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Abstract: In recent years, as China’s peaking carbon dioxide emissions and air pollution control
projects have converged, scholars have begun to focus on the synergistic mechanisms of greenhouse
gas and pollution gas reduction. In 2020, the unprecedented coronavirus pandemic, which led to
severe nationwide blockade measures, unexpectedly provided a valuable opportunity to study the
synergistic reduction in greenhouse gases and polluting gases. This paper uses a combination of NO2,
O3, and CO2 column concentration products from different satellites and surface concentrations from
ground-based stations to investigate potential correlations between these monitoring indicators in
four Chinese representative cities. We found that XCO2 decreased in March to varying degrees in
different cities. It was witnessed that the largest decrease in CO2, −1.12 ppm, occurred in Wuhan,
i.e., the first epicenter of COVID-19. We also analyzed the effects of NO2 and O3 concentrations
on changes in XCO2. First, in 2020, we used a top-down approach to obtain the conclusion that
the change amplitude of NO2 concentration in Beijing, Shanghai, Guangzhou, and Wuhan were
−24%, −18%, −4%, and −39%, respectively. Furthermore, the O3 concentration increments were
5%, 14%, 12%, and 14%. Second, we used a bottom-up approach to obtain the conclusion that the
monthly averaged NO2 concentrations in Beijing, Shanghai, and Wuhan in March had the largest
changes, changing to −39%, −40%, and −61%, respectively. The corresponding amounts of changes
in monthly averaged O3 concentrations were −14%, −2%, and 9%. However, the largest amount of
change in monthly averaged NO2 concentration in Guangzhou was found in December 2020, with a
value of −40%. The change in O3 concentration was −12% in December. Finally, we analyzed the
relationship of NO2 and O3 concentrations with XCO2. Moreover, the results show that the effect of
NO2 concentration on XCO2 is positively correlated from the point of the satellite (R = 0.4912) and the
point of the ground monitoring stations (R = 0.3928). Surprisingly, we found a positive (in satellite
observations and R = 0.2391) and negative correlation (in ground monitoring stations and R = 0.3333)
between XCO2 and the O3 concentrations. During the epidemic period, some scholars based on
model analysis found that Wuhan’s carbon emissions decreased by 16.2% on average. Combined
with satellite data, we estimate that Wuhan’s XCO2 fell by about 1.12 ppm in February. At last, the
government should consider reducing XCO2 and NO2 concentration at the same time to make a
synergistic reduction.

Keywords: COVID-19; XCO2; collaborative reduction; NO2; O3

1. Introduction

The emergence of the coronavirus disease 2019 (COVID-19) occurred in 30 December
2019 and was declared a global pandemic by the World Health Organization on 11 March
2020 [1]. In response to the COVID-19 outbreak, the China central government had
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gradually implemented severe nationwide lockdown measures since the end of January
2020. These measures placed the society of China on hold, significantly reducing the
emissions of pollutants. In the past decade, China had experienced several social pauses,
including routine ones, such as the Lunar New Year and special events, such as the Olympic
game and G20. However, 2020 is a special year because, in the first half of the year, most
cities in China were blockaded, and industrial, power, and transportation activities were
minimized. In the second half of the year, China’s social activities have gradually returned
to normal. Hence, the outbreak of COVID-19 pandemic in 2020 provides an opportunity
for the analysis of the carbon cycle and compositional relationship between gases (CO2,
NO2, and O3).

Owing to the outbreak of COVID-19, greenhouse gas emissions have changed signifi-
cantly, especially in developing countries. Before the pandemic, the concentration of carbon
dioxide (XCO2) increased by 2 ppm per year over the previous decade, and the global XCO2
increased from 278 ppm (prior to the industrialization era) to 410 ppm in 2020 [2]. However,
during the pandemic, Le et al. [3] found that the daily global CO2 emissions decreased by
−17% by early April 2020 relative to the mean 2019 levels. Zhu et al. [4] found an abrupt
8.8% decrease in global CO2 emissions (−1551 Mt CO2) in the first half of 2020 compared to
the same period in 2019. The International Energy Agency (IEA) used monthly projections
of fossil fuel energy demand and estimated a −5% decline in global CO2 emissions from
January to April 2020, compared to the same period in 2019 [5]. Moreover, the impacts of
lockdown in different regions on air quality were observed [6–10]. Dantas et al., considered
the consequences of partial lockdown on air quality and obtained the conclusion that PM10
level was reduced to a low level, and NO2 decreased because of the lockdowns [11]. Sahin
et al., explored the consequences of weather on COVID-19 pandemic and concluded that
wind showed a positive correlation with COVID-19 cases [12]. Ogen et al., studied the
outcome of NO2 on COVID-19 mortality and concluded that long-term exposure to NO2
increased fatalities because of COVID-19 [13]. Xie and Zhu explored the effect of tempera-
ture on COVID-19 transmission and found a negative relationship between temperature
and increased COVID-19 transmission when the temperature was between 16.8 ◦C and
27.4 ◦C [4]. Shi et al., examined the outcome of temperature on COVID-19 transmissions
and showed that temperature had a positive linear association with COVID-19 cases when
the temperature was lower than 3 ◦C [14]. These studies provided a scientific basis for the
study of the relationship between air pollutants and polluting gases and effective ideas for
the prevention and control of pollutants and polluting gases.

These studies analyzed changes in trace gases, emissions, and temperature during
the epidemic period in 2020 from different perspectives, but the analysis of trace gas
concentration changes in 2020 is rare. Few scholars have studied the XCO2 changes [15–22],
meanwhile, the government implemented lockdowns caused by the epidemic has provided
us with a good opportunity for this analysis. We have accomplished several works in this
article as follows. Firstly, we analyzed changes in monthly averaged concentrations of
CO2, NO2, and O3 in Beijing, Shanghai, Wuhan, and Guangzhou. For Beijing, Shanghai,
Guangzhou, and Wuhan, the results suggested that the amounts of changes in XCO2 were
0.13, −0.99, −0.89, and −1.12 ppm in February, respectively. The concentrations of NO2 and
O3 changed by −24% and 5%, −18% and 14%, −4% and 12%, −39% and 14%, respectively,
by comparing data in February 2019 with the Sentinel-Satellite-5 data. Furthermore, for
Beijing, Shanghai, Guangzhou, and Wuhan, with regard to the ground monitoring network
data, the largest amounts of changes in monthly averaged concentrations of NO2 and O3
were −39% and 14%, −40% and −2%, −61% and 9% in February, respectively. However,
for Guangzhou, it is in December, and the decrease in NO2 and O3 is −40% and −12%,
respectively. Secondly, we have evaluated the relationship between the variation of XCO2
and the variation of NO2 and O3. We found the effect of NO2 concentration on XCO2
is positively correlated from the point of the satellite (R = 0.4912) and the point of the
ground monitoring stations (R = 0.3928). Furthermore, we found that XCO2 and O3 are
correlated, with a correlation coefficient of 0.2391(from satellite observations) and −0.3333
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(from ground monitoring stations). Therefore, from the point of promoting the reduction
in XCO2 in atmosphere, the contribution of NO2 concentration is greater than that of
O3 concentration. Moreover, the government should consider reducing XCO2 and NO2
concentration at the same time to make a synergistic reduction. The remaining parts of this
work are arranged as follows. The data and method we used are described in Section 2.
The main results and discussions are demonstrated in Section 3. Finally, we conclude the
whole study in Section 4.

2. Materials and Methods
2.1. Study Area

In this paper, four locations were selected: Beijing, Shanghai, Guangzhou, and Wuhan.
The main reasons are as follows. First, the Beijing, Shanghai, and Guangzhou are in-
ternational cities and are located at different latitudes [10], whereas Wuhan is the first
epicenter of COVID-19 around the world and is the most important city in central China in
terms of economy, education, innovation, and industry; the climatic characteristics of these
metropolitan areas are quite different. Therefore, these cities provide good conditions for
studying changes in CO2, NO2, and O3 concentrations amid the COVID-19 lockdown in
different regions. We show the spatial location distribution of the research area in detail in
Figure 1.

Figure 1. Map of the study area.

2.2. Datasets
2.2.1. Remotely Sensed Products

We analyzed changes in the monthly averaged concentrations of CO2, NO2, and O3
in 2020. For NO2 and O3 data, we used a Sentinel-5 Precursor offline level 3 product [23],
which was obtained from the Google Earth Engine platform [24]. The Sentinel-5 Precursor
is a satellite launched on 13 October 2017 by the European Space Agency to monitor air
pollution. Owing to the incomplete data of O3 and NO2 in 2018, we used data from January
2019 to December 2020.
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As for CO2 data, the GOSAT_FTS_L3_V2.95 data of bias-corrected [25] from January
2016 to December 2020 were selected. The Gosat and Gosat-2 satellites have been in orbit
since 2009 and 2018, respectively, and their global coverages holds the potential to reveal
new information about the carbon cycle by top-down atmospheric inversion methods
combined with column-average CO2 retrievals. The GOSAT satellite embarks the Thermal
and Near-infrared Sensor for carbon Observation (TANSO) to characterize the column
abundances of CO2 and CH4. Six of the seven data channels of this sensor operate in
the near-infrared part of the solar spectrum, so this device cannot be used whenever
the planet reflects little solar light, i.e., in polar regions during winter. For additional
information on that instrument, please consult this website [26]. Besides, a suite of passive
remote sensing satellites can measure the reflected sunlight spectra in the infrared region
over the globe. These measured spectra are used to retrieve the column-averaged CO2
concentration (XCO2) (e.g., GOSAT, GOSAT-2, OCO-2, OCO-3, and TanSat). However,
the interference of clouds and aerosols in XCO2 retrieval often results in sparse spatial
and temporal coverage. Therefore, there is no data for these latitudinal regions in China,
namely latitudes higher than 48.7◦N in December, higher than 51.2◦N in November and
higher than 51.3◦N in January.

2.2.2. Ground Monitoring Data

To further explore the relationship of changes in monthly averaged NO2 and O3
concentrations with XCO2, a bottom-up approach was adopted for analysis, and ground
monitoring data were used. The China Air Quality Network includes daily averaged gas
concentration changes in China [27]. Hence, along with remotely sensed data, the ground
monitoring data were also included in this work. In addition, to evaluate the accuracy of the
monthly averaged CO2 concentration data from our algorithm, we used the TCCON (Hefei
site) data. The Total Carbon Column Observing Network (TCCON) [28,29] is a network
of ground-based Fourier transform spectrometers that record direct solar spectra in the
near-infrared spectral region. From these spectra, accurate and precise column-averaged
abundances of CO2 are retrieved and reported. For the period of this data and the purpose
for which the data are used, we explain in detail in Table 1.

Table 1. Overview of data.

Data Type Temporal Interval Use Type

GOSAT_FTS_L3_V2.95 201601–202012 Analyze changes in CO2 concentration

TCCON (Hefei Sites) 201601–201612
To evaluate the accuracy of the monthly
averaged CO2 concentration data from

our algorithm

Sentinel-5_Offline_ L3_ NO2
and Sentinel-5_Offline_L3_O3

201901–202012
To analyze the effects of NO2 and O3

concentrations on change in XCO2 with
top-down

NO2 and O3 from China Air
Quality Network 201901–202012

To analyze the effects of NO2 and O3
concentrations on change in XCO2 with

bottom-up

2.3. Analysis Method

This paper mainly adopted a comparative approach for analyzing the impact of
the COVID-19 lockdown on the atmospheric environment in 2020. Hence, our work
mainly focused on the following four points in detail. Firstly, given the bias-corrected
GOSAT_FTS_L3_V2.95 productions are discrete point data, we used the empirical bayesian
kriging (EBK) interpolation theory to fill the data gaps in the study area [30]. Additionally,
the EBK method is a ground statistical interpolation method that automatically performs
the most difficult steps in building an effective kriging model [31–33]. The EBK method
differs from other kriging methods in illustrating the error introduced by estimating a basic
semivariogram. Other kriging methods underestimate the standard error of prediction
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because they do not consider the uncertainty involved in this semivariogram estimation [33].
For NO2 and O3 planar product data, we directly used it. Second, for GOSAT and GOSAT-2
satellites and ground monitoring data in 2016, 2017, 2018, and 2019, we obtained standard
curves using locally weighted regression (LWR). The LWR is a nonparametric method. In
each prediction of new samples, the adjacent data will be retrained to obtain new parameter
values, to avoid under-fitting and reduce the interference of distant data effectively. Third,
we analyzed change in XCO2 by comparing the standard curve data in 2020. To analyze
the concentration influence of NO2 and O3 on the change in CO2 concentration, we used
the top-down method and bottom-up method, respectively. The investigation of local
processes, construction of models, and extrapolation with spatial data to larger scales
has been called the “bottom-up” approach. The “top-down” approach aims to obtain
data values over a large area in a short period of time without knowing the underlying
details of the data caused by subtle scale changes. Therefore, the top-down and bottom-up
approaches are thus complementary, and we comprehensively analyzed the influences of
NO2 and O3 concentrations on change in XCO2 with satellite data and ground monitoring
data in a “multiple constraint” approach.

3. Results and Discussions
3.1. Spatial Distribution of Remotely Sensed CO2 Concentrations

GOSAT and GOSAT-2 provide passive inversion data and are particularly vulnerable
to cloud, aerosol, latitude, and dark night constraints, which cause loss of satellite obser-
vation data. We utilized GOSAT_FTS_L3_V2.95 productions, as described in Section 2,
and completed the conversion of the GOSAT and GOSAT-2 data points to the surfaces by
adopting empirical bayesian kriging (EBK) theory. The data of vacant areas in the study
area were filled. Figure 2 shows the interpolated data by using only EBK theory in 2020.
Given that the atmospheric environment in China is complex and GOSAT and GOSAT-2
are particularly sensitive to aerosols and clouds, the data gaps in eastern and central China
were large. Moreover, the Hainan and Taiwan Provinces as well as the South China Sea are
not marked on the local maps in Figure 2. Fortunately, in this case, we were able to use the
EBK theory to complete the monthly averaged spatial interpolation on the 0.25◦ grid.

The Total Carbon Column Observing Network (TCCON) is a network of ground-based
Fourier transform spectrometers recording direct solar spectra in the near-infrared spectral
region [26]. From these spectra, accurate and precise column-averaged abundances of CO2
are retrieved and reported. In addition, we evaluated the accuracy by combining TCCON
site (Hefei [29]) data in 2016 (as shown in Figure 3), and the coefficient of determination
(R2) and root-mean-square error (RMSE) were 0.915 and 0.654, respectively.
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Figure 2. Monthly averaged XCO2 concentrations from the predicted values for each grid
(0.25 × 0.25◦) in 2020 for mainland China. Due to lack of data over the ocean, the Hainan and
Taiwan Provinces as well as the South China Sea are not marked on the local maps. And due to the
lack of data, there were gaps in the forecast data for November, December, and January.

Figure 3. Verification results of the CO2 interpolation and TCCON data. The yellow line represents
the results of the local weighted regression, the measured and predicted XCO2 represents the observed
TCCON data and interpolated data, respectively.
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3.2. Analysis of Changes in XCO2

Multiple pixels in the sub-study areas were found because the spatial resolution of
the products after interpolation was 0.25◦. To evaluate the influence of COVID-19 on the
XCO2 of each month in 2020, we matched the five-year XCO2 curve to a scale from 2016 to
2020. First, we set the 2019 XCO2 data as a baseline and then unified the 2016, 2017, 2018,
and 2020 XCO2 to the 2019 baseline by revising the annual XCO2 curve increments. This
increment was revised using the annual XCO2 curve increments at Waligura stations from
global atmosphere watch in China [34]. By performing local weighted regression on all
grid XCO2 changes in the current sub-study, the grid scale XCO2 changes were converted
to city scale. Because cities vary in development and geographical location, we added a city
increment for each city relate to the annual XCO2 curve increments. We use the standard
deviation as the city increment, which is the difference between the XCO2 for each month
in 2020 and the trend line XCO2. We studied the change in the monthly averaged XCO2 of
the city. The image resolution was 0.25 degree after interpolation, and the average amount
of change in several pixels contained in each city was obtained.

Then, we tested the revised XCO2 data in 2020 using the Kruskal–Wallis test. The
Kruskal–Wallis test is a nonparametric test of three or more datasets. It is used to test the
consistency of the null hypothesis and its alternative hypothesis about differences between
at least two samples of a population function distribution. A standard is usually used in
evaluating significance. The P value is 0.05. If the P value is less than or equal to 0.05,
difference between two samples are considered statistically significant; otherwise, they
are considered insignificant. A significant difference between the two samples indicated
that the XCO2 data in 2020 and local weighted regression XCO2 from 2016 to 2019 were
independent. That is, when the P value in Figure 4 is less than 0.05, it indicates that the
prevention and control measures during this epidemic period caused this change. For the
period from February to May in Wuhan, the P value was less than 0.05. For the period
from March to April in Beijing, the P value is also less than 0.05, and for Shanghai and
Guangzhou in February, the P value is also less than 0.05. The above results show that the
monthly averaged XCO2 in 2020 changed relative to the trend line data; the variation in
XCO2 concentration is shown in Figure 5.

Figure 4. Calculated P values of each month in the study area by using the Kruskal–Wallis test.
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Figure 5. XCO2 change in each month in 2020. The blue dot represents the XCO2 increments in each grid (0.25◦) in the
corresponding study area. Open points represent mean value, whereas the whiskers mark the standard deviation. The
plotted violins represent the kernel density estimation of the probability density function for each sample.

Due to the impact of COVID-19 in Beijing, Shanghai, Guangzhou, and Wuhan, Figure 5
shows the monthly averaged XCO2 changes values in 2020. The Chinese government has
taken lockdown measures in most Chinese cities from the end of January to early April.
Therefore, the XCO2 fluctuates relatively sharply during the period. We found the amounts
of changes in XCO2 were 0.13, −0.99, −0.90, and −1.12 ppm in February, for Beijing,
Shanghai, Guangzhou, and Wuhan. Then XCO2 continued to decrease from March to May
in Beijing. In Shanghai and Guangzhou, both international cities, XCO2 gradually returned
to normal levels in April and March, respectively.

Notably, the trend of XCO2 in June, July, and August varied between the coastal
cities (Shanghai and Guangzhou) and the inland cities (Beijing and Wuhan). Furthermore,
this difference is a combination of effects resulting from seasonal impact weights and the
corresponding intensification of industrial emissions. The weight of the seasonal impact
of XCO2 gradually increased in June, July, and August. The weight of seasonal influence
represents the enhancement of CO2 absorption capacity from surface vegetation. Besides,
by analyzing the change in NO2 concentration from June to August in Figure 6, we found
that the corresponding industrial emissions of Beijing and Wuhan gradually increased in
the three months. Therefore, under the combined action of these two factors, the amounts
of changes in XCO2 in June, July, and August in Beijing were 1.54, −0.92, and 0.90 ppm,
respectively. In addition, the amounts of changes in XCO2 in Wuhan were 1.30, −0.70, and
1.1 ppm.
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Figure 6. Concentration and increment change in NO2 and O3 in 2019 and 2020, respectively. The blue and gray areas in the
figure represent the monthly averaged concentrations of NO2 and O3 in 2019 and 2020, respectively. Moreover, the blue
and gray curve represents the monthly averaged increase in NO2 and O3 in 2019 and 2020, respectively. This increment
represents the concentration increase in the current month compared to the previous month, which corresponds to the axis
on the right.

For coastal cities of Shanghai and Guangzhou, there are some differences in the change
in CO2 concentration. Although Shanghai and Guangzhou are coastal cities, the latitude
of Guangzhou is lower than that of Shanghai, and this condition increases the absorption
effect of XCO2 brought by season in Guangzhou. In addition, Guangzhou’s geographical
proximity to Zhaoqing, an industrial city, increases the dispersion of XCO2 in Guangzhou.
In this case, the amounts of changes in XCO2 in June, July, and August were −0.29, −0.57,
and 0.49 ppm. However, as the engine of China’s economy, Shanghai’s industrial recovery
speed is extremely fast (XCO2 was fully recovered in April, and the XCO2 in May and
June showed an upward trend), and industrial emission intensity is increasing. Therefore,



Remote Sens. 2021, 13, 3492 10 of 17

under the action of increasing seasonal factors, the XCO2 in June, July, and August showed
a gradually increasing trend, with values of 0.41, 0.08, and 1.20 ppm.

In September and October, the amounts of changes in XCO2 remained 0 ppm in the
inland cities of Beijing and Wuhan. For the coastal cities of Guangzhou and Shanghai, the
amounts of changes in XCO2 remained 0 ppm in September, but the amounts of changes in
XCO2 were 0.57 and −0.35 ppm in October, respectively. This phenomenon is related to
the prevention and control measures of the local government [35–37] and the industrial
structure of the surrounding cities. In November and December, the Chinese government
strengthened control measures to prevent the recurrence of the epidemic in winter. Second,
the annual curve of XCO2 are the interval of the increase in XCO2 in November and
December. Therefore, under the action of the above two factors, the amounts of changes
in XCO2 were 0 ppm in Beijing and Guangzhou. However, in Wuhan and Shanghai, the
amounts of changes in XCO2 fluctuated in November and December. The first outbreak of
the epidemic in Wuhan, China lasted for a long time and had a significant effect on reducing
the production vitality of some industrial companies in Wuhan [38]. The Shanghai’s XCO2
dropped in December because the Shanghai government had to strengthen the prevention
and control of the epidemic after local cases emerged [37,39].

The epidemic affected Wuhan mainly in two periods, from January to May and from
November to December. In Guangzhou and Shanghai, the effects were mainly from January
to March and in December. Beijing is the political and economic center of China; its XCO2
were affected by the outbreak from March to May, and the significant change occurred in
March. In addition, the greater variation of XCO2 was due to the seasonal effects in June,
July, and August.

3.3. Analysis of Changes in the Concentration of Gases (NO2 and O3) from Top-Down and
Down-Top, Respectively

Given that only 2019 and 2020 had complete data, we directly used Sentinel-5 Pre-
monitory Offline Level 3 products. We obtained the monthly averaged NO2 and O3 data
by determining the mean value in each study area. In this section, we compared the data
detected in 2019. Figure 6 show the specific monthly averaged concentration (NO2 and O3)
and increment changes in 2019 and 2020. The monthly averaged increment represents the
increase in concentration from the previous month and to the current month.

Transport and industrial production are the main sources of NOX emissions, and thus
the monthly averaged NO2 concentration changes can reflect the cessation of productivity
during the epidemic and the recovery of productivity after the epidemic. Figure 6 shows
the concentration and increment change in NO2 and O3 in 2019 and 2020, respectively. In
Figure 6, the curve of NO2 concentration increment fluctuates mainly from February to
May in 2019 and 2020, consistent with the duration of the epidemic released by the Chinese
authorities [40]. During the epidemic outbreak, industrial emissions and traffic decreased to
a large extent in all parts of China. In the atmosphere, compared with that in February 2019,
the amplitude of NO2 concentration in 2020 in Beijing, Shanghai, Guangzhou, and Wuhan
decreased by 2.52 × 10−5, 2.32 × 10−5, 0.25 × 10−5, and 3.46 × 10−5 mol/m2, respectively.
The percentage decrease was 24%, 18%, 4%, and 39%, respectively. Then, in March, April,
and May, the monthly averaged increase in NO2 concentration in 2020 was smaller than
that in 2019. Change in NO2 concentration recovered to the 2019 level from June to Decem-
ber, indicating that the epidemic in China has been brought under control and industrial
production has recovered [40]. From February to June 2020, the NO2 concentration de-
creased, but the O3 concentration showed an increasing trend (Figure 6). Specifically, in
February 2020, O3 concentration increments in Beijing, Shanghai, Guangzhou, and Wuhan
were 0.851 × 10−2, 1.55 × 10−2, 1.24 × 10−2, and 1.66 × 10−2 mol/m3, respectively. The
decrease percentage was 5%, 14%, 12%, and 14%, respectively. In addition, the increment
change in O3 concentration was extended to June, a month longer than the increment
change time of NO2 concentration. Similarly, in March, April, May, and June, the monthly
averaged increase in O3 concentration in 2020 was smaller than that in 2019. From July to
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December in 2020, the O3 concentration increment in each region gradually returned to the
normal state.

To further analyze the effect of NO2 and O3 concentration on the change in XCO2, we
analyzed the daily averaged data of monitoring stations in the ground cities. Given that
China’s big events are held according to traditional holidays (Spring Festival and National
Day), we matched the 2020 and 2019 time series according to the Lunar New Year. We
obtained monthly averaged ground station data by averaging the daily averaged data of
monitoring stations in the ground cities. Figure 7 shows the daily averaged and monthly
averaged concentration change in NO2 and O3 in 2019 and 2020, respectively. We learned
that the daily averaged NO2 concentration in Beijing decreased in 11 February. The daily
averaged and monthly averaged concentrations in 2020 were lower than those in 2019
from 11 February to 31 October because the prevention and control measures were strict
in Beijing. The monthly averaged distribution of NO2 concentrations began to decline in
February, briefly returned to normal in November, and began to decline again in December.
The largest annual decline in March was 15.56 µg/m3 in Beijing. The percentage decline
was 39%. NO2 concentration decreased, whereas O3 concentration increased by 4.23 µg/m3

in February. The percentage increase was 5%. The monthly averaged NO2 concentration
decreased in March and April, and the corresponding monthly averaged O3 concentration
in the surface cities showed an obvious trend of decreasing initially and then increasing.

In the monthly averaged NO2 concentration of Shanghai, the trends in change in
NO2 concentration in the ground monitoring stations and satellite data were similar. NO2
concentrations at the ground monitoring stations declined from February to May, then the
decline rate reached its maximum value in March, with a maximum value of 20.64 µg/m3.
The percentage decline was 40%. Subsequently, the NO2 concentrations returned to normal
levels but fluctuated from June to November. Finally, in December, NO2 concentrations
dropped again in 2020 compared with those in 2019 because the Shanghai government
introduced management measures to prevent the recurrence of the epidemic [37,39]. Re-
garding the monthly averaged O3 concentration, the rising months in 2020 were February,
April, September, and November. The daily averaged NO2 concentration decreased from
15 February to 28 February, from 1 April to 22 April, from 1 September to 11 September,
and from 1 November to 15 November.

For the monthly averaged NO2 concentration in Guangzhou, the interval of decrease
in 2020 can be divided into three parts: from February to March, from July to August,
and from October to December. The maximum decrease was found in December, and the
maximum value was 27.16 µg/m3. The percentage decline was 40%. The monthly averaged
O3 concentration in Guangzhou increased in February and May, and the corresponding
daily averaged NO2 concentration decreased from 6 February to 28 February and from
10 May to 21 May. These effects may have been due to the latitude and typhoon because
the latitude in Guangzhou is extremely low.
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Figure 7. Daily averaged and monthly averaged concentration changes in NO2 and O3 in 2019 and 2020. The blue and
gray areas in the figure represent the daily averaged concentrations of NO2 and O3 in 2019 and 2020, respectively. The
blue and gray curve represents the monthly averaged concentrations in NO2 and O3 in 2019 and 2020, respectively. We
matched the data for 2019 and 2020 according to the Chinese New Year, and the time series in the figure is from 12 January
to 31 December.

Wuhan is the first Chinese city to have an epidemic case and, thus, has a long shut-
down time. We further analyzed the impact of NO2 and O3 on XCO2 in each month in
2020. Two periods of decrease in the monthly averaged NO2 concentration were found
at the ground monitoring stations, namely, from February to May and from December
to December. The maximum decrease was found in March, with a maximum value of
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33.02 µg/m3. The percentage decline was 61%. The monthly averaged O3 concentration in
Wuhan increased from February to March and from November to November. The daily av-
eraged NO2 concentration first decreased and then increased from 14 February to 27 March.
During this period, the monthly averaged O3 concentration was higher than that in the
same period in 2019, and the rate of increase in the monthly averaged O3 concentration in
March gradually slowed down compared with that in February. We found that the monthly
averaged O3 concentration in Wuhan in November 2020 decreased more slowly than that
in 2019 and higher than that in 2019. In addition, during this period, the daily averaged
NO2 concentration decreased rapidly from 21 November to 30 November, with a value of
32.90 µg/m3.

Figure 8 shows the percentage and concentration changes for O3 and NO2 for the four
study areas from the satellite observation and the ground monitoring stations observation,
respectively. In Figure 8a,b, the maximum monthly averaged concentration changes of
NO2 and O3 are shown form satellite observation, respectively. In Figure 8c,d, the maxi-
mum monthly averaged concentration changes of NO2 and O3 are shown from ground
monitoring stations, respectively. Then, we show the different changes for four cities in
each subgraph. For each of the subgraphs, the gray and blue bars represent percentage
data and concentration change data, respectively. In general, for the satellite observa-
tion estimates, the maximum monthly averaged NO2 concentrations in Beijing, Shanghai,
Guangzhou, and Wuhan in February 2020 were −24% (−2.52 × 10−5 mol/m2), −18%
(−2.32 × 10−5 mol/m2), −4% (−0.25 × 10−5 mol/m2), and −39% (−3.46 × 10−5 mol/m2),
respectively. The corresponding changes in O3 concentration were 5% (0.85 × 10−2 mg/m3),
14% (1.55 × 10−2 mg/m3), 12% (1.24 × 10−2 mg/m3), and 14% (1.66 × 10−2 mg/m3). In
addition, we further evaluated the monthly averaged data from the daily averaged data in
the ground monitoring stations. Surprisingly, the assessment showed that February was not
the biggest month of variability in NO2 concentrations from ground monitoring stations.
The monthly averaged NO2 concentrations in Beijing, Shanghai, and Wuhan in March had
the largest changes, changing to −39% (−15.56 µg/m3), −40% (−20.64 µg/m3), and −61%
(−33.02 µg/m3). The corresponding amounts of changes in monthly averaged O3 concen-
trations were −14% (−11.71 µg/m3), −2% (−1.86 µg/m3), and 9% (−7.63 µg/m3). How-
ever, the largest amount of change in monthly averaged NO2 concentration in Guangzhou
was found in December, with a value of −40% (−27.16 µg/m3). The amount of change in
O3 concentration was −12% (−10.46 µg/m3) in December.
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Figure 8. Percentage and concentration changes for O3 and NO2 for the four study areas, respectively. In (a,b), the
maximum monthly averaged concentration changes of NO2 and O3 are shown form satellite observation, respectively.
In (c,d), the maximum monthly averaged concentration changes of NO2 and O3 are shown from ground monitoring
stations, respectively.

3.4. The Relation of NO2 and O3 Concentration on XCO2

From the perspective of satellite and ground monitoring stations observations, we
quantitatively show the effect of NO2 concentration and O3 on XCO2 in Figure 9 from
top-down and bottom-up. Figure 9 shows the relationship between the monthly averaged
variation of XCO2 observed by satellite and the monthly averaged concentration of NO2
and O3 observed by satellite (Figure 9c,d) and ground monitoring stations observations
(Figure 9a,b) in February 2020 relative to 2019, respectively. To avoid the error influence
of the interpolation theory of XCO2, and to accurately reflect the interaction relationship
of XCO2 on NO2 and O3 concentration, the XCO2 data were adopted from the original
point data of GOSAT_FTS_L3_V2.95 in this chapter, and the data processing theory has
not changed. Similarly, we obtained monthly averaged differences in the concentrations
of NO2, O3, and CO2 in February 2020 relative to 2019. We have evaluated a correlation
between the variation of XCO2 and the variation of NO2 and O3 in Figure 9. CO2 and
NOx emissions derive from industries and traffic. Therefore, a reduction in emissions
corresponds to a reduction in concentrations [38,39]. The variations of XCO2 and NO2
should be correlated (as shown in Figure 9a,c), and their correlation coefficients are 0.4912
(from satellite observation) and 0.3928 (from ground station observation), respectively. On
the other hand, tropospheric O3 derives from nonlinear photochemical reactions of the
NOx and VOC precursors. Thus, a reduction in NO2 can even cause an increase in O3.
For this reason, it is possible that XCO2 and O3 (ground stations) are correlated, with a
correlation coefficient of −0.3333.

Figure 9. Cont.
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Figure 9. Relationship between the monthly averaged variation of XCO2 observed by satellite
and the monthly averaged concentration of NO2 and O3 observed by satellite (c,d) and ground
monitoring stations observations (a,b) in February 2020 relative to 2019, respectively. Restricted by
the matching of ground monitoring stations data and GOSAT_FTS_L3_V2.95 data, we retained part
of GOSAT_FTS_L3_V2.95 point data.

From the point of promoting the reduction in XCO2 in atmosphere, the contribution of
NO2 concentration is greater than that of O3 concentration. However, the relationship be-
tween O3 concentration and aerosols was strong because of photochemical reactions [41,42].
Therefore, we can regulate the concentration of O3 by improving the aerosol. In general,
from both top-down and bottom-up perspectives, we conclude that we can further improve
carbon emissions by regulating NO2 concentrations, but O3 has a relatively small impact
on the improvement of XCO2.

4. Conclusions

In this work, we analyzed abnormal XCO2 changes in Beijing, Shanghai, Guangzhou,
and Wuhan in each month in 2020, and combined the Sentinel-5 Precursor Offline Level
3 product and the ground monitoring network to analyze the effects of NO2 and O3
concentrations on changes in XCO2 with top-down and bottom-up methods, respectively.
We found significant differences in the monthly averaged concentrations of CO2, NO2, and
O3. For Beijing, Shanghai, Guangzhou, and Wuhan, the results suggested that the amounts
of changes in XCO2 were 0.13, −0.99, −0.89, and −1.12 ppm in February. Furthermore,
the concentrations of NO2 and O3 changed by −24% and 5%, −18% and 14%, −4% and
12%, −39% and 14% by comparing data in February 2019 with the Sentinel-Satellite-
5 data. Moreover, for Beijing, Shanghai, Guangzhou, and Wuhan, with regard to the
ground monitoring network data, the largest amounts of changes in monthly averaged
concentration of NO2 and O3 were −39% and 14%, −40% and −2%, and −61% and 9% in
February. However, the largest monthly averaged NO2 concentration change in Guangzhou
occurred in December, with a value of −40%. Thus, the O3 concentration change was −12%
in December.

In addition, we evaluated the relationship between the variation of XCO2 and the
variation of NO2 and O3 in Figure 9. CO2 and NOx emissions derive from industries and
traffic. Therefore, a reduction in emissions corresponds to a reduction in concentration [40].
The variations of XCO2 and NO2 should be correlated [43]. Additionally, the results also
show that the effect of NO2 concentration on XCO2 is positively correlated from the point
of the satellite (R = 0.4912) and the point of the ground monitoring stations (R = 0.3928).
On the other hand, tropospheric O3 derives from nonlinear photochemical reactions of the
NOx and VOC precursors. Thus, a reduction in NO2 can even cause an increase in O3. We
also found that XCO2 and O3 are correlated, with a correlation coefficient of 0.2391(from
satellite observations) and −0.3333 (from ground monitoring stations). Therefore, from
the point of promoting the reduction in XCO2 in atmosphere, the contribution of NO2 con-
centration is greater than that of O3 concentration. Nevertheless, the relationship between
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O3 concentration and aerosols was strong because of photochemical reactions [41,42]. We
can regulate the concentration of O3 by improving the aerosol. These effects improved air
quality and the status of the natural environment. At last, the government should consider
reducing XCO2 and NO2 concentration at the same time to make a synergistic reduction.
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