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Abstract: By labelling high spatial resolution (HSR) images with specific semantic classes according
to geographical properties, scene classification has been proven to be an effective method for HSR
remote sensing image semantic interpretation. Deep learning is widely applied in HSR remote
sensing scene classification. Most of the scene classification methods based on deep learning assume
that the training datasets and the test datasets come from the same datasets or obey similar feature
distributions. However, in practical application scenarios, it is difficult to guarantee this assumption.
For new datasets, it is time-consuming and labor-intensive to repeat data annotation and network
design. The neural architecture search (NAS) can automate the process of redesigning the baseline
network. However, traditional NAS lacks the generalization ability to different settings and tasks.
In this paper, a novel neural network search architecture framework—the spatial generalization
neural architecture search (SGNAS) framework—is proposed. This model applies the NAS of spatial
generalization to cross-domain scene classification of HSR images to bridge the domain gap. The
proposed SGNAS can automatically search the architecture suitable for HSR image scene classification
and possesses network design principles similar to the manually designed networks. To obtain a
simple and low-dimensional search space, the traditional NAS search space was optimized and
the human-the-loop method was used. To extend the optimized search space to different tasks, the
search space was generalized. The experimental results demonstrate that the network searched by
the SGNAS framework with good generalization ability displays its effectiveness for cross-domain
scene classification of HSR images, both in accuracy and time efficiency.

Keywords: high spatial resolution images; cross-domain scene classification; neural architecture
search; spatial generalization; deep learning

1. Introduction

With the continuous development of satellite sensors, the resolution of remote sensing
images is improving, and fine-scale information can be obtained from high spatial resolu-
tion (HSR) remote sensing images [1]. However, HSR remote sensing images have many
textural, structural, and spectral characteristics [2,3]. These data demonstrate the phenom-
ena of a complex spatial arrangement with high intraclass and low interclass variabilities,
giving rise to difficulties in image classification and recognition [4,5]. Pixel-based remote
sensing image classification methods frequently consider that the same kinds of ground ob-
jects have the same spectral characteristics, while different ground objects in spectral space
use separability as the classification premise. Therefore, the pixel-level remote sensing
image classification method cannot be effective. The object-oriented classification method is
proposed and widely used in HSR images [6–8]. The object-oriented classification method
can accurately identify the target information and features in HSR remote sensing images.
However, the difference between the underlying features and the high-level semantic
information still makes the traditional object-oriented image interpretation method unable
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to obtain the complex semantic information of the important areas in HSR remote sensing
images [9]. Eliminating the semantic-gap [10] between low-level features and high-level
semantic information to acquire scene semantic information of HSR images has become
one of the hot-spots for remote sensing image processing and analysis [11,12].

Scene classification enables obtaining high-level semantic information about different
scenes by automatically labelling HSR remote sensing images to establish the relationship
between the underlying features and the high-level semantic information [13]. The key
to scene classification lies in the extraction of essential features from the images. In
recent years, the scene classification method without considering the object prior has
been widely used in HSR remote sensing images and can be divided into three main
types [14,15]. (1) Scene classification methods based on low-level features. This kind
of method extracts the bottom features from the HSR images such as the color, texture,
and shape attributes of the image, and uses classifiers to identify scenes. The bottom
features can be obtained directly from images without external knowledge including
global features [16] and local features [17]. For example, Yang and Newsam compared
the scale invariant feature transformation (SIFT) [18] and Gabor texture features. Dos
Santos et al. tested a variety of global color and texture features such as color histogram
(CH) [19] and local binary pattern (LBP) [20]. However, this method has difficulty in
describing the complex spectral and spatial characteristics of ground objects in scenes, thus
the classification results are often poor [16,21]. (2) Scene classification methods based on
mid-level features. By extracting the local features of the scene, this method maps the local
features to the dictionary or parameter space to obtain the mid-level features with stronger
discrimination. Then, the mid-level features are input into the classifier to obtain the scene
labels [22]. This kind of method mainly includes bag-of-visual-words (BOVW), feature
coding, and probabilistic topic models [22–25]. Luo et al. [23] constructed descriptors for
satellite image by connecting color and texture features, and quantified the features of
all image blocks into several visual words by K-means clustering. However, the scene
classification method based on mid-level features often ignores the spatial distribution
between features and lacks the transferability between domains, which greatly limit the
expression effectiveness and model universality of HSR image scene classification. (3) Scene
classification methods based on high-level features, which automatically extract features
from images through training a deep network. Deep learning methods can mainly be
divided into two types: supervised feature learning and unsupervised feature learning
based methods [26]. With the generalization ability of the deep learning model and the
similarity of data between different fields [27–29], it is possible to transfer network weight
from one domain to another, which is beneficial to network initialization and saves in the
time consumption of training [27].

The earliest deep learning method introduced into HSR remote sensing images is
the unsupervised feature learning method based on a significant sample selection strat-
egy [30]. The training data of this method is unlabelled. The deep learning method based
on supervised features uses labelled image data to train and optimize neural networks
to classify images. The CNN is one of the most widely used models in deep learning
based on supervised features. According to the development process and direction of CNN
scene classification, traditional CNN scene classification methods can be divided into three
types [31]: (1) Classical convolutional neural network, for example, AlexNet [32] is com-
posed of a convolution layer, a fully connected layer, and a softmax classifier. VGGNet [33]
inherits the framework of LeNet [34] and AlexNet, increasing the depth of the network and
obtaining more effective information. These CNN networks have achieved good results in
scene classification fields. (2) Convolutional neural network based on the attention mecha-
nism, which means that the neural network uses the attention mechanism to emphasize
the useful part more, while inhibiting the less useful part [35–37]. (3) Lightweight network.
One of the classic models is SqueezeNet [38], which achieves the same accuracy as AlexNet.
However, the parameters of SqueezeNet are only one-fiftieth of the parameters of AlexNet.
Deep learning, particularly convolutional neural networks (CNNs), has quickly become a
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popular topic in scene classification applications [39–42]. In the continuous development of
deep learning, a network design principle has been developed for manual design networks.
The outcome of this design principle is not only suitable for a single network, but can also
be generalized and applied to different settings and tasks.

However, most deep learning-based scene classification methods usually assume
that the training and testing data are the same datasets or share the same distribution. In
practical applications, since the training and testing data often come from different regions
or sensors, the feature distributions are quite different. This phenomenon is referred to as
the data shift, and it makes the above assumptions unreliable [43,44]. When faced with
new data, manually designed networks often need to once again perform data annotation
and network design [43,45,46]. However, data annotation is time-consuming and labor-
intensive. Manually designed networks have difficulty adapting well to new datasets
or tasks due to insufficient experiments or lack of experience [47]. Inheriting from the
architecture of natural image recognition to design a new network is another method in
the field of manual design networks [47]. However, the design of the architecture for this
method often ignores the characteristics of data without considering the complexity and
specificity of HSR images.

A neural architecture search (NAS) method that uses neural networks to automatically
search neural network structures [48–53] has been proposed. The network searched by
the NAS has been applied to large-scale image classification, semantic segmentation,
recognition tasks, and scene classification. For example, Barret Zoph et al. [54] proposed
a NAS based on reinforcement learning, which used a recursive network to design the
network and train the network. The experimental results of the Penn Treebank (PTB)
language modelling experiments showed that the model was superior to other advanced
models on the PTB dataset. Li et al. [53] proposed the Auto-DeepLab model and studied
the semantic segmentation method based on the NAS. Compared to manually designed
networks, NASs have the advantages of automatically searching network architectures
with high efficiency. However, the traditional NAS has the problem of poor generalization
ability and high resource consumption in the search for architectures [55]. The search
result of the traditional NAS is to tune a single network instance to a specific setting. The
design paradigm of traditional NAS has limitations, which cannot help to discover the
general design principles of the network and extend them to different settings [56]. Based
on the above problems, He et al. [56] proposed RegNet and found a new general design
paradigm of NAS, and the network obtained by RegNet can be generalized in various
settings. Under comparable training settings and flops, the RegNet models outperformed
the popular EfficientNet models while being up to 5× faster on GPUs. Similar to the
manually designed CNN, the traditional NAS often assumes that the features of the
training and testing datasets are the same or similar in scene classification. Cross-domain
scene classification refers to scene classification tasks in which training sets and test sets
come from different distributions. and can help to ameliorate the effect of the data shift [57].
This helps to optimize the model to meet the requirements of practical scene classification
application [58,59]. The generalization ability of the model, which refers to the ability
of the learned model to predict an unknown dataset, can be evaluated by the results of
cross-domain scene classification [44,60,61].

To solve the problem that manual network design is time-consuming and difficult,
and the generalization ability of the traditional NAS is poor, a novel neural network search
framework—the spatial generalized neural architecture search (SGNAS) framework—was
proposed in this paper for HSR image cross-domain scene classification. The SGNAS
focuses on the simplification and design of the search space. Within the SGNAS frame-
work, the purpose of this study was to design a simple search space with high efficiency
and generalization. Based on the design of the NAS, the setting of its search space was
optimized in this study. After optimization, the human-the-loop method was applied to
obtain a low-dimensional search space composed of simple networks [56]. To make the
search space simpler than the original search space, which essentially aims to improve the



Remote Sens. 2021, 13, 3460 4 of 22

search efficiency, a low-computation, low-epoch training regime was used. To ensure that
the SGNAS can be applied to different settings and tasks, this study combines the general-
ization of manual network design principles in the preoptimized and trained search space
of the NAS. Based on the designed search space, the model search method integrating the
random search strategy with the performance estimation method of training from scratch
was used to search the network. Finally, the final model was applied to cross-domain scene
classification to verify the generalization ability of the model.

The major contributions of this paper are as follows:
The SGNAS framework was proposed to discover discriminative information from

HSR imagery for cross-domain scene classification. Based on the level of search space,
the semiautomatic NAS combines the advantages of manual network design, and the
traditional NAS was designed. We designed the search space in a low-computation, low-
epoch regime, which can be generalized to heavier computation regimes, schedule lengths,
and network block types. SGNAS overcomes the bottleneck of the fixed design paradigm
of a traditional manual design network and the difficulty of network redesign.

The network searched by SGNAS implements cross-domain scene classification tasks
between different datasets in an unsupervised way. In other words, the training and testing
datasets will be two groups of different datasets with large differences in characteristics.
To search for suitable models for cross-domain scene classification, the evaluation feedback
in the performance evaluation was obtained by the cross-domain scene classification in
this study.

The rest of this paper is organized as follows. Section 2 introduces the materials and
provides a detailed description of the construction of the proposed SGNAS framework.
Section 3 introduces the experimental results of the proposed scene classification method.
Section 4 discusses the performance of the tested methods further and discusses the possible
reasons of misclassification according to the dataset. In Section 5, we draw conclusions
from this study.

2. Materials and Methods
2.1. Datasets

This paper used the SIRI-WHU dataset [62], NWPU-RESIST45 dataset [42], UC Merced
Land-Use dataset [63], and RSSCN7 dataset [64] for experimental analysis.

The NWPU-RESIST45 dataset is a publicly available remote sensing image scene
classification dataset that was created by Northwestern Polytechnical University (NWPU).
This dataset contains 31,500 images divided into 45 scene classes. Each class consists of
700 optical images with a size of 256× 256 pixels. These 45 types of scenes include airplane,
airport, baseball diamond, basketball court, beach, bridge, chaparral, church, circular
farmland, cloud, commercial area, dense residential, desert, forest, freeway, golf course,
ground track field, harbor, industrial area, intersection, island, lake, meadow, medium
residential, mobile home park, mountain, overpass, palace, parking lot, railway, railway
station, rectangular farmland, river, roundabout, runway, sea ice, ship, snowberg, sparse
residential, stadium, storage tank, tennis court, terrace, thermal power station, and wetland.
Figure 1 shows representative images of each class.

The SIRI-WHU dataset was collected and produced by the research team of Wuhan
University, which contains 12 categories of scene images including farmland, business
quarters, ports, idle land, industrial areas, grasslands, overpasses, parking lots, ponds,
residential areas, rivers, and water. The representative images of each class are shown in
Figure 2. Each class in the SIRI-WHU dataset consists of 200 optical aerial images with
200 × 200 pixels and a 2-m resolution. Dataset resources can be searched from Google
Earth, mainly covering urban areas of China.
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The UC Merced (UCM) dataset is an aerial orthophoto shot from the national geolog-
ical survey of the United States. It consists of 2100 remote sensing images from 21 scene 
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Figure 2. Examples from the SIRI-WHU dataset: (1) farmland, (2) business quarters, (3) ports, (4) idle land, (5) industrial
areas, (6) grasslands, (7) overpasses, (8) parking lots, (9) ponds, (10) residential areas, (11) rivers, (12) water.

The UC Merced (UCM) dataset is an aerial orthophoto shot from the national geologi-
cal survey of the United States. It consists of 2100 remote sensing images from 21 scene
classes, as shown in Figure 3, including agricultural, airplane, baseball diamond, beach,
buildings, chaparral, dense residential, forest, freeway, golf course, harbor, intersection,
medium-density residential, mobile home park, overpass, parking lot, river, runway, sparse
residential, storage tanks, and tennis courts. Each class in the UCM dataset consists of
200 optical aerial images with 256 × 256 pixels and a 0.3-m resolution.
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due to the wide diversity of the images, which are captured under changing seasons,
varying weathers, and sampled on different scales [64], as shown in Figure 4.
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2.2. Methods

A spatial generalization neural architecture search framework was proposed in this
paper for cross-domain scene classification of HSR remote sensing images. As shown in
Figure 5, the process of cross-domain scene classification of this paper can be divided
into three steps. (1) The architecture search space is designed. (2) The designed search
space searched network for HSR images dataset. The HSR image dataset is used as a
search dataset and input into the designed search space to search for networks in this
step. The model is continuously optimized through the performance evaluation feedback
until the final model is obtained. (3) The network obtained by the search space is used for
cross-domain scene classification to verify the generalization ability. An HSR image dataset
is used as the training dataset, and another HSR dataset different from the training set is
used as the testing dataset. Finally, through cross-domain scene classification, the category
labels of different images will be output.
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2.2.1. Search Space

A low-dimensional and simple search space was designed in this paper. The archi-
tecture suitable for cross-domain scene classification of HRS remote sensing images was
searched based on the designed search space. The search space combines the generalization
of manually designed networks, which can generalize them in various networks and tasks.
The purpose of this study was to optimize the problems existing in the manually designed
network and traditional NAS. After designing a simple and low-dimensional search space,
the generalization ability of the search space was evaluated. He et al. verified the search
space of Regnet [56] and found that the search space had no signs of overfitting under the
conditions at higher flops, higher epochs, with 5-stage networks, and with various block
types. These phenomena indicate that the search space can be extended to new settings.
Liu et al. also used Regnet as a comparison network for image classification in the field of
computer vision [65]. Inspired by the above research, a network search space that combines
the advantages of manual designed network and traditional NAS was designed in this
research. The search space also retained the semiautomatic performance of traditional NAS,
which can search a good network for the specific architecture automatically. The essence of
SGNAS is a semiautomatic NAS combined with the generalization ability of the manual
design network. Section 2.2.1 can be divided into two parts: (A) Design of the search space
and (B) search space quality detection.

A. Design of the Search Space

The search space of SGNAS will define a series of basic network operations (convolu-
tion, fully connected layer, average pooling, and residual bottleneck block) and connect
these operations to form an effective network. The design of the search space in this study
is a process of gradual simplification of the initial search space without constraints [56]. A
simple schematic diagram of the design concept is shown in Figure 6 [56].

Figure 6a shows that the search space was simplified gradually from A to B to C in
the design of the search space in this paper. The error distribution was strictly from A to
B to C, as is shown in Figure 6b. Each design step was used to search for a simpler and
more efficient model than before. The input was the initial search space without constraints
in this paper, while the model output was simpler, had lower computational cost, and
better performance than the previous model. The basic network design of the initial search
space was also very simple (as shown in Figure 7 [56]). The search space was composed
of the body that was used to perform the calculation, stem, and full connection layer
(head) for predicting output types (as shown in Figure 7a), and we set the input picture
to 224 × 224 × 3 in this study. The stem is a convolution layer, where the convolution
kernel was 3 × 3, the number of convolution kernels was 32, and the value of strides was 2.
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The head was a fully connected layer, which was used to output n categories. The body
was composed of four stages. From stage 1 to stage 4, the resolution gradually halved (as
shown in Figure 7b). However, the number of characteristic graphs output by each stage,
which are ω1, ω2, ω3, and ω4, needs to be searched as hype-parameters in the search
space. Each stage was composed of di identical blocks (as shown in Figure 7c).
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The block used in this paper was the residual bottleneck block [56,66], which is the
block of the halved width and halved height of the output feature map (as shown in
Figure 8). The main branch of the block is a 1 × 1 convolution (including BN and ReLU), a
3 × 3 group convolution (including BN and ReLU), and a 1 × 1 convolution (including
BN). On the branch of the shortcut, when stride = 1, no processing is performed. When
stride = 2, it is down-sampled through a 1 × 1 convolution (including BN) [56]. The
number of blocks also needs to be searched. Three parameters need to be searched in the
residual bottleneck block: the number of channels of block (ω1), cell group width (the
number of horizontal repeats of block, gi), and the parameter that is used to determine the
number of characteristic graphs inside the block (bottleneck ratio bi). Generally, there are
four stages in the network, while the parameters that need to be determined in each stage
are di and ωi, bi, gi. Therefore, the optimal setting of 16 parameters is needed to design the
search space.
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Following the settings of [56], this study limited the initial values of ωi, di, bi, and gi
to ωi ≤ 1024, di ≤ 16, bi ∈ {1,2,4}, gi ∈ {1, 2, . . . , 32}. The network key parameters were
extracted from the above range by log-uniform sampling, and the quality of search space
was judged by EDF function [56]. After that, the search space of SGNAS was continuously
optimized and updated by updating the factors such as the sharing bottleneck rate, sharing
group width, increasing the number of channels, and increasing the number of blocks. The
accuracy of the model will not be lost due to the change in the above factors, as can be
proven by determining the quality of the search space. In contrast, the search range of the
search space can be greatly reduced, and the search efficiency can be improved by sharing
the group width. The performance of the architecture can be improved by increasing the
number of channels and blocks. On the basis of the previous optimization and the results
obtained by setting AnyNetB, AnyNetC, AnyNetD, and AnyNetE in [56], it can be found
that the number of channels of the block (ω0) has a linear relationship with the index of
blocks in the search space of the SGNAS. The linear function is:

µj = ω0 + ωs ∗ j(0 < j < d) (1)

The three parameters in the equation are the initial width ω0, slope ωs, and block
width µj for each j < d. To quantize µj, this study used an additional parameter ωm > 0.
Then, Sj can be computed for each j:

µj = ω0 ∗ω
Sj
m (2)

Sj = logωm

µj

ω0
(3)

To quantify µj, we will round Sj (denoted by
⌊
Sj
⌋
) and compute quantized per-block

widths ωj:

ωj = ω0 ∗ω
Sj
m (4)

Based on the above, there were three more parameters in the design of the search space:
ω0, ωs, and ωm. However, the search space can be further limited from 16 parameters to
six parameters through the previous analysis; these parameters are di, ω0, ωs, ωm, bi, and
gi, and the reduction in the number of parameters greatly improves the search efficiency of
the search space. This study restricts the values: di < 64, ω0 < 256, ωs < 256, ωm ∈ [1.5, 3],
bi ∈ {1, 2, 4} and gi ∈ {1, 2, . . . , 32}, which follows the setting of [56]. The search space
will be simplified by using the human-the-loop method after the basic setting of the search
space is completed. The simplification of the search space aims to obtain a search space with
low computational cost and low number of epochs, in order to improve the computational
efficiency of the search space. Based on the original low-dimensional and simple search
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space, this study completed the generalization setting based on the design of Regnet [56].
The finished SGNAS is a semiautomatic network architecture.

B. Search Space Quality Detection

The search space designed in this paper was an enormous space containing many
models. We can sample the model from a search space to generate a model distribution
and then use classical statistical tools to evaluate the search space. In this study, an error
empirical distribution function (EDF) [67] was used to detect the quality of the design
space. When n models are sampled in the search space and the error is mi, EDF is:

F(m) =
1
n

n

∑
i=1

1[mi < m] (5)

where F(m) is the model proportion when the error is less than m.

2.2.2. Architecture Search

After the search space of the SGNAS is designed to be complete, the framework will be
used to search the cross-domain scene classification network of the corresponding dataset.
The search process can be divided into three steps: (1) The HSR remote sensing image
dataset to be searched is input into the network architecture, and the suitable network is
searched according to the different data sets; (2) suitable candidate models are searched
for cross-domain scene classification automatically with low computing resources and
great global optimization performance; and (3) the overall accuracy (OA) and the inference
time (Time_infer) are used to evaluate the accuracy and computational performance of the
search network. The whole process is repeated until the final model is found. After the
network is obtained by using the framework of SGNAS, the model needs to be retrained by
using the search datasets. The purpose of model retraining is to optimize the parameters of
the model and obtain a more suitable model for cross-domain scene classification. Finally, a
function is added to the searched model since the traditional NAS usually searches models
for natural images, which is used to load the HSR remote sensing images for the model;
thus, the model can be used for scene classification of HSR remote sensing images. Figure 9
shows the general steps of a network search by the SGNAS. Section 2.2.2 can be divided
into two parts: (A) Search strategy and (B) Performance estimation.
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A. Search Strategy

The proposed framework proposed is different to traditional NAS. However, the
essence of the SGNAS is still a NAS combined with the generalization of a manual design
network, which is still a neural network for searching network architecture by using a
neural network. Therefore, the architecture is divided into three parts, similar to the
traditional NAS: search space, search strategy, and performance estimation. Since the
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search space was optimized during the design of the search space in this study, thus
improving the search efficiency of the framework, the search strategy adopted in this study
was a simple random search strategy. Random search is the simplest search strategy, which
randomly selects an effective candidate architecture from the search space and does not
involve a learning model. However, it has been proven to be very useful in hype-parameter
search [54].

B. Performance Estimation

The evaluation step is shown in Figure 9 and requires an effective performance
estimation method. The simplest performance estimation method of training from scratch
is used to measure the accuracy of the searched model through experiments [54], which
is used to obtain feedback to optimize the search algorithm. The proposed framework
uses this feedback to retrain the network obtained from the previous search, in order to
optimize the model parameters of the model searched previously. Then, a model that is
more suitable for cross-domain scene classification can be obtained. Although this method
is slow, the search space of the SGNAS is carried out in a low-computation, low-epoch
regime, which greatly improves the computing speed.

2.2.3. Cross-Domain Scene Classification

The SGNAS was used to search for the image features of the HSR remote sensing image
dataset, in order to obtain the final model suitable for cross-domain scene classification
of the searched dataset. The searched model will be migrated to different datasets for
cross-domain scene classification to obtain the final classification results, which aims to
verify the spatial generalization of the model obtained by the proposed framework. Specific
experimental settings and experimental results are shown below.

3. Results

Cross-domain scene classification experiments between different datasets were used
to verify the generalization of the framework and confirm the complexity of the SGNAS
in order to avoid overfitting. The quantitative and computational performance of the
searched network were evaluated by overall accuracy (OA), confusion matrix, and inference
time (Time_infer).

3.1. Experimental Setup
3.1.1. Implementation Details

The experiments were implemented using PyTorch. The cross entropy loss function
(CrossEntropyLoss) was used as the loss function. The learning rate was initially set to 1e-5
with a weight decay of 5e-6. The mini-batch size was set to eight, and the normalization
parameter was set to 5e-5. All models were trained on four NVIDIA RTX2080 GPUs.
To verify the spatial generalization ability of the proposed model, we established three
cross-domain scenarios termed as UCM→RSSCN7, SIRI-WIIU→RSSCN7, and NWPU-
RESIST45→RSSCN7, referring to source domain→target domain for data analysis. As the
training set and test set of this experiment came from two different datasets, there were large
differences in image types, scales, and contents. To match the seven types in the RSSCN7
dataset, for the UCM dataset, this experiment selected the corresponding seven similar
types for the experiment: golf course, agricultural, storage tanks, river, forest, density
residential, and parking lot. For the SIRI-WHU dataset, industrial areas, farmland, parking
lots, residential areas and rivers were selected to correspond to the five types of industrial
region, farmland, parking lot, residential region, and river and lake in the RSSCN7 dataset.
Seven similar types were selected from the NWPU-RESIST45 dataset for the experiments:
dense residential, forest, golf course, industrial area, parking lot, rectangular farmland,
and river. The experiments of AlexNet, Vgg16, ResNet50 [68], and ENAS [69] on the same
cross-domain scenario settings were used for comparative validation.
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3.1.2. Evaluation Metrics

The OA, inference time, and confusion matrix are employed as the evaluation standard
of the cross-domain scene classification. The OA is defined as the number of correctly
classified images divided by the total number of images. The inference time implies the
inference efficiency of the trained model to make predictions against previously unseen
data, and is used as an evaluation metric to validate the efficiency of different models
in the experiment. The confusion matrix is an informative table used for analyzing the
confusions between different scene classes. It is obtained by counting the correct and
incorrect classifications of the test images in each class and accumulating the results in
a table.

3.2. Experiment 1: UCM→RSSCN7

The UCM dataset was used as the training set, and the RSSCN7 dataset was used as
the test set in this section to conduct the cross-domain scene classification experiment. The
accuracy and the inference time comparison between SGNAS and other models is shown in
Table 1, and the accuracy of each scene is shown in Table 2. Figure 10 shows the confusion
matrix of the classification results.

Table 1. Overall accuracy and inference time of cross-domain scene classification of different models
on UCM→RSSCN7.

Models OA (%) Time_infer (s)

Vgg16 43.79 23
AlexNet 44.00 12

ResNet50 46.71 9
ENAS 40.82 46

SGNAS 59.25 8

Table 2. Accuracy of various scenes in cross-domain scene classification of the UCM and RSSCN7
datasets of SGNAS.

Class Accuracy (%)

River and lake 82.75
Residential region 66.75

Parking lot 21.25
Industrial region 39.50

Grassland 77.50
Forest 63.75

Farmland 63.25
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Table 1 shows that the experimental results of the model searched by the SGNAS were
superior to those of the models used for comparison (i.e., the manually designed Vgg16,
AlexNet and ResNet50) and the network searched by ENAS. From Table 2 and Figure 10,
it can be seen that the overall classification accuracy of river and lake was the highest,
with the classification accuracy of 82.75%, while the parking lot and industrial regions
had lower accuracy. The classification accuracy of the parking lot was 21.25%, and that
of the industrial region was 39.50%. However, among the seven scenes, the classification
accuracies of five scenes were over 60%. As can be seen in the confusion matrix, there
was some confusion between certain scenes. For instance, some scenes belonging to the
parking lot were classified as grassland. The inference time used by this framework was
less than that of the other models used for comparison, as shown in Table 1. This indicates
that the proposed SGNAS framework is a promising avenue for efficient cross-domain
scene classification.

3.3. Experiment 2: SIRI-WIIU→RSSCN7

This experiment uses the SIRI-WHU dataset as the training set and the RSSCN7 dataset
as the test set to conduct the cross-domain scene classification experiment. The accuracy
and the inference time comparison between SGNAS and other models is shown in Table 3,
and the accuracy of each scene is shown in Table 4. Figure 11 shows the confusion matrix
of the classification results.

Table 3. Overall accuracy and inference time of the cross-domain scene classification of different
models for SIRI-WHU→RSSCN7.

Models OA (%) Time_infer (s)

Vgg16 40.30 37
AlexNet 45.25 11

ResNet50 42.40 142
ENAS 46.95 137

SGNAS 53.95 40

Table 4. Accuracy of various scenes in the cross-domain scene classification of the SIRI-WHU and
RSSCN7 datasets of the SGNAS.

Class Accuracy (%)

Farmland 79.75
Industrial region 8.25

Parking lot 49.75
Residential region 65.25

River and lake 66.75
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As shown in Table 4, the farmland class acquires the highest classification accuracy of
79.75%. However, the classification accuracy of the industrial area was only 8.25%. In a
total of five types of scenes, the classification accuracies of more than half of the scenes were
above 60%. According to the confusion matrix in Figure 11, the proposed model showed
some confusion between industrial regions and farmland and between industrial regions
and parking lot spaces. The reasons are discussed and explored in Section 4. As shown in
Table 3, although the inference time of SGNAS was slightly longer than that of AlexNet
and close to that of Vgg16, the OA of SGNAS far transcended that of AlexNet and Vgg16.
In addition, the proposed SGNAS framework acquired both better OA and time efficiency
compared to ResNet50 and ENAS. This indicates that the proposed SGNAS framework is
able to achieve a satisfying balance between the scene classification generalization ability
and time efficiency.

3.4. Experiment 3: NWPU-RESIST45→RSSCN7

The NWPU-RESIST45 dataset was used as the training set and the RSSCN7 dataset
was used as the test set to conduct the cross-domain scene classification experiment in
this section. The accuracy and the inference time comparison between SGNAS and other
models is shown in Table 5, and the accuracy of each scene is shown in Table 6. Figure 12
shows the confusion matrix of the classification results.

Table 5. Overall accuracy and inference time of the cross-domain scene classification of different
models for NWPU-RESIST45→RSSCN7.

Models OA (%) Time_infer (s)

Vgg16 41.11 678
AlexNet 57.82 97

ResNet50 60.04 390
ENAS 40.64 860

SGNAS 63.56 158

Table 6. Accuracy of various scenes in the cross-domain scene classification of the NWPU-RESIST45
and RSSCN7 datasets of the SGNAS.

Class Accuracy (%)

Farmland 91.75
Forest 52.50

Grassland 62.25
Industrial region 74.75

Parking lot 76.75
Residential region 20.75

River and lake 60.00

As shown in Table 6, the proposed SGNAS performed well in all scenes except for
the residential regions, and showed particularly good performance for farmland, which
had the highest classification accuracy. The classification accuracy of farmland was 91.75%,
while that of residential regions was only 20.75%, as can be seen in Table 6. According
to the confusion matrix in Figure 12, the proposed model displayed misclassification
between farmland and forest, and between farmland and residential regions. AlexNet had
the shortest inference time, but the OA of the proposed SGNAS was better than that of
AlexNet. ResNet50, Vgg16, and ENAS had longer inference time than SGNAS, as shown in
Table 5. The overall classification accuracy of SGNAS was the highest, and it is far superior
to Vgg16 and ENAS, as shown in Table 5. This confirms that the proposed framework
shows an effective generalization ability compared with the manual designed network and
traditional NAS for comparison.
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4. Discussion
4.1. Visual Comparative Analysis of Cross-Domain Scene Classification Results

This section focuses on exploring the reason of misclassification through HSR images,
on the basis of the confusion matrix and experimental results in Section 3. Figure 13 shows
the examples of the main confusion between UCM, SIRI-WIIU, NWPU-RESIST45 dataset,
and RSSCN7 dataset.
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Figure 13. Randomly sampled images from UCM, SIRI-WHU, NWPU-RESIST45, and RSSCN7
datasets. The first, second, third and fourth rows of (a) correspond to the scene classes of golf course
in UCM dataset, farmland in SIRI-WHU dataset, parking lot in SIRI-WHU dataset, and farmland
in the NWPU-RESIST45 dataset. The first, second, third, and fourth rows of (b) correspond to
the scene classes of parking lot, industrial region, industrial region, and residential region in the
RSSCN7 dataset.
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In the experiments of UCM→RSSCN7, there was some confusion between parking lots
and grass scenes. This can be explained by the first line in Figure 13, where the golf course
in the UCM and the parking lot in the RSSCN7 dataset were similar in spectrum feature.
In addition, the two categories were composed of the same objects such as grass and
bare ground. For SIRI-WHU→RSSCN7, there was some confusion between farmland and
parking lots and industrial region. This can be explained by the fact that the pairs of classes
had similar spectral or structural features, which are shown in the second and third rows of
Figure 13. Both parking lot in the SIRI-WHU dataset and industrial region in the RSSCN7
dataset feature vegetation cover. In the experiments of NWPU-RESIST45→RSSCN7, the
scenes of residential region and farmland had some misclassification. This is due to the
similar spatial distribution or spectral characteristics of the categories in different datasets,
for example, both residential regions and farmland featuring vegetation cover had a similar
texture, as shown in the last row in Figure 13.

According to the above comparison, it was found that misclassification may happen
when the categories between different datasets had similarities between the spectrum,
contour, and texture information. To allow for a more specific and detailed visual inspection,
some of the classification results of SGNAS and the models used for comparison in Section 3
are shown in Figures 14–16, respectively. For example, as can be seen from the sixth
row of Figures 14 and 16, the proposed model can correctly classify dense and sparse
residential regions scenes at the same time. The last row in Figure 15 shows that SGNAS
can correctly classify the river and lack of vegetation cover or not for the experiment of
SIRI-WHU→RSSCN7. Therefore, according to the results of the cross-domain experiments
and the visual comparative analysis, it can be seen that the proposed model has good
generalization ability, making it a good baseline network for future cross-domain research.

4.2. Comprehensive Analysis

In this section, the performance of the models that we used in the experiments are
discussed from the aspect of OA. Figure 17 shows the OA values of each method on
three cross-domain scenarios. SGNAS showed good performance on UCM→RSSCN7 and
NWPU-RESIST45→RSSCN7, but the results for SIRI-WHU→RSSCN7 were not very good.
However, the performance of the proposed SGNAS on the three cross-domain experiments
was always better than other methods used for comparison. In addition, our method
displayed good robustness on the three different cross-domain scenarios, as shown in
Figure 17.
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Figure 14. Some of the classification results of SGNAS and other models in the cross-domain scene
dataset of UCM→RSSCN7. The first, second, third, fourth, fifth, sixth, and seventh rows correspond
to the scene classes of farmland, forest, grassland, industrial region, parking lot, residential region,
and river and lake in the RSSCN7 dataset, respectively. (a) Correctly classified images for all models.
(b) Images classified correctly by SGNAS, but incorrectly classified by other models were used
for comparison.
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Figure 15. Some of the classification results of SGNAS and other models in the cross-domain scene
dataset of SIRI-WHU→RSSCN7. The first, second, third, fourth, and fifth rows correspond to the
scene classes of farmland, industrial region, parking lot, residential region, and river and lake in the
RSSCN7 dataset, respectively. (a) Correctly classified images for all the models. (b) Images classified
correctly by SGNAS, but incorrectly classified by other models were used for comparison.
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Figure 16. Some of the classification results of SGNAS and other models in the cross-domain scene
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residential region, and river and lake in the RSSCN7 dataset, respectively. (a) Correctly classified
images for all the models. (b) Images classified correctly by SGNAS, but incorrectly classified by
other models were used for comparison.
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5. Conclusions

A spatial generalization neural search framework was proposed in this paper that
applies the spatial generalization NAS to the cross-domain scene classification task of
HSR remote sensing images for the first time. The framework not only includes the
generalization of manually designed networks, but also has the advantages of the automatic
search mechanism for traditional NAS. The network suitable for the scene classification
of HSR remote sensing images can be automatically searched based on the search space
level, and shows a generalization ability. A low-dimensional simple search space was
designed in this paper. Based on the low-dimensional simple search space, this study
generalized the search space to be extended to different tasks. The proposed framework
uses the random search strategy to automatically search the model for specific HSR datasets
after the search space design. The model obtained last was used for cross-domain scene
classification experiments. The SIRI-WHU dataset, NWPU-RESIST45 dataset, and UCM
dataset were used as training sets, and the RSSCN7 dataset was used as the test set to
conduct cross-domain scene classification experiments. Experimental results demonstrate
that the network obtained by the proposed SGNAS showed good generalization ability.
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