method performed comparably with the Slope Gradient
method in the mapping of the stream channel and determining the bank locations. Inter-
estingly, we observed a decrease in accuracy among the higher-resolution DEMs tested.
The LiDAR 1.2 was able to predict the stream bank with a MSE of 9.70 m (KGE = 67%),
followed by LiDAR 6.0 (MSE = 11.45 and KGE = 64%) and UAV-derived DEM (MSE = 15.12
and KGE = 53%). Similar to the Slope Gradient, the coarse-resolution DEM was unable to
predict the stream boundaries and the MSE was 20.78 m (KGE = 28%).

The present work indicated that a UAV-derived DEM could be used to predict bank
slope positions using the Slope Gradient as classifier for lower-order streams, with higher
accuracy than airborne high point cloud density LiDAR. As opposed to LiDAR, UAVs
have the capability of accurately defining the matrix of this ecosystem, from water surface,
stream bank, riparian zone and uplands. However, highly densely vegetated areas could
lead to errors due to the limitations of the photogrammetry method of the UAV in detecting
bare ground under dense canopy.
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15. Loučková, B. Vegetation–landform assemblages along selected rivers in the Czech Republic, a decade after a 500-year flood event.

River Res. Appl. 2012, 28, 1275–1288. [CrossRef]
16. Tabacchi, E.; Lambs, L.; Guilloy, H.; Planty-Tabacchi, A.M.; Muller, E.; Decamps, H. Impacts of riparian vegetation on hydrological

processes. Hydrol. Process. 2000, 14, 2959–2976. [CrossRef]
17. Forzieri, G.; Castelli, F.; Preti, F. Advances in remote sensing of hydraulic roughness. Int. J. Remote Sens. 2012, 33, 630–654.

[CrossRef]
18. Apollonio, C.; Petroselli, A.; Cornelini, P.; Manzari, V.; Preti, F.; Grimaldi, S. Riparian vegetation as a marker for bankfull and

management discharge evaluation: The case study of Rio Torbido river basin (central Italy). J. Agric. Eng. 2021, 52, 2.
19. Evans, D.; Gibson, C.; Rossell, R. Sediment loads and sources in heavily modified Irish catchments: A move towards informed

management strategies. Geomorphology 2006, 79, 93–113. [CrossRef]
20. Magner, J.A.; Vondracek, B.; Brooks, K.N. Grazed riparian management and stream channel response in southeastern Minnesota

(USA) streams. Environ. Manag. 2008, 42, 377–390. [CrossRef]
21. Zaimes, G.N.; Tufekcioglu, M.; Schultz, R.C. Riparian land-use impacts on stream bank and gully erosion in agricultural

watersheds: What we have learned. Water 2019, 11, 1343. [CrossRef]

http://doi.org/10.1139/f97-034
http://doi.org/10.2193/0091-7648(2005)33[814:EOHOSD]2.0.CO;2
http://doi.org/10.2193/0022-541X(2006)70[173:FAASRA]2.0.CO;2
http://doi.org/10.1890/06-0901
http://doi.org/10.1111/j.1752-1688.2004.tb01614.x
http://doi.org/10.1111/j.1365-2427.2006.01597.x
http://doi.org/10.5194/hess-18-5361-2014
http://doi.org/10.1051/kmae/2016037
http://doi.org/10.1117/1.JRS.7.073492
http://doi.org/10.3390/su12166461
http://doi.org/10.1002/rra.1519
http://doi.org/10.1002/1099-1085(200011/12)14:16/17&lt;2959::AID-HYP129&gt;3.0.CO;2-B
http://doi.org/10.1080/01431161.2010.531788
http://doi.org/10.1016/j.geomorph.2005.09.018
http://doi.org/10.1007/s00267-008-9132-4
http://doi.org/10.3390/w11071343


Remote Sens. 2021, 13, 3380 19 of 21

22. Morisawa, M. Accuracy of determination of stream lengths from topographic maps. Eos Trans. Am. Geophys. Union 1957, 38,
86–88. [CrossRef]

23. Chorley, R.; Dale, P. Cartographic problems in stream channel delineation. Cartography 1972, 7, 150–162. [CrossRef]
24. Scannavino, J.; Perez-Kuroki, A.; Ghobakhlou, A.; Sallis, P.; Shanmuganathan, S.; Cruvinel, P. Spatial variability on soil

pH gradient: A case study in vineyards. In Proceedings of the 19th International Congress on Modelling and Simulation
(MODSIM2011), Perth, Australia, 12–16 September 2011.

25. Woodrow, K.; Lindsay, J.B.; Berg, A.A. Evaluating DEM conditioning techniques, elevation source data, and grid resolution for
field-scale hydrological parameter extraction. J. Hydrol. 2016, 540, 1022–1029. [CrossRef]

26. Garbrech, J.; Mart, L. Grid size dependency of parameters extracted. Comput. Geosci. 1994, 20, 85–87. [CrossRef]
27. Zhang, W.; Montgomery, D.R. Digital elevation model grid size, landscape representation, and hydrologic simulations. Water

Resour. Res. 1994, 30, 1019–1028. [CrossRef]
28. Dietrich, W.E.; Reiss, R.; Hsu, M.L.; Montgomery, D.R. A process-based model for colluvial soil depth and shallow landsliding

using digital elevation data. Hydrol. Process. 1995, 9, 383–400. [CrossRef]
29. Hengl, T. Finding the right pixel size. Comput. Geosci. 2006, 32, 1283–1298. [CrossRef]
30. Sørensen, R.; Seibert, J. Effects of DEM resolution on the calculation of topographical indices: TWI and its components. J. Hydrol.

2007, 347, 79–89. [CrossRef]
31. Smart, R.; Soulsby, C.; Cresser, M.; Wade, A.; Townend, J.; Billett, M.; Langan, S. Riparian zone influence on stream water

chemistry at different spatial scales: A GIS-based modelling approach, an example for the Dee, NE Scotland. Sci. Total Environ.
2001, 280, 173–193. [CrossRef]

32. Abood, S.A.; Maclean, A.L.; Mason, L.A. Modeling riparian zones utilizing DEMS and flood height data. Photogramm. Eng.
Remote Sens. 2012, 78, 259–269. [CrossRef]

33. Fernández, D.; Barquín, J.; Álvarez-Cabria, M.; Peñas, F. Quantifying the performance of automated GIS-based geomorphological
approaches for riparian zone delineation using digital elevation models. Hydrol. Earth Syst. Sci. 2012, 16, 3851–3862. [CrossRef]

34. Lane, S.; Reaney, S.; Heathwaite, A.L. Representation of landscape hydrological connectivity using a topographically driven
surface flow index. Water Resour. Res. 2009, 45. [CrossRef]

35. Buchanan, B.; Falbo, K.; Schneider, R.; Easton, Z.; Walter, M. Hydrological impact of roadside ditches in an agricultural watershed
in Central New York: Implications for non-point source pollutant transport. Hydrol. Process. 2013, 27, 2422–2437. [CrossRef]

36. Thomas, I.; Jordan, P.; Shine, O.; Fenton, O.; Mellander, P.-E.; Dunlop, P.; Murphy, P.N. Defining optimal DEM resolutions and
point densities for modelling hydrologically sensitive areas in agricultural catchments dominated by microtopography. Int. J.
Appl. Earth Obs. Geoinf. 2017, 54, 38–52. [CrossRef]

37. Murphy, P.; Ogilvie, J.; Arp, P. Topographic modelling of soil moisture conditions: A comparison and verification of two models.
Eur. J. Soil Sci. 2009, 60, 94–109. [CrossRef]

38. Doody, D.; Archbold, M.; Foy, R.; Flynn, R. Approaches to the implementation of the Water Framework Directive: Targeting
mitigation measures at critical source areas of diffuse phosphorus in Irish catchments. J. Environ. Manag. 2012, 93, 225–234.
[CrossRef]

39. Haupt, S.E.; Pasini, A.; Marzban, C. Artificial Intelligence Methods in the Environmental Sciences; Springer Science & Business Media:
Berlin/Heidelberg, Germany, 2008.

40. Hsieh, W.W. Machine Learning Methods in the Environmental Sciences: Neural Networks and Kernels; Cambridge University Press:
Cambridge, UK, 2009.

41. Thessen, A. Adoption of machine learning techniques in ecology and earth science. One Ecosyst. 2016, 1, e8621. [CrossRef]
42. Islam, A.R.M.T.; Talukdar, S.; Mahato, S.; Ziaul, S.; Eibek, K.U.; Akhter, S.; Pham, Q.B.; Mohammadi, B.; Karimi, F.; Linh, N.T.T.

Machine learning algorithm-based risk assessment of riparian wetlands in Padma River Basin of Northwest Bangladesh. Environ.
Sci. Pollut. Res. 2021, 28, 34450–34471. [CrossRef]

43. Martínez-Santos, P.; Aristizábal, H.; Díaz-Alcaide, S.; Gómez-Escalonilla, V. Predictive mapping of aquatic ecosystems by means
of support vector machines and random forests. J. Hydrol. 2021, 595, 126026. [CrossRef]

44. Fonstad, M.A.; Dietrich, J.T.; Courville, B.C.; Jensen, J.L.; Carbonneau, P.E. Topographic structure from motion: A new develop-
ment in photogrammetric measurement. Earth Surf. Process. Landf. 2013, 38, 421–430. [CrossRef]

45. Escobar Villanueva, J.R.; Iglesias Martínez, L.; Pérez Montiel, J.I. DEM generation from fixed-wing UAV imaging and LiDAR-
derived ground control points for flood estimations. Sensors 2019, 19, 3205. [CrossRef]

46. Jeziorska, J. UAS for wetland mapping and hydrological modeling. Remote Sens. 2019, 11, 1997. [CrossRef]
47. Manfreda, S.; McCabe, M.F.; Miller, P.E.; Lucas, R.; Pajuelo Madrigal, V.; Mallinis, G.; Ben Dor, E.; Helman, D.; Estes, L.; Ciraolo,

G. On the use of unmanned aerial systems for environmental monitoring. Remote Sens. 2018, 10, 641. [CrossRef]
48. Zhang, Q.; Qin, R.; Huang, X.; Fang, Y.; Liu, L. Classification of ultra-high resolution orthophotos combined with DSM using a

dual morphological top hat profile. Remote Sens. 2015, 7, 16422–16440. [CrossRef]
49. Aguilar, F.J.; Rivas, J.R.; Nemmaoui, A.; Peñalver, A.; Aguilar, M.A. UAV-based digital terrain model generation under leaf-off

conditions to support teak plantations inventories in tropical dry forests. A case of the coastal region of Ecuador. Sensors 2019, 19,
1934. [CrossRef]

50. Yao, H.; Qin, R.; Chen, X. Unmanned aerial vehicle for remote sensing applications—A review. Remote Sens. 2019, 11, 1443.
[CrossRef]

http://doi.org/10.1029/TR038i001p00086
http://doi.org/10.1080/00690805.1972.10437698
http://doi.org/10.1016/j.jhydrol.2016.07.018
http://doi.org/10.1016/0098-3004(94)90098-1
http://doi.org/10.1029/93WR03553
http://doi.org/10.1002/hyp.3360090311
http://doi.org/10.1016/j.cageo.2005.11.008
http://doi.org/10.1016/j.jhydrol.2007.09.001
http://doi.org/10.1016/S0048-9697(01)00824-5
http://doi.org/10.14358/PERS.78.3.259
http://doi.org/10.5194/hess-16-3851-2012
http://doi.org/10.1029/2008WR007336
http://doi.org/10.1002/hyp.9305
http://doi.org/10.1016/j.jag.2016.08.012
http://doi.org/10.1111/j.1365-2389.2008.01094.x
http://doi.org/10.1016/j.jenvman.2011.09.002
http://doi.org/10.3897/oneeco.1.e8621
http://doi.org/10.1007/s11356-021-12806-z
http://doi.org/10.1016/j.jhydrol.2021.126026
http://doi.org/10.1002/esp.3366
http://doi.org/10.3390/s19143205
http://doi.org/10.3390/rs11171997
http://doi.org/10.3390/rs10040641
http://doi.org/10.3390/rs71215840
http://doi.org/10.3390/s19081934
http://doi.org/10.3390/rs11121443


Remote Sens. 2021, 13, 3380 20 of 21

51. Schumann, G.J.-P.; Muhlhausen, J.; Andreadis, K.M. Rapid mapping of small-scale river-floodplain environments using UAV SfM
supports classical theory. Remote Sens. 2019, 11, 982. [CrossRef]

52. Chen, S.; Johnson, F.; Drummond, C.; Glamore, W. A new method to improve the accuracy of remotely sensed data for wetland
water balance estimates. J. Hydrol. Reg. Stud. 2020, 29, 100689. [CrossRef]
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