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Abstract: Crop production is a major source of food and livelihood for many people in arid and
semi-arid (ASA) regions across the world. However, due to irregular climatic events, ASA regions
are affected commonly by frequent droughts that can impact food production. In addition, ASA
regions in the Middle East and Africa are often characterised by political instability, which can
increase population vulnerability to hunger and ill health. Remote sensing (RS) provides a platform
to improve the spatial prediction of crop production and food availability, with the potential to
positively impact populations. This paper, firstly, describes some of the important characteristics
of agriculture in ASA regions that require monitoring to improve their management. Secondly, it
demonstrates how freely available RS data can support decision-making through a cost-effective
monitoring system that complements traditional approaches for collecting agricultural data. Thirdly,
it illustrates the challenges of employing freely available RS data for mapping and monitoring crop
area, crop status and forecasting crop yield in these regions. Finally, existing approaches used in
these applications are evaluated, and the challenges associated with their use and possible future
improvements are discussed. We demonstrate that agricultural activities can be monitored effectively
and both crop area and crop yield can be predicted in advance using RS data. We also discuss the
future challenges associated with maintaining food security in ASA regions and explore some recent
advances in RS that can be used to monitor cropland and forecast crop production and yield.

Keywords: agriculture; arid and semi-arid regions; crop monitoring; remote sensing; crop yield

1. Introduction

Arid and semi-arid (ASA) regions (Figure 1) are home to approximately 2.5 billion
people and occupy 41% of the Earth’s land surface [1]. Arid regions occur within zones
with rainfall of 0–300 mm and an inter-annual variability of 50–100%, whereas semi-arid
regions occur within zones with rainfall of 300–600 mm and an inter-annual variability of
25–50% [2,3]. According to the latest report on the state of food security and nutrition in
the world, one in 10 people now face hunger or food shortages [4]. To mitigate this risk,
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there exist efforts to increase agricultural production, but this is not happening at the same
rate as population growth [5–8].

The majority of poor people live in ASA regions of the world where primary produc-
tivity is achieved through agriculture and farming at small or large scales [9]. Although
the contribution of agriculture to the economy may vary among the ASA regions across
the world, it is generally crucial to economic growth. For example, agriculture contributes
a substantial share of Africa’s economy (15% of total GDP) [10]. The agricultural sector in
Africa provides employment to half of the total labour force [11] and provides livelihoods
for the majority of small-scale farmers within rural areas [10]. In Sub-Saharan Africa, 80% of
agricultural land is smallholder-based and employs more than 175 million people [12]. Sim-
ilarly, in the Middle East and North Africa (MENA) regions, agriculture contributes only
13% to GDP, but is of strategic importance to the economy [13]. Therefore, any disruptions
in the agriculture sector will have far reaching impacts on food security in these regions.

In addition to the above, most undernourished people in Africa are based in Sub-
Saharan countries where there was an increase of about 32 million undernourished people
since 2014 [4]. Moreover, in 2019, Asia was home to more than half of the total number of
undernourished people in the world (381 million) [4]. This is mainly because ASA regions
face several natural and human challenges including, but not limited to, irregularities in
climatic conditions and the impacts of conflict or political instability [14–17]. A combination
of these factors contributes to an increase in resource or food security vulnerabilities that
are poorly understood at varying geographic scales [18–20]. To monitor, understand and
mitigate the impact of these factors on regional and global food security, reliable and timely
information is needed by countries and decision-makers [21].

At the national scale, greater information is needed by agricultural decision-makers
to support investment and policy decisions that could have potential implications for
their country’s food security. For example, several studies have assessed agricultural
vulnerabilities, but most of these analyses were performed at the country level [22–24].
This is because crop databases are usually available at the country level, and information on
finer spatial coverage cannot be obtained [25]. In addition, regional crop data are collected
sparsely and available for only a limited period [26]. At sub-national (local) scales such
information can include primary information on crop health status, spatial extent, crop
type suitability and expected crop yield [27,28]. Having such information in advance of
harvest and at finer spatial resolution is essential to make decisions about how much food
is to be stored, imported and exported and to make a general assessment of food losses in
times of natural and anthropogenic crises [29].

Increasing local agricultural production is key to providing long-term food security
for communities [30]. Maintaining food security requires frequent data for monitoring and
assessment [31]. Generally, ground surveys are the most common approach for assessing
food insecurity in rapid emergencies such as floods, droughts and conflict situations [32].
However, when access is restricted, or on-the-ground assessment is not possible due to
insecurity issues, the World Food Programme (WFP) often uses mobile technology to reach
vulnerable populations [33]. Ground surveys (or the use of mobile technologies) have
several limitations: (i) it is expensive and time-consuming to collect ground data [34],
(ii) surveys provide only a snapshot or cross-sectional assessment, (iii) the spatial extent of
data collection is limited [34]. In addition, it can be challenging to forecast food security
based on ground survey data accurately and efficiently at national or global scales due to
then often vast spatial coverages and heterogeneity involved [34]. Providing inaccurate
food security information could bias decision-making and result in severe food shortages
and price fluctuations. For example, Jayne and Rashid [35] showed that overestimating
production by 13% and underestimating consumption by 8% can result in a 21% food
shortage, which additionally could lead to steady rises in food prices if food aid or trade
is absent.
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RS has great potential to overcome some of the above limitations as it can provide data
at various temporal and spatial scales. RS is highly suitable for monitoring agricultural
activities, predicting yield [36] and predicting seasonal production, and these are driven by
climatic variables, the physical landscape and agricultural management [37]. This paper
firstly describes several important characteristics of agriculture in ASA regions that require
monitoring to improve agricultural management. Secondly, it demonstrates how freely
available RS data can improve agricultural efficiency through a cost-effective monitoring
system that can complement traditional approaches for collecting agricultural data. Thirdly,
it illustrates the challenges of employing freely available RS data for mapping and moni-
toring crop area, crop status and forecasting crop production and yield in these regions.
Lastly, the common approaches used in these applications are evaluated, and the challenges
associated with their application and possible future improvements for these regions are
discussed. Further, this study explores the agricultural challenges of smallholder farming
in the Middle East and Africa and provides potential RS-based solutions and suggested
improvements. These ASA regions are targeted since data coverage is scarce, incomplete
and the datasets are low quality generally [26]. Moreover, their food security is often under
constant threat due to their fragile climatic conditions and political environments [4].

Figure 1. Global distribution of arid and semi-arid (ASA) regions [38]. It is estimated that arid regions cover around
28 million km2 while semi-arid regions cover around 46 million km2.

2. Enhancing Food Production through RS Applications in Agriculture

Monitoring agricultural activities through traditional approaches can be challenging
because of the following. Firstly, usually agricultural regions are large, and their effective
monitoring requires repeated coverage [31]. Secondly, yield prediction is based commonly
on monitoring the growth phases of crops and information obtained via traditional ap-
proaches is often limited [36]. In addition, challenges with geographic access to many areas
in ASA regions due to political instabilities mean that RS data can be used as a potential
source to complement traditional approaches for collecting agricultural data. There are
many RS applications in agriculture. We selected and explored a few key applications to
keep the paper concise. In particular, this paper focuses on the three main RS applications
in Middle Eastern and African ASA countries including identifying and estimating crop
area, monitoring agricultural status, and modelling and forecasting future crop yield. These
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RS applications are critical in these regions since the smallholder farming system is com-
plex and agricultural management is heterogeneous [39]. In addition, due to their fragile
climatic conditions and often political instabilities, these areas are prone to many crises
which can induce regional food insecurity [29]. Despite these challenges, several regional
characteristics can influence the RS proxies that are used as a base for these applications
which will be discussed in the following sections. In such conditions, and due to lack
of data and resources, RS can provide remote and cost-effective solutions and improve
regional food security [40]. Table 1 provides a summary of the role of remote sensing
applications for increasing agricultural productivity and food security.

Table 1. The role of remote sensing for monitoring agricultural productivity and increasing
food security.

RS Applications Activities

Identifying and
estimating crop area

• Cropland mapping and crop type classification [41–43].
• Estimate and forecast crop area before harvest time [39,44].
• Obtain sufficient data in insecure regions [45,46].

Monitoring agriculture
crop status

• Differentiate among diseases and pests, infectious severities and
map their spatial distribution [47–50].

• Assess before and after intervention crop condition, water and
nutrient requirement [51–53].

Modelling and
forecasting future

crop yield

• Fine resolution local and regional yield map and advance yield
prediction [29,36,54].

• Generate yield gap map and underperforming croplands [55,56].
• Obtain sufficient crop production data in insecure regions [57,58].

2.1. Identifying and Estimating Crop Area

Information on crop area and crop type are vital for land management and trading.
Even in well-developed and well-organised countries, ground-based crop area estimates
are often not available until a few months after harvest [39]. Obtaining a reliable figure
before harvest is a major challenge and, at the same time, vital for the formulation of
policymaking and decision-making [39,59]. Figure 2 shows the processing steps typically
applied to remote sensing data to predict crop type.

Compared to a humid environment, ASA regions typically have specific climatic and
regional characteristics which pose many challenges to accurately identifying and estimat-
ing crop area [39,59]. Due to considerable changes in the spatial and temporal distribution
of rainfall, and the fact that the majority of smallholder farms in ASA regions rely on
rainfall to start planting, identifying and estimating crop area can be difficult [39]. Spatial
and temporal variation in rainfall could result in variation in agricultural management,
crop choice, heterogeneity in the cropping system, crop phenology and productivity [60,61].
Often phenological variables are used as a critical base to identify and estimate crop area.
However, in ASA regions, these variables could vary substantially among the countries
and inter-annually [39,61,62]. Therefore, attempting a single classification approach at a
regional or global scale could result in inaccurate outputs. For example, Qader et al. [39]
developed a phenological approach in Iraq which produced a coefficient of determination
with the official statistical crop data at the governorate level twice that of the global MODIS
land cover classification. At the global scale [63] and in particular for Africa, large discrep-
ancies were observed between current continental and global landcover maps in terms of
the overall and spatial distribution of croplands. Thus, current global crop maps might not
perform well in these regions and a customised approach should be considered to derive a
sufficiently accurate crop map.
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Figure 2. Schematic diagram illustrating the general methodology for using RS data to forecast crop yield. Step 1: processing
steps typically applied to remote sensing data to predict crop type and Step 2: processing steps typically applied to forecast
crop yield.
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Another challenge for accurate identification and estimation of crop area in ASA
regions is the common practice of the agriculture fallow system [39,44]. Depleted soil,
lack of adequate water distribution and the existence of pests and diseases have led
smallholder farmers in ASA regions to practice a biennial fallow system from which
many fields remain uncultivated annually. For example, the extent of fallow fields in the
cropland class was estimated to be 63% (403,617 km2) for the Sahel region in 2017 [44]. The
spatial heterogeneity and spectral mixture of these fields with croplands could result in
the inaccurate classification of croplands from the analysis of RS data in these regions. In
addition, there may be a scarcity of field samples to train the classifier in the large and
heterogeneous landscapes of ASA regions, particularly in insecure and fragile regions. For
example, in the spatial distribution of the training data used in the global MODIS land
cover classification, Iraq and Syria were excluded [64].

For crop classification, single date and multi-temporal (time-series) imagery can be
used to estimate and classify crop area. Due to inter-annual spatio-temporal variation
in cropping area in ASA regions due to significant climatic variability and crop rotation
practices, time-series RS data can be used with several benefits. At different phenological
stages, time-series data can be analysed selectively to provide more useful vegetation spec-
tral information relative to single date imagery [65,66]. In addition, temporal analysis aids
in the discrimination of various crop classes based on differences in their growth patterns.
Furthermore, multi-temporal data increase the information of the imagery as the sun angle
changes with the season, which affects vegetation surface reflectance [67]. Lastly, time-
series data provide a larger number of predictor variables applicable to machine learning
classification approaches, thus, potentially increasing classification accuracy [68,69].

Several studies have demonstrated that RS approaches can be used to produce reliable
crop area estimates and crop type classification [39,70–72]. In the ASA region of Arizona,
nine major crop types were able to be classified using a RS approach with an overall
accuracy of >85% [41]. In Turkey, overall accuracies above 90% were achieved between
cropland area estimates using RS data and official statistics [73]. In addition, RS can
provide a powerful solution in some ASA regions where access is restricted due to security
issues and remoteness. In Northern Bosnia, Witmer [45] managed to identify abundant
agricultural land before, during and after the 1992–1995 war using Landsat imagery with
an overall accuracy of 82.5%. Similarly, due to the 1991–1994 Nagorno Karabakh conflict
between Armenia and Azerbaijan high farmland abandonment rates of more than 60%
were found in the conflict zone using multi-temporal Landsat imagery [46]. Therefore,
RS can provide timely information on crop area and crop types in various circumstances
where traditional approaches are not feasible, and such information can help reshape policy
decisions and enhance food security [39,46].

2.2. Monitoring Agricultural Crop Status

Crop status encompasses growth, health and seasonal progress. Abiotic factors (e.g.,
nutrients, irradiation, temperature and water) and biotic factors (e.g., diseases, pests and
weeds) can have a significant impact on crop status [74]. Information on crop growth con-
ditions has been identified as an essential indicator for yield forecasting and food security
assessment [75]. A wide range of commercial crops might be affected by plant diseases and
pests, which can pose major risks to final crop yields. Based on recent estimates, annually
around 20–40% of global crop production is lost to pests, and plant diseases and invasive
insects are responsible for global economic losses of around USD 220 billion and USD
70 billion, respectively [76]. In their technical report, del Rio and Simpson [77] indicated
that as a result of climate change, around 16 of the most important crops grown in the Sahel
are affected by 100 diseases. Among the 34 phytoplasmas (microorganisms) ribosomal
groups reported globally, 14 were reported in Middle Eastern countries [78]. In addition,
aggressive strains of fungal disease such as wheat rusts have been detected in East Africa
and the Middle East, and they can cause devastating losses to wheat crops [79]. According
to the USDA report, in 2010–2011, yellow rust outbreaks reduced wheat production to
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35% below record levels in Syria and 5% in Turkey compared to the previous year [80].
In Africa, maize yield was reported to have decreased by between 30% and 60% due to
grey leaf spot (GLS) [81]. Furthermore, poor crop protection practices in these regions
might have contributed to the impact of pests and diseases on crop yield. For example,
due to pest attack, losses in rice of up to 51% were recorded in West Africa, and of 22% in
Oceania [82]. Lastly, due to its rapid spread and significant impact on crop yield loss, there
exists global concern about fall armyworm. Hruska [83] indicated that fall armyworm is
spreading rapidly in Africa, the Near East and Asia. It has been predicted that in the major
maize-producing countries in SSA, annual yield losses attributable to FAW are between
USD 2.5 and 6.2 billion [84]. Despite these losses, insufficient knowledge regarding the
probability of occurrence, direction and distribution of pests and diseases, as well as the
severity of their impact on crops, has posed further challenges to control such issues.
Therefore, an efficient monitoring system is needed to provide cost-effective solutions in
these poor regions.

In terms of weather-related disasters, drought is one of the key risks to global crop
yield. Globally, it is estimated that droughts have caused a 5.1% cereal yield loss during
the past four decades [85]. ASA regions are more exposed to the risk of drought and
its consequences because they are the most vulnerable regions to climate variability and
climate change [15,86,87]. At the regional scale, agricultural drought has affected around
810 million ha (27.5% of Africa) and around 452 million ha (33.8% of the total Arab
Region) [88]. In addition, the frequency and intensity of extreme weather events such as
droughts and floods are projected to increase in the Middle East and North Africa regions
due to climate change [89,90]. The increasing frequency and intensity of extreme weather
events have caused extreme declines in crop yields in ASA regions. For example, in Iraq,
the drought in 2008–2009 caused a loss of crop production of 51% compared to the previous
year. In Turkey, total crop yields declined substantially, costing USD 1–2 billion and with
435,000 farmers affected [91]. Sultan et al. [92] found that the average annual production
losses across West Africa in 2000–2009 associated with historical climate change, accounted
for USD 2.33–4.02 billion for millet and USD 0.73–2.17 billion for sorghum. To mitigate
such events, cost-effective real-time monitoring systems should be put in place to warn
local authorities. Meng and Wu [93] stated that crop biomass condition information at
the pre-harvest stage can be used to indicate potential food shortages and surpluses and
support related policy-making decisions. A recent systematic review of extreme weather
events (EWE) in agriculture found that monitoring and detecting the impacts of EWE using
RS techniques is still underdeveloped [94]. It was also highlighted that gaps still exist
concerning the impacts of EWE on major cash crops and the agronomic dynamic of EWE
in developing countries [94]. In addition, other researchers found that RS data can be used
to monitor and assess the impact of EWE on crop yield [95,96]. Therefore, accurate and
timely detection, monitoring and mapping of crop health, growth and seasonal progress
due to crop diseases and pests and extreme weather events is critical for forecasting and
assuring food security.

The occurrence of diseases and pests on crops and the canopy surface can cause
changes in chemical concentration, pigments, nutrients, gas exchanges and water up-
take [97,98]. In response, the colour and temperature of the canopy may change and result
in variation in canopy reflectance characteristics, which can be measured by RS [98,99].
Existing RS approaches can discriminate various diseases and pests, evaluate their infection
severities and map their spatial distribution at various scales [47–50]. For example, using
Landsat images, it was possible to map the severe infestation of the take-all disease in
wheat [100]. Ma et al. [50] developed a multi-temporal satellite data-based early detection
method for regional mapping of powdery mildew disease. In addition, remote sensing
estimation of soil moisture was used to plan desert locust surveys for preventive manage-
ment [101]. Furthermore, it was demonstrated that fine spatial and temporal resolution
remotely sensed data can be used to monitor crop condition, assess crop damage in flood
areas [52], assess crop condition in relation to soil moisture [51], and monitor crop condition
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in extreme events such as droughts [102]. Furthermore, RS can be integrated into early
warning systems to alert local and international authorities about any negative events that
could impact overall production. For example, Anomaly hot Spots of Agricultural Produc-
tion (ASAP) is an early warning system focused on anomalies in agricultural production
that aims to prevent food security crises and anticipate resource needs [103].

2.3. Modelling and Forecasting Future Crop Yields

The need to model and forecast crop yields in ASA regions is increasing in parallel
with recent and projected changes in land use and climate and with recent crises in food
security (Cole et al., 2018). Forecasting crop yield is essential for the agricultural and
economic stability of regions and is vital to sustaining global food security [29]. Farmers,
policymakers, investors and hedgers need accurate and timely information on crop quality
and supply. This information can help governments and local agencies to ensure strategic
contingency plans to redistribute food during times of crisis [29,104].

Different seasonal yield forecast methods have been highlighted in the literature.
Traditionally, crop yield forecasts are conducted by farmers through the within-season
assessment of crop growth. However, this approach is uncertain and inconsistent due to
subjective expectations of crop yield [105]. For decades, statistical modelling to forecast
crop yield has been used globally. Statistical regression-type models applied to agromete-
orological data provide a common approach to seasonal yield forecasting [106,107]. The
simplicity of the approach has resulted in wide application. However, low accuracy in
other areas outside the boundaries of the observed data is a real concern [108]. Considering
the climatic variabilities and frequent extreme events that occur in ASA regions, such an
approach might be insufficiently robust for crop yield forecasting. Numerous seasonal
yields forecasting approaches were also developed based on statistical models using RS
data [29,109,110]. In addition, crop growth simulation models have been used for crop
yield forecasting. Such models can incorporate soil, crop, management and weather in-
formation as inputs to simulating plant growth [111], and the models can incorporate
RS derivative datasets to forecast crop yield [112]. However, the high data demands and
computational costs of these models make them generally challenging to employ in some
regions for which data are sparse. Therefore, in model selection, regional constraints should
be considered carefully.

It is important to consider which spatial, temporal, and spectral characteristics of RS
data meet ASA regional requirements for monitoring food security. For example, medium-
to-coarse spatial resolution satellite sensor data (e.g., MODIS) were commonly used in
crop early warning systems by many aid organisations (e.g., FAO) to mitigate food insecu-
rity [113]. In contrast, moderate spatial resolution imagery such as Landsat and Sentinel
are required if the study aims are localised at the farm level. Several researchers have
evidenced the advantage of RS approaches for forecasting crop yield in these regions. For
example, a simple remote sensing vegetation index approach can produce more accurate
crop yield maps compared to the agro-meteorological Simple Algorithm for Yield (SAFY)
model [114]. Beyond the generally utility of RS-derived vegetation indices to estimate and
forecast crop yield, other RS indices can also be used to forecast crop yield more accurately
in ASA regions. For example, MODIS-derived NDVI, the two-band enhanced vegetation
index (EVI2) and the Normalised Difference Water Index (NDWI), in association with
county-level data, were used to develop empirical models predicting soybean and maize
yield in the central United States [36]. Although, in general, large correlations ranging
from R2 = 0.69 to 0.73 were found between the forecasted and ground crop yield for all
indices, NDWI was more accurate in semi-arid regions due to its sensitivity to low-density
agriculture, irrigation and variation in the liquid water content of vegetation canopies [36].
Therefore, prior consideration should be given to determine the best RS index to use for
each specific regional climatic condition.
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In some ASA regions where geographical access and availability of data are limited,
RS can also provide a vital alternative source of information. In Syria, sparsely available,
inaccurate or non-existent ground agriculture data, due to regional instability, has limited
the capacity of the country to monitor and increase agricultural productivity. However,
this information can be replaced through RS techniques. With the advantage of available
RS data in the conflict zone of Syria, summer crop yield was predicted with a significant
correlation (p < 0.05) between the predicted and ground crop data [57]. The method was
also shown to be advantageous for forecasting crop yield during conflict years where
reported data are questionable. Similarly, Jaafar and Ahmed [17] indicated that RS can
provide a credible prediction of agricultural yield in the absence of statistics. They utilised
MODIS and Landsat imagery to predict wheat and barley in ISIS-controlled areas in both
Syria and Iraq for the years 2014–2015 and irrigated summer crop yield in Northeast
Syria [17]. Therefore, RS-derived information can be critical to monitoring agricultural
productivity and assessing food security where traditional data collection might not be
viable due to natural or anthropogenic crises.

A leading and successful system which has provided crucial data on food insecurity
is the Famine Early Warning System Network (FEWS NET). This system integrates remote
sensing and ground observation data to undertake crop assessment in areas where crop
production is a concern. It is a lead provider of early warning and analysis on food
insecurity which has provided evidence-based analysis for around 34 countries. Figure 2
illustrates the general methodology for forecasting crop yield using RS data.

To understand in more depth the application of RS in yield forecasting, a search for
relevant peer-reviewed research articles was conducted in Scopus. This was achieved by
using several specific search terms within Scopus; for example, “crop yield prediction”
or “yield estimation” or “yield prediction” and “remote sensing” or “Earth observation”
and “arid and semiarid regions”. In addition, abstract revision and title screening were
performed to pre-select the most relevant papers in which RS data were used for this
purpose in ASA areas. In total, 50 research articles were selected as summarised in Table 2.
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Table 2. Summary of relevant papers using RS data to predict yield for different crop types.

Location and Extent Crop Type RS Data/Resolution Method Model Performance Reference

1 Pakistan, Faisalabad district Maize Landsat 8/30 m Least absolute shrinkage and selection
(LASSO) regression model R2 = 0.95 [115]

2 U.S., Midwest Maize and
soybean MODIS/250 m Random forest and other models (e.g., LASSO,

ridge regression (RIDGE)) R2 = 0.78 [116]

3 Brazil, Rio Grande do Sul (RS) state Soybean MODIS/250 m Multivariate OLS linear regression, random
forest and LSTM neural networks RMSE = 0.4 Mg ha−1 [117]

4 Canada, Prince Edward Island and
Brunswick provinces Potato

NDVI was measured using
the FieldScout CM NDVI

Meter/0.5 m

Support vector regression (SVR), linear
regression (LR), elastic net (EN), k-nearest

neighbour (k-NN)
RMSE = 4.62 t/ha [118]

5 China, North China Plain Wheat MODIS/250 m Support vector machine (SVM), Gaussian process
regression (GPR), and random forest (RF) R2 = 0.75 [119]

6 Iran, Boshruyeh city Barley Sentinel-2/10 m Gaussian process regression algorithm,
decision tree, K-nearest neighbour regression R2 = 0.84 [120]

7 Middle Amur Region, Khabarovsk
Municipal District Soybean MODIS/250 m Linear regression model RMSE = 0.13 t/ha [121]

8 Senegal, parkland of
Central Senegal Millet Sentinel-2/10 m Linear regression model RRMSE = 28% [122]

9 Wisconsin, Arlington Agricultural
Research Station Alfalfa UAV-Based Hyperspectral

Imagery/few cm Ensemble modelling R2 = 0.874 [123]

10 South-East of Queensland in
Australia, Bundaberg Sugarcane Integrating Landsat-8 and

Sentinel-2 Linear regression model R2 = 0.87 (RMSE = 11.33 t·ha−1) [124]

11 South Wales, Moree Plains Shire Wheat Sentinel-2/10 m Multivariate linear regression R2 = 0.93 (RMSE = 0.64 t/ha) [125]

12 China, County Level (e.g., Hebei,
Henan, Shandong) Winter wheat AVHRR/0.05 arc degrees Long short-term memory (LSTM)

neural networks R2 = 0.77 (RMSE = 721 kg/ha) [126]

13 Uruguay, Soriano site (field scale) Winter wheat Landsat-7, Landsat-8/30 m Simple regression method RMSE = 966 kg ha−1 [127]

14 Florida, the University of Florida in
Citra site Strawberry UAV Region-based convolutional neural network

(R-CNN 84.10% [128]

15 US, Midwestern Maize Landsat 5, 7, and 8/30 m Simple Algorithm For Yield estimates (SAFY) R2 = 0.62 [129]

16 China, Central China
Agricultural University Oilseed rape UAV Partial least squares regression, support vector

machine regression, artificial neutral network R2 = 0.7 [130]
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Table 2. Cont.

Location and Extent Crop Type RS Data/Resolution Method Model Performance Reference

17 Heilongjiang province in northeast
China, Hongxing Farm Corn HJ-1 satellites/30 m Nonlinear regression R2 = 0.92 [131]

18 Australia, districts and countries Canola
and wheat MODIS/250 m C-Crop model R2 = 0.81 [132]

19 The U.S., national and county levels Maize MODIS/250 m Linear trend model RMSE = 4.37 bushels per acre [133]

20 Germany, Osnabrück University of
Applied Sciences in Belm Wheat UAV-Based

Hyperspectral Imagery
Partial least-squares regression, multiple

linear regression R2 = 0.79 [134]

21 North China Plain Wheat MODIS/250 m MCWLA-wheat model R2 = 0.42 [135]

22 madison county, Molly Caren Farm Corn Aerial imagery and
LiDAR data

Random forest (RF); neural network (NN);
support vector machine (SVM) R2 = 0.53 [136]

23 U.S., central Iowa Corn MODIS/250 m;
Landsat-Sentinel2-MODIS Linear regression approach R2 = 0.62 [137]

24 U.S., west Tennessee Cotton lint Landsat 8 Artificial neural network R2 = 0.86 [138]

25 China, Qutang Town, Haian city Wheat HJ-CCD/30 m Wheat Grow model RMSE = 0.92, 1.12 g m−2 [139]

26 Australia, Acacia Hills,
Northern Territory Mango World View-3/0.31 m Artificial neural network R2 = 0.60 [140]

27 Hungary, country
Wheat,

rapeseed, maize
and sunflower

MODIS/500 m Multiple linear regression models R2 = 0.817, 0.827, 0.88, 0.76 [141]

28 Brazil, Itirapina—SãoPaulo Sugarcane UAV Multiple linear regression R2 = 0.69 [142]

29 Australia, northern
grain-growing region Wheat Landsat 5 and 8/30 m Linear mixed-effects model RMSE = 0.79 Mg/ha [143]

30 Laos, Rice Research Center Rice MS-720 spectroradiometer partial least-squares regression R2 = 0.873 [144]

31 Bangladesh, Munshiganj District Potato Landsat 7 and 8/30 m Regression analysis R2 = 0.81 [145]

32 China, Rugao city, Jiangsu province Rice UAVs Multiple linear regression function R2 = 0.75 [146]

33 USA, inot Noir vineyards
in California Grape Landsat 7 and 8/30 m Linear function R2 = 0.8 [147]
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Table 2. Cont.

Location and Extent Crop Type RS Data/Resolution Method Model Performance Reference

34 USA(Illinois) and China
(Heilongjiang Province) Corn MODIS/250 m Simple linear regression models R2 = 0.87, R2 = 0.68 [110]

35 China, Yangling District Wheat (HJ-1A/B/30 m,
RADARSAT-2/8 m Regression models R2 = 0.68, RMSE = 1.77 ton/ha [148]

36 Brazil, São Paulo State Sugarcane MODIS/250 m Neural network wrapper R2 = 0.61 [149]

37 U.S., Missouri Mississippi Corn MODIS/250 m Regression analysis R2 value of 0.85 [150]

38 Franc, near Toulouse, regional scale Maize
Formosat-2, SPOT4-Take5,
Landsat-8 and Deimos-1.

SPOT4-Take5
Simple Algorithm For Yield estimates (SAFY) R2 = 0.96; RRMSE = 4.6% [109]

39 India, Arrah district Wheat SkySat imagery/2 m Linear regression model R2 = 0.62 [151]

40 Spain, IRTA Research Station
in Gimenells Maize UAV/0.15 m Linear-plateau models R2 = 0.74 [152]

41 Saudi Arabia, Wadi Al-Dawasir area
south of Riyadh Potato Landsat 8/30 m,

Sentinel2/10 m Linear regression analysis R2 = 0.65, R2 = 0.65 [153]

42 Southern Africa, Harare centre Maize UAV/10 cm Multiple variances analyses R2 = 0.69 [154]

43 Turkey, Seyhan Plane Wheat, corn,
cotton Landsat/30 m Stepwise linear regression R2 = 0.67, R2 = 0.5, R2 = 0.7 [155]

44 Syrian and Lebanese territories Crop MODIS/500 m Regression analysis R2 = 0.85 [57]

45 China, Northeast China Plain Maize MODIS/500 m RS–P–YEC model R2 = 0.827 [156]

46 U.S.A. Corn MODIS/500 m Convolutional architecture for fast feature
embedding, support vector machine R2 = 0.742, R2 = 0.820 [157]

47 Pakistan, Sindh province Rice Landsat ETM+ Regression models R2 = 0.875 [158]

48 China, Huaibei Plain Winter wheat SPOT-VEGETATION Regression tree R2 = 0.93 [159]

49 China, Baizhuang town of
Anyang county Winter wheat SPOT-5 image/10 m Linear function R2 = 0.64 [75]

50 U.S.A. Corn MODIS/Terra (or
Aqua)/250 m/500 m The simple bias correction algorithm RMSE = 0.83 t ha−1 [160]
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3. Remote Sensing Challenges and Solutions to Increase Agricultural Productivity
3.1. Data Issues

Regardless of geographic area, developing high-quality RS approaches to monitor
agricultural activities that can produce accurate and robust results may require standard-
ised inputs and, thus, data pre-processing [161]. Any uncertainties within the data inputs
and pre-processing steps may result in low predictive accuracy. Here, we outline briefly
some of the key challenges for RS-based approaches.

3.1.1. Lack of Quality and Quantity, and Inconsistency, in Ground Data

Agricultural monitoring systems in many countries still rely on traditional approaches
(i.e., ground-based) for data collection and reporting. Such data are costly, time-consuming
and prone to large errors due to incomplete ground observations and subjectivity, and often
do not exist or are inaccessible in many ASA regions [162–164]. In Sub-Saharan African
regions, crop data are generally incomplete and of low quality [26]. In addition, the low
quality of labelling in the reference dataset may also influence mapping accuracy [165–167],
and low accuracy of species identification may arise due to lack of skill in the data collec-
tors [168,169]. Nevertheless, such data are used widely to support supervised classification
and yield modelling based on remote sensing data. Furthermore, errors and biases might
come from the scale mismatch between the sensor spatial resolution and cropland pat-
terns, particularly for smallholder-dominated systems [60,170]. Although there have been
substantial advances in RS, collecting the ground data required to calibrate and validate
RS algorithms across large spatial areas and temporal scales remains a major constraint.
Low quality and unrepresentative samples in the ground data could result in substantial
uncertainties in the RS-based prediction models. This is challenging when mapping contin-
uous variables such as yield at the farm-scale level, where the calibration data often are
unreliable or non-existent.

3.1.2. Atmospheric and Reflectance Biases in Earth Observation Data in ASA Ecosystems

In general, careful choice of appropriate satellite sensor data and remotely sensed
techniques should be made for monitoring agricultural productivity in ASA regions. Shao
and Dong [171] stated that in ASA regions, the frequent occurrence of dust storms needs to
be considered and treated carefully in image pre-processing. The dust storm phenomenon
can affect image quality by altering spectral reflectance posing major challenges to RS
applications in agriculture. Since the information recorded by remote sensors represents
both atmospheric and surface interactions, accurate translation of sensor radiance to esti-
mates of surface radiance (and reflectance) by subtracting atmospheric noise is crucial for
the effective use of remote sensing data in this context [172]. Interaction of the reflected
signal with atmospheric particles such as aerosols can affect measurements. Therefore,
careful parameterisation of aerosol characteristics over time and space is needed to derive
surface reflectance accurately, for estimating vegetation biophysical properties [173]. Inac-
curate estimation of vegetation biophysical properties could deleteriously affect RS-based
prediction models [174].

For a given atmospheric condition, several atmospheric radiative transfer scripts have
been developed to model gaseous absorption, and molecule and aerosol scattering [175,176].
Houborg and McCabe [172] combined satellite and Aerosol Robotic Network (AERONET)
data to parameterise aerosol properties and atmospheric state parameters, and the NDVI
was computed using the corrected reflectance data with the smallest errors (3–8% mean
absolute deviation). The approximate aerosol retrieval algorithm errors of different sensors
such as MODIS, MERIS and MISR can range between ±0.05 + 0.2T550 [177–179]. The
quality of the retrieval process depends mainly on adopting suitable techniques for making
use of multi-angular and multi-sensor data streams [180]. Several factors can impact
retrievals such as bright desert conditions [181] and high aerosol loadings [172]. Therefore,
attention needs to be paid to selecting the most appropriate aerosol model [176]: a fixed
aerosol model should be avoided [182].
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The above early pre-processing of satellite sensor images is particularly important
in agricultural applications since several vegetation indices are applied commonly for
monitoring purposes, in which multi-temporal images are used [183]. In ASA ecosystems,
generally the spatial density of vegetation is low [184,185] and this presents another chal-
lenge to applying RS in these areas. The sparse coverage of vegetation can reduce the
contribution of the area-averaged reflectance of a pixel [183]. In addition, due to the lack
of organic matter content, particularly in desert areas, soils in these regions tend to be
bright and heterogenous mineralogically [184]. All these factors can increase the possibility
of excluding the spectral contribution of vegetation within individual pixels [186–188],
particularly if an adequate spatial and spectral resolution was not selected. In addition,
vegetation in dry environments is different to its humid counterparts, mainly due to a
stronger red edge [184,189]. Moreover, rapid phenological change due to climatic condi-
tions can have a significant impact on the overall brightness and spatial and temporal
interspecies spectral variability [184,189]. Therefore, achieving accurate RS-based estimates
in these regions requires a good understanding of regional constraints and the selection of
appropriate satellite sensor data types and RS techniques that suit the condition.

3.1.3. Small Agriculture Field Size and Insufficient Spatial Resolution

A challenge for estimating crop area and type in some ASA regions, or parts of these
regions, is the heterogeneity of the landscape and small agricultural field size [39,190]. To
monitor crops efficiently, a high temporal revisit frequency over large geographic areas is
required [135]. Meanwhile, this limits the spatial resolution of the data. A coarse spatial
resolution (e.g., <1 km) is problematic where pixels are mixed, meaning that several signals
corresponding to different land cover types occur within a single pixel, for example, due
to small agricultural field sizes [39]. In small agricultural field sizes, this variability is
especially problematic as the spectral reflectance in gridded moderate resolution products
such as from the MODIS and Medium Resolution Imagine Spectrometer (MERIS) sensors
may represent a mix of different land covers and heterogeneous cropping patterns [191,192].
In addition, due to the similar spectral signature and phenological characteristics between
natural vegetation and crops, or among different crop types (particularly wheat and barley),
their discrimination in these regions is often challenging. Although, hard classification (i.e.,
the allocation of whole pixels to single crop classes) of moderate spatial resolution (30 m)
images produced accurate results for commercial farming, it could not deal with mixed
pixels in Ethiopia because of the small agricultural field size [193]. For countries located in
semi-arid zones such as Zambia, Niger and Cameroon in Africa, croplands were mostly
confused with savannas and grasslands, followed by shrublands and woodlands [194].
This might be due to the relatively coarse spatial resolution of the data used, as such data
have intrinsic limitations in highly heterogeneous and intermixed land uses [39,194]. Part
of this confusion might be related to differences in crop calendars; classification accuracy
can be affected where agricultural practices are advanced or delayed in some areas. In
addition, the spatial and spectral resolutions of satellite sensor data also play a vital role
in controlling the level of detail at which land cover can be classified. In Iraq, previous
phenological classification [39,195] produced low accuracy in discriminating between
wheat and barley due to the large spatial and spectral resolution of the input data. Due
to the relatively small field size with respect to MODIS pixels (250 m), it was challenging
to discriminate between the two crop types [39,195]. In contrast, greater accuracy was
achieved in Iran with higher spatial resolution data [196].

Figure 3 depicts the differences in spatial coverage between gridded Landsat (30 m)
and MODIS (250 m) data over fine spatial resolution ArcGIS basemap imagery for some
agricultural lands in (a) North-East Aleppo, Syria, (b) South-East Mosul, Iraq and (c) South
Sanaa, Yemen. The figure shows clearly that the individual MODIS pixels cover several
agricultural fields (Figure 3a–c), which may be used to plant different crops. However,
Landsat could be more representative of the small agricultural parcels. Even if the same
crop is planted in several fields covered by a MODIS pixel, within-pixel variability in crop
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phenology timing may exist if different agricultural management practices are applied. The
mismatch in spatial resolution between remotely sensed data and the small agricultural
field sizes makes it challenging to derive crop phenology, identify crop types and estimate
crop yield accurately.

Figure 3. Three fine spatial resolution ArcGIS basemap images (<1 m) of agricultural areas selected
from the Middle East to illustrate the agricultural detail that is lost within MODIS and Landsat
images. Grid outlines representing 250 m pixels from MODIS and 30 m pixels from Landsat are
shown overlaid on the base images. (a) North-East Aleppo, Syria, (b) South-East Mosul, Iraq and
(c) South Sanaa, Yemen. (Service layer credits: Esri, DigitalGlobe, GeoEye, Earthstar, Geographics,
CNES/Airbus DS, USDA, USGS, AiroGRID, IGN, and the GIS User community).

3.2. Remote Sensing Solutions and Future Applications
3.2.1. New RS Techniques and Data to Increase the Accuracy of Crop Area Estimation

To overcome the issue of low classification accuracy, previous approaches used fusion
approaches to combine the fine spatial resolution of data from the Landsat series of sensors
with the high temporal frequency of data from coarse resolution sensors such as MODIS
(Gao et al., 2006; Lobel et al., 2013), to provide fused datasets suitable for application to
ASA regions. Such products could have added value for a wide range of applications
which need both fine spatial and temporal resolutions, such as land cover classification and
forecasting crop yield. One approach, called the spatial and temporal adaptive reflectance
fusion model (STARFM) is based on a spatial relationship between Landsat and MODIS
spectral reflectance. The MODIS spectral reflectance can be downscaled to the spatial
resolution of Landsat obtained at the same dates [197]. An extension of STARFM was
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developed to increase the accuracy of predicting the surface reflectance of heterogeneous
landscapes (ESTARFM) [198]. Linear mixture models were also used to downscale MERIS
data to a Landsat-like spatial resolution and results indicated that vegetation dynamics,
discrimination of crop types, phenology and rapid land cover types could be monitored
effectively [199,200]. Luo et al. [201] developed a new fusion approach called STAIR and
claimed that based on intensive experiments the approach not only captures useful texture
patterns but also predicts reflectance accurately in the generated images, with a significant
improvement over the classic STARFM algorithm. In addition, new products such as Sen-
tinel data provided by the European Space Agency (ESA) have become accessible to the RS
community, which increases the spatial and spectral resolutions available for applications
such as complex land cover/land use mapping, forest monitoring and change detection.
Data extracted from Sentinel imagery, such as from Sentinel-2 and 3, can be used in isolation
or combined, or both can be combined with MODIS and Landsat 8 through data fusion
techniques. Recently, although agricultural field sizes are generally small in Sub-Saharan
Africa, with a fine spatial and temporal resolution achieved by integrating Sentinel-2 data
it was possible to disentangle agricultural land into the cropped and fallowed classes [44].
Such discrimination can help capture crop fallow rotation which can provide key informa-
tion on how cropland expansion and intensification affects environmental parameters such
as crop yield, soil fertility and local livelihoods in low-income regions such as the Sahel [44].
Cubesat Enabled Spatio-Temporal Enhancement Method (CESTEM) was also developed
recently, producing Landsat 8 consistent and atmospherically corrected surface reflectance,
but at the spatial scale and temporal frequency of the CubeSat observations [202]. In their
paper, application of this approach to an agricultural dryland system in Saudi Arabia was
demonstrated in which CubeSat-based reproduction of Landsat 8 consistent VNIR data
was achieved with an overall relative mean absolute deviation of 1.6% or better, even when
the Landsat 8 and CubeSat acquisitions were temporally displaced by >32 days. Wang
and Atkinson [203] also developed a new fusion method using Sentinel datasets in which
more accurate results were produced compared to the existing STARFM. In their research,
spatio-temporal fusion was considered to fuse S-2 and S-3 to generate nearly daily S-2
images which may be useful for monitoring highly dynamic environmental, agricultural or
ecological phenomena. This approach may be suitable for forecasting crop yield in ASA
regions in the future.

3.2.2. New Freely Available RS Data to Improve Monitoring Agricultural Crop Status

It has been noted that the majority of efforts to map and monitor crop diseases and
pests are conducted in small plots, or at least over small areas [204–206]. This is because
such monitoring often relies on commercial satellite sensor images with the necessary
spectral and spatial/temporal resolution to capture the detailed variation of interest. Thus,
upscaling or adopting these approaches for other areas is challenging due to the large
cost constraint. In addition, in other research where freely available coarse spatial resolu-
tion images were used, low accuracies were produced. Therefore, future research must
investigate the utility of freely available data, such as from Landsat 8 and Sentinel, which
provide adequate spatial and temporal resolution images across the world. For example,
a new spectral index for detecting wheat yellow rust using Sentinel 2 was developed by
Zheng et al. [207], and the overall identification accuracy for the index was 84.1%. It is also
important to stress that ecologists, botanists and remote sensing scientists should come
together and agree on standardised variables that are critical for mapping and monitoring
crop disease and pests using remote sensing data. Isip et al. [208] indicated that Sentinel
2-based VIs can be used for the detection of twister disease in the field since it gives greater
discrimination and high accuracies.

3.2.3. Utilising the Improved RS Sensing Capabilities to Increase the Accuracy of Crop
Yield Forecasting

Over the past decades, most research in RS on crop yield modelling and forecasting has
emphasised the use of greenness and biomass as the basis for prediction [209,210]. Since the
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environment in ASA regions is highly variable, an alternative way to increase the accuracy
of yield forecasts based on RS is to use vegetation biochemical and biophysical parameters
as a surrogate for crop yield. Chlorophyll is a key biochemical parameter, which has a
large correlation with crop productivity [211]. Many studies revealed the close relationship
between chlorophyll content and Gross Primary Yield (GPP) [211,212]. Thus, compared
to leaf area index (LAI) or biomass, the chlorophyll content might be expected to be more
associated with crop yield. The chlorophyll content of vegetation, which is a function
of the biochemical variables of chlorophyll concentration and the biophysical variable of
LAI, can be surrogated by the MERIS Terrestrial Chlorophyll Index (MTCI) [213]. Zhang
and Liu [214] assessed the potential of an MTCI-based model for crop yield forecasting
compared to the NDVI in Henan Province, China from 2003 to 2011. Their results revealed
several advantages of the MTCI-based model compared to the NDVI-based model, such
as (i) larger significant correlation coefficient and smaller error; (ii) crop yield could be
forecasted 30 days earlier than using the NDVI-based model. Although the results were
not compared to other VIs, a significant correlation between MTCI and crop yield was
found at regional scales for the state of South Dakota, USA [213]. Thus, considering its
consistently large correlation with final crop yield, satellite-derived chlorophyll content
should be further adapted for crop yield forecasting in ASA regions.

Until now, we have focused on reflected light in the solar spectrum as the main
source of information about vegetation conditions. However, there is an extra source of
information in the spectral range of the optical and near-infrared, providing information
about vegetation productivity. This source of information is associated with the emission
of fluorescence from plant leaf chlorophyll; re-emitted energy because this part of the
spectrum cannot be utilised in carbon fixation [215]. In addition, observational evidence
in many studies revealed that chlorophyll fluorescence provides information indepen-
dent of reflectance-based spectral VIs [216]. Recent advances in remotely sensed-based
approaches to estimate photosynthesis relied on the flux of chlorophyll fluorescence emit-
ted by the canopy, which has provided opportunities to develop many satellite retrieval
algorithms [217–219]. Recently, Guan et al. [220] provided a framework to correlate solar-
induced fluorescence (SIF) retrievals and crop yield. Crop productivity was estimated for
2007–2012 using spaceborne SIF retrieval from the Global Ozone Monitoring Experiment-2
satellite in the United States. Besides the more accurate and efficient measurement of crop
productivity compared to traditional crop monitoring approaches, the SIF was able to
capture information on the impact of environmental stresses on carbon use efficiency and
autotrophic respiration, with considerable sensitivity of both to high temperatures. These
outcomes revealed new opportunities to increase the accuracy of crop yield forecasting
and increase understanding of crop yield responses to different climatic conditions in
ASA regions.

4. The Role of Government, Investors, Policymakers and NGOs

In 2002, the gap between Earth observation and science policy in the UK was analysed
and the conclusions are still valid globally in which the major limitation has been the
lack of a mature marketplace [221]. After 20 years, Tonneau et al. [222] came to a similar
conclusion in their recent policy brief: existing shared data and products are not meeting
African demands due to the large gap between Earth observation capabilities and science
policy in African countries and the major role of Global North institutions in shaping
technology resource strategy [222,223]. In recent decades, RS technology has advanced
significantly and large numbers of satellite sensor images at different spatial and temporal
resolutions have been made freely available to help tackle multiple challenges in different
application domains [224]. Although the current data offered by various satellite sensors
have met the requirements of many agricultural decision-makers, such techniques and data
have not been incorporated effectively into the agricultural monitoring systems of many
ASA countries [29,223]. There are several possible explanations for this, including (i) lack
of capacity to understand and analyse RS data and (ii) lack of infrastructure such as compu-
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tational power and internet connectivity to process and analyse the data [223,225,226]. Full
exploitation of EO data for agricultural monitoring will require sufficient networking and
training, and financial support to purchase or update equipment to be able to keep up with
advances in technology. Moreover, training opportunities provided by university courses
in RS and geomatics, and training centres in spatial technologies, are in short supply and
located in only a few countries in Africa [222]. Furthermore, often the people who have
taken advanced courses and training are assigned to unrelated tasks and are not able to
employ or transfer the knowledge gained [225].

It does not matter how advanced the RS technology becomes and how many free
satellite sensor images will be available in the future if the capability to adapt them
is insufficiently developed. Governments and their associated infrastructures in ASA
regions might lack the required trained staff or general understanding to be able to take
advantage of such techniques to improve agricultural management and incorporate them
into their decision-making processes [223]. Thus, governments and investors should focus
on strengthening the capacities in ASA countries by providing technical assistance and
training. This will help these countries to provide and sustain solutions to issues that
are appropriate for their socio-economic and environmental security. Governments and
NGOs should rely on free, fine spatial and temporal resolution satellite sensor imagery
such as from Landsat and Sentinel to make the systems sustainable and scalable and
economically viable. In addition, all satellite sensor images (recent and historical) should
be easily accessible. In particular, satellite sensor images and their derivative products that
are financed by public funds should be publicly available. Some of these challenges and
suggestions could be true in other parts of the world, but due to security issues, lack of
data and data quality issues, the fragile environment and lack of resources in these regions,
adopting RS approaches to monitor agriculture productivity is urgently needed.

5. Conclusions

ASA regions are defined by low water availability caused by the hydrological balance
of precipitation and evapotranspiration and may also be affected by irregularities in the tim-
ing of precipitation, resulting in the frequent occurrence of droughts [1,29]. Unfortunately,
many ASA regions of the world are also politically insecure particularly in the Middle East
and Africa. Both factors make these regions vulnerable in terms of crop production and
yield. RS could be used to provide the required comprehensive spatial coverage and timely
crop monitoring data on which to base early warning systems that could significantly
reduce food insecurities. Here, we demonstrated how RS can help improve the monitoring
of agricultural productivity and, thereby, the assessment of food security by providing
key information through the growing cycle. This information includes identifying and
estimating crop area, monitoring agricultural crop status and health, and forecasting future
crop yield. We demonstrated that RS data can play a vital role, especially given that the
required data are freely available for these applications. Moreover, the data are available
in both ‘normal’ situations and ‘abnormal’ situations where access to other data is greatly
restricted due to natural and anthropogenic crises. Since data from relatively new satellite
sensors such as Landsat 8 and the Sentinel series of sensors are available for free and their
specification can meet the requirements of these agriculture applications, ASA countries
should consider adopting these datasets into their national agricultural monitoring sys-
tems. Researchers and investigators should also explore new RS techniques in these regions
such as to provide more accurate and robust results to support national policy and local
decisions in support of ensuring food security. We recommend that researchers should
focus on integrating already available fusion techniques into their agricultural monitoring
systems such as creating fused datasets with a fine spatio-temporal resolution that can be
used to classify crop type and forecast crop yield for ASA regions. Lastly, governments
and funders should provide adequate resources to strengthen the capacity of countries
in ASA regions. In particular, they should aim to provide the appropriate training and
infrastructure that will enable them to incorporate such data and techniques into their
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agricultural monitoring systems to increase the capability to forecast crop production and
yield and reduce food insecurity.
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73. Rufin, P.; Frantz, D.; Ernst, S.; Rabe, A.; Griffiths, P.; Özdoğan, M.; Hostert, P. Mapping Cropping Practices on a National Scale
Using Intra-Annual Landsat Time Series Binning. Remote Sens. 2019, 11, 232. [CrossRef]

http://doi.org/10.3390/rs6064723
http://doi.org/10.1002/ps.4003
http://doi.org/10.1186/s13007-017-0198-y
http://doi.org/10.3390/rs11070846
http://doi.org/10.1109/JSTARS.2009.2037163
http://doi.org/10.1016/j.jag.2017.02.016
http://www.ncbi.nlm.nih.gov/pubmed/28867987
http://doi.org/10.1016/j.rse.2019.111410
http://doi.org/10.1073/pnas.1616919114
http://www.ncbi.nlm.nih.gov/pubmed/28202728
http://doi.org/10.1080/1747423X.2018.1511763
http://doi.org/10.1080/01431161.2015.1084434
http://doi.org/10.5194/isprsarchives-XL-7-W3-27-2015
http://doi.org/10.1155/2021/8810279
http://doi.org/10.3389/fenvs.2015.00056
http://doi.org/10.1016/j.envres.2016.02.005
http://www.ncbi.nlm.nih.gov/pubmed/26922262
http://doi.org/10.1016/j.apgeog.2017.12.006
http://doi.org/10.1111/j.1365-2486.2007.01519.x
http://doi.org/10.1016/j.rse.2009.08.016
http://doi.org/10.1080/01431160802562222
http://doi.org/10.1016/S0034-4257(00)00159-0
http://doi.org/10.1109/TGRS.2003.818367
http://doi.org/10.1080/01431160512331314083
http://doi.org/10.1109/TGRS.2004.842481
http://doi.org/10.1007/s41064-018-0050-7
www.jstor.org/stable/25472682
http://doi.org/10.1088/1742-6596/1743/1/012026
http://doi.org/10.3390/rs11030232


Remote Sens. 2021, 13, 3382 22 of 27

74. Ennouri, K.; Kallel, A. Remote Sensing: An Advanced Technique for Crop Condition Assessment. Math. Probl. Eng. 2019,
2019, 9404565. [CrossRef]

75. Wang, L.; Tian, Y.; Yao, X.; Zhu, Y.; Cao, W. Predicting grain yield and protein content in wheat by fusing multi-sensor and
multi-temporal remote-sensing images. Field Crops Res. 2014, 164, 178–188. [CrossRef]

76. Steensland, A. 2020 Global Agricultural Productivity Report: Productivity in a time of pandemics. 2020. Available online:
https://vtechworks.lib.vt.edu/handle/10919/102008 (accessed on 16 August 2021).

77. Del Rio, A.; Simpson, B.M. Agricultural Adaptation to Climate Change in the Sahel: Expected Impacts on Pests and Diseases Afflicting
Selected Crops; USAID: Washington, DC, USA, 2014.

78. Hemmati, C.; Nikooei, M.; Al-Subhi, A.; Al-Sadi, A. History and Current Status of Phytoplasma Diseases in the Middle East.
Biology 2021, 10, 226. [CrossRef]

79. Meyer, M.; Cox, J.A.; Hitchings, M.D.T.; Burgin, L.; Hort, M.C.; Hodson, D.P.; Gilligan, C.A. Quantifying airborne dispersal routes
of pathogens over continents to safeguard global wheat supply. Nat. Plants 2017, 3, 780–786. [CrossRef] [PubMed]

80. United States Department of Agriculture Foreign Agricultural Service (USDA FAS). MIDDLE EAST: Yellow Rust Epidemic Affects
Regional Wheat Crops. 2010. Available online: https://ipad.fas.usda.gov/highlights/2010/06/Middle%20East/ (accessed on
13 May 2021).

81. Simons, S. Management strategies for maize grey leaf spot (Cercospora zeaemaydis) in Kenya and Zimbabwe. DFID Tech. Rep. 2006,
R7566, 1–67.

82. Oerke, E.C. Crop losses to pests. J. Agric. Sci. 2006, 144, 31–43. [CrossRef]
83. Hruska, A. Fall armyworm (Spodoptera frugiperda) management by smallholders. CAB Rev. 2019, 14, 1–11. [CrossRef]
84. Kasoma, C.; Shimelis, H.; Laing, M.D. Fall armyworm invasion in Africa: Implications for maize production and breeding. J. Crop

Improv. 2021, 35, 111–146. [CrossRef]
85. Lesk, C.; Rowhani, P.; Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 2016, 529, 84.

[CrossRef]
86. Singh, N.P.; Bantilan, C.; Byjesh, K. Vulnerability and policy relevance to drought in the semi-arid tropics of Asia—A retrospective

analysis. Weather. Clim. Extremes 2014, 3, 54–61. [CrossRef]
87. Kamali, B.; Abbaspour, K.C.; Lehmann, A.; Wehrli, B.; Yang, H. Spatial assessment of maize physical drought vulnerability in

sub-Saharan Africa: Linking drought exposure with crop failure. Environ. Res. Lett. 2018, 13, 074010. [CrossRef]
88. Erian, W.; Katlan, B.; Assad, N.; Ibrahim, S. Effects of Drought and Land Degradation on Vegetation Losses in Africa, Arab Region with

Special Case Study on: Drought and Conflict in Syria, South America and Forests of Amazon and Congo Rivers Basins; Background Paper
Prepared for the 2015 Global Assessment Report on Disaster Risk Reduction; UNISDR: Geneva, Switzerland, 2014.

89. Barlow, M.; Zaitchik, B.; Paz, S.; Black, E.; Evans, J.; Hoell, A. A Review of Drought in the Middle East and Southwest Asia. J.
Clim. 2016, 29, 8547–8574. [CrossRef]

90. Kandeel, A.A. In the Face of Climate Change: Challenges of Water Scarcity and Security in MENA. 11 June 2019. Atlantic
Council. Available online: https://www.atlanticcouncil.org/blogs/menasource/in-theface-of-climate-change-challenges-of-
water-scarcity-and-security-in-mena/ (accessed on 17 March 2021).

91. United States Department of Agriculture Foreign Agricultural Service (USDA FAS). Drought Reduces 2008/09Winter Grain Yield,
USDA-FAS, Office of Global Analysis. 2008. Available online: http://www.pecad.fas.usda.gov/highlights/2008/05/iraq_may2
008.htm (accessed on 16 November 2020).

92. Sultan, B.; Defrance, D.; Iizumi, T. Evidence of crop production losses in West Africa due to historical global warming in two crop
models. Sci. Rep. 2019, 9, 1–15. [CrossRef] [PubMed]

93. Meng, J.-H.; Wu, B.-F. Study on the crop condition monitoring methods with remote sensing. Int. Arch. Photogramm. Remote Sens.
Spat. Inf. Sci. 2008, 37, 945–950.

94. Cogato, A.; Meggio, F.; Migliorati, M.D.; Marinello, F. Extreme Weather Events in Agriculture: A Systematic Review. Sustainability
2019, 11, 2547. [CrossRef]

95. Sazib, N.; Mladenova, L.E.; Bolten, J.D. Assessing the Impact of ENSO on Agriculture Over Africa Using Earth Observation Data.
Front. Sustain. Food Syst. 2020, 4, 188. [CrossRef]

96. Mechiche-Alami, A.; Abdi, A.M. Agricultural productivity in relation to climate and cropland management in West Africa. Sci.
Rep. 2020, 10, 1–10. [CrossRef]

97. Sankaran, S.; Mishra, A.; Ehsani, R.; Davis, C. A review of advanced techniques for detecting plant diseases. Comput. Electron.
Agric. 2010, 72, 1–13. [CrossRef]

98. Yuan, L.; Zhang, H.; Zhang, Y.; Xing, C.; Bao, Z. Feasibility assessment of multi-spectral satellite sensors in monitoring and
discriminating wheat diseases and insects. Optik 2017, 131, 598–608. [CrossRef]

99. Raikes, C.; Burpee, L.L. Use of multispectral radiometry for assessment of rhizoctonia blight in creeping bentgrass. Phytopathology
1998, 88, 446–449. [CrossRef]

100. Chen, X.; Ma, J.; Qiao, H.; Cheng, D.; Xu, Y.; Zhao, Y. Detecting infestation of take-all disease in wheat using Land-sat Thematic
Mapper imagery. Int. J. Remote Sens. 2007, 28, 5183–5189. [CrossRef]

101. Piou, C.; Gay, P.E.; Benahi, A.S.; Ebbe, M.; Chihrane, J.; Ghaout, S.; Escorihuela, M.J. Soil moisture from remote sensing to forecast
desert locust presence. J. Appl. Ecol. 2019, 56, 966–975. [CrossRef]

http://doi.org/10.1155/2019/9404565
http://doi.org/10.1016/j.fcr.2014.05.001
https://vtechworks.lib.vt.edu/handle/10919/102008
http://doi.org/10.3390/biology10030226
http://doi.org/10.1038/s41477-017-0017-5
http://www.ncbi.nlm.nih.gov/pubmed/28947769
https://ipad.fas.usda.gov/highlights/2010/06/Middle%20East/
http://doi.org/10.1017/S0021859605005708
http://doi.org/10.1079/PAVSNNR201914043
http://doi.org/10.1080/15427528.2020.1802800
http://doi.org/10.1038/nature16467
http://doi.org/10.1016/j.wace.2014.02.002
http://doi.org/10.1088/1748-9326/aacb37
http://doi.org/10.1175/JCLI-D-13-00692.1
https://www.atlanticcouncil.org/blogs/menasource/in-theface-of-climate-change-challenges-of-water-scarcity-and-security-in-mena/
https://www.atlanticcouncil.org/blogs/menasource/in-theface-of-climate-change-challenges-of-water-scarcity-and-security-in-mena/
http://www.pecad.fas.usda.gov/highlights/2008/05/iraq_may2008.htm
http://www.pecad.fas.usda.gov/highlights/2008/05/iraq_may2008.htm
http://doi.org/10.1038/s41598-019-49167-0
http://www.ncbi.nlm.nih.gov/pubmed/31492929
http://doi.org/10.3390/su11092547
http://doi.org/10.3389/fsufs.2020.509914
http://doi.org/10.1038/s41598-020-59943-y
http://doi.org/10.1016/j.compag.2010.02.007
http://doi.org/10.1016/j.ijleo.2016.11.206
http://doi.org/10.1094/PHYTO.1998.88.5.446
http://doi.org/10.1080/01431160701620683
http://doi.org/10.1111/1365-2664.13323


Remote Sens. 2021, 13, 3382 23 of 27

102. Krishna, T.M.; Ravikumar, G.; Krishnaveni, M. Remote Sensing Based Agricultural Drought Assessment in Palar Basin of Tamil
Nadu State, India. J. Indian Soc. Remote Sens. 2009, 37, 9–20. [CrossRef]

103. Rembold, F.; Meroni, M.; Urbano, F.; Lemoine, G.; Kerdiles, H.; Perez-Hoyos, A. ASAP-Anomaly hot Spots of Agricultural
Production, a new early warning decision support system developed by the Joint Research Centre. In Proceedings of the
2017 9th International Workshop on the Analysis of Multitemporal Remote Sensing Images (MultiTemp), Bruges, Belgium,
27–29 June 2017.

104. Kahan, D. Managing Risk in Farming; Food and agriculture organization of the United Nations: Rome, Italy, 2008.
105. Pease, J.W.; Wade, E.W.; Skees, J.S.; Shrestha, C.M. Comparisons between Subjective and Statistical Forecasts of Crop Yields. Rev.

Agric. Econ. 1993, 15, 339–350. [CrossRef]
106. Qian, B.; De Jong, R.; Warren, R.; Chipanshi, A.; Hill, H. Statistical spring wheat yield forecasting for the Canadian prairie

provinces. Agric. For. Meteorol. 2009, 149, 1022–1031. [CrossRef]
107. Raja, R.; Nayak, A.; Panda, B.; Lal, B.; Tripathi, R.; Shahid, M.; Kumar, A.; Mohanty, S.; Samal, P.; Gautam, P.; et al. Monitoring of

meteorological drought and its impact on rice (Oryza sativa L.) productivity in Odisha using standardized precipitation index.
Arch. Agron. Soil Sci. 2014, 60, 1701–1715. [CrossRef]

108. Basso, B.; Liu, L. Seasonal crop yield forecast: Methods, applications, and accuracies. In Advances in Agronomy; Sparks, D.L., Ed.;
2019; Volume 154, pp. 201–255. Available online: https://www.academia.edu/41108597/Seasonal_crop_yield_forecast_Methods_
applications_and_accuracies (accessed on 16 August 2021).

109. Battude, M.; Al Bitar, A.; Morin, D.; Cros, J.; Huc, M.; Sicre, C.M.; Le Dantec, V.; Demarez, V. Estimating maize biomass and yield
over large areas using high spatial and temporal resolution Sentinel-2 like remote sensing data. Remote Sens. Environ. 2016, 184,
668–681. [CrossRef]

110. Ban, H.-Y.; Kim, K.S.; Park, N.-W.; Lee, B.-W. Using MODIS Data to Predict Regional Corn Yields. Remote Sens. 2017, 9, 16.
[CrossRef]

111. Basso, B.; Liu, L.; Ritchie, J.T. A Comprehensive Review of the CERES-Wheat, -Maize and -Rice Models’ Performances. Adv.
Agron. 2016, 136, 27–132.

112. Basso, B.; Cammarano, D.; Carfagna, E. Review of Crop Yield Forecasting Methods and Early Warning Systems. In Proceedings
of the First Meeting of the Scientific Advisory Committee of the Global Strategy to Improve Agricultural and Rural Statistics; FAO
Headquarters: Rome, Italy, 2013; pp. 1–56. Available online: http://www.fao.org/fileadmin/templates/ess/documents/
meetings_and_workshops/GS_SAC_2013/Improving_methods_for_crops_estimates/Crop_Yield_Forecasting_Methods_and_
Early_Warning_Systems_Lit_review.pdf (accessed on 11 June 2021).

113. Hielkema, J.; Snijders, F. Operational use of environmental satellite remote sensing and satellite communications technology for
global food security and locust control by FAO: The ARTEMIS and DIANA systems. Acta Astronaut. 1994, 32, 603–616. [CrossRef]

114. Chahbi, A.; Zribi, M.; Lili-Chabaane, Z.; Duchemin, B.; Shabou, M.; Mougenot, B.; Boulet, G. Estimation of the dy-namics and
yields of cereals in a semi-arid area using remote sensing and the SAFY growth model. Int. J. Remote Sens. 2014, 35, 1004–1028.
[CrossRef]

115. Ahmad, I.; Singh, A.; Fahad, M.; Waqas, M.M. Remote sensing-based framework to predict and assess the interannual variability
of maize yields in Pakistan using Landsat imagery. Comput. Electron. Agric. 2020, 178, 105732. [CrossRef]

116. Peng, B.; Guan, K.; Zhou, W.; Jiang, C.; Frankenberg, C.; Sun, Y.; He, L.; Köhler, P. Assessing the benefit of satellite-based
Solar-Induced Chlorophyll Fluorescence in crop yield prediction. Int. J. Appl. Earth Obs. Geoinf. 2020, 90, 102126. [CrossRef]

117. Schwalbert, R.A.; Amado, T.; Corassa, G.; Pott, L.P.; Prasad, P.; Ciampitti, I.A. Satellite-based soybean yield forecast: Integrating
machine learning and weather data for improving crop yield prediction in southern Brazil. Agric. For. Meteorol. 2020, 284, 107886.
[CrossRef]

118. Abbas, F.; Afzaal, H.; Farooque, A.A.; Tang, S. Crop Yield Prediction through Proximal Sensing and Machine Learning Algorithms.
Agronomy 2020, 10, 1046. [CrossRef]

119. Han, J.; Zhang, Z.; Cao, J.; Luo, Y.; Zhang, L.; Li, Z.; Zhang, J. Prediction of Winter Wheat Yield Based on Multi-Source Data and
Machine Learning in China. Remote Sens. 2020, 12, 236. [CrossRef]

120. Sharifi, A. Yield prediction with machine learning algorithms and satellite images. J. Sci. Food Agric. 2021, 101, 891–896. [CrossRef]
[PubMed]

121. Stepanov, A.; Dubrovin, K.; Sorokin, A.; Aseeva, T. Predicting Soybean Yield at the Regional Scale Using Remote Sensing and
Climatic Data. Remote Sens. 2020, 12, 1936. [CrossRef]

122. Leroux, L.; Falconnier, G.; Diouf, A.; Ndao, B.; Gbodjo, Y.J.E.; Tall, L.; Balde, A.; Clermont-Dauphin, C.; Bégué, A.;
Affholder, F.; et al. Using remote sensing to assess the effect of trees on millet yield in complex parklands of Central Senegal.
Agric. Syst. 2020, 184, 102918. [CrossRef]

123. Feng, L.; Zhang, Z.; Ma, Y.; Du, Q.; Williams, P.; Drewry, J.; Luck, B. Alfalfa Yield Prediction Using UAV-Based Hyperspectral
Imagery and Ensemble Learning. Remote Sens. 2020, 12, 2028. [CrossRef]

124. Rahman, M.M.; Robson, A. Integrating Landsat-8 and Sentinel-2 Time Series Data for Yield Prediction of Sugarcane Crops at the
Block Level. Remote Sens. 2020, 12, 1313. [CrossRef]

125. Zhao, Y.; Potgieter, A.B.; Zhang, M.; Wu, B.; Hammer, G.L. Predicting Wheat Yield at the Field Scale by Combining High-
Resolution Sentinel-2 Satellite Imagery and Crop Modelling. Remote Sens. 2020, 12, 1024. [CrossRef]

http://doi.org/10.1007/s12524-009-0008-8
http://doi.org/10.2307/1349453
http://doi.org/10.1016/j.agrformet.2008.12.006
http://doi.org/10.1080/03650340.2014.912033
https://www.academia.edu/41108597/Seasonal_crop_yield_forecast_Methods_applications_and_accuracies
https://www.academia.edu/41108597/Seasonal_crop_yield_forecast_Methods_applications_and_accuracies
http://doi.org/10.1016/j.rse.2016.07.030
http://doi.org/10.3390/rs9010016
http://www.fao.org/fileadmin/templates/ess/documents/meetings_and_workshops/GS_SAC_2013/Improving_methods_for_crops_estimates/Crop_Yield_Forecasting_Methods_and_Early_Warning_Systems_Lit_review.pdf
http://www.fao.org/fileadmin/templates/ess/documents/meetings_and_workshops/GS_SAC_2013/Improving_methods_for_crops_estimates/Crop_Yield_Forecasting_Methods_and_Early_Warning_Systems_Lit_review.pdf
http://www.fao.org/fileadmin/templates/ess/documents/meetings_and_workshops/GS_SAC_2013/Improving_methods_for_crops_estimates/Crop_Yield_Forecasting_Methods_and_Early_Warning_Systems_Lit_review.pdf
http://doi.org/10.1016/0094-5765(94)90071-X
http://doi.org/10.1080/01431161.2013.875629
http://doi.org/10.1016/j.compag.2020.105732
http://doi.org/10.1016/j.jag.2020.102126
http://doi.org/10.1016/j.agrformet.2019.107886
http://doi.org/10.3390/agronomy10071046
http://doi.org/10.3390/rs12020236
http://doi.org/10.1002/jsfa.10696
http://www.ncbi.nlm.nih.gov/pubmed/32755005
http://doi.org/10.3390/rs12121936
http://doi.org/10.1016/j.agsy.2020.102918
http://doi.org/10.3390/rs12122028
http://doi.org/10.3390/rs12081313
http://doi.org/10.3390/rs12061024


Remote Sens. 2021, 13, 3382 24 of 27

126. Wang, X.; Huang, J.; Feng, Q.; Yin, D. Winter Wheat Yield Prediction at County Level and Uncertainty Analysis in Main
Wheat-Producing Regions of China with Deep Learning Approaches. Remote Sens. 2020, 12, 1744. [CrossRef]

127. Gaso, D.V.; Berger, A.G.; Ciganda, V.S. Predicting wheat grain yield and spatial variability at field scale using a simple regression
or a crop model in conjunction with Landsat images. Comput. Electron. Agric. 2019, 159, 75–83. [CrossRef]

128. Chen, Y.; Lee, W.S.; Gan, H.; Peres, N.; Fraisse, C.; Zhang, Y.; He, Y. Strawberry yield prediction based on a deep neural network
using high-resolution aerial orthoimages. Remote Sens. 2019, 11, 1584. [CrossRef]
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