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Abstract: Documenting the impacts of climate change and human activities on tropical rainforests
is imperative for protecting tropical biodiversity and for better implementation of REDD+ and UN
Sustainable Development Goals. Recent advances in very high-resolution satellite sensor systems
(i.e., WorldView-3), computing power, and machine learning (ML) have provided improved mapping
of fine-scale changes in the tropics. However, approaches so far focused on feature extraction or the
extensive tuning of ML parameters, hindering the potential of ML in forest conservation mapping by
not using textural information, which is found to be powerful for many applications. Additionally, the
contribution of shortwave infrared (SWIR) bands in forest cover mapping is unknown. The objectives
were to develop end-to-end mapping of the tropical forest using fully convolution neural networks
(FCNNs) with WorldView-3 (WV-3) imagery and to evaluate human impact on the environment
using the Betampona Nature Reserve (BNR) in Madagascar as the test site. FCNN (U-Net) using
spatial/textural information was implemented and compared with feature-fed pixel-based methods
including Support Vector Machine (SVM), Random Forest (RF), and Deep Neural Network (DNN).
Results show that the FCNN model outperformed other models with an accuracy of 90.9%, while
SVM, RF, and DNN provided accuracies of 88.6%, 84.8%, and 86.6%, respectively. When SWIR bands
were excluded from the input data, FCNN provided superior performance over other methods with a
1.87% decrease in accuracy, while the accuracies of other models—SVM, RF, and DNN—decreased by
5.42%, 3.18%, and 8.55%, respectively. Spatial–temporal analysis showed a 0.7% increase in Evergreen
Forest within the BNR and a 32% increase in tree cover within residential areas likely due to forest
regeneration and conservation efforts. Other effects of conservation efforts are also discussed.

Keywords: forest cover mapping; land cover mapping; FCNN; Betampona Nature Reserve (BNR);
WorldView-3 SWIR; conservation efforts; Madagascar Flora and Fauna Group (MFG)

1. Introduction

The REDD+ (Reducing Emissions from Deforestation and Forest Degradation) pro-
gram identifies halting and reversing forest loss and degradation, which is essential for
mitigating climate change effects [1,2]. To implement REDD+ objectives at the national
level, it is imperative to develop methodologies to accurately estimate forest types, forest
cover area, forest degradation, and change as well as all forest restoration due to conserva-
tion efforts supported by the REDD+ program using satellite remote sensing. Efforts on
documenting the impact of REDD+ payments on forest recovery and carbon sequestration
in a fully automated manner is of special interest as ever-increasing stocks of very high-
resolution satellite imagery with a global coverage present unprecedented challenges for
big data analytics.
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Due to its species richness and a loss of more than 70% of its original primary vegeta-
tion, Madagascar is considered to be one of eight biodiversity hotspots across the globe [3].
It is estimated that 44% of Madagascar’s natural forest has been lost since 1953 due to
anthropogenic activity [4], which may be attributed to the increasing population, practice of
slash-and-burn agriculture, grazing, fuelwood gathering, logging, economic development
projects, cattle ranching, and mining [5,6]. The increasing deforestation results in an in-
creasingly fragmented forest where at forest edges, the differing air temperature, moisture,
and sunlight conditions impact both the abundance and distribution of species [7]. Defor-
estation is a major threat to native species since 90% of species endemic to Madagascar
are forest-dependent [3]. Therefore, the study area provides a living laboratory for the
studies of human–forest interactions, which has significant impact on our understanding
of tropical forests and biodiversity at the global scale for better implementation of REDD+.

The Betampona Nature Reserve (BNR) is situated on the central–eastern coast of
Madagascar. It was once contiguous with the Zahamena forest; however, extensive defor-
estation has resulted in it being one of the few remaining tracts of primary rainforest on
the eastern coast [6]. Although small and isolated, it has an extremely high plant species
diversity per hectare when compared to other rainforests [6]. As a result of its isolated
nature and small extent, fauna endemic to the BNR is believed to be at higher risk [8].
Additionally, non-native invasive plant or animal species also threaten the biodiversity
within the BNR [9]. Three habitat-altering invasive plant species seen prominently within
the BNR are Molucca Raspberry (Rubus moluccanus), Madagascar Cardamom (Afromomum
angustifolium), and Strawberry Guava (Psidium cattleianum) [10]. Although Madagascar
Cardamom is native to Madagascar, its weedlike characteristics in degraded areas within
and surrounding the BNR make it invasive in the region [11].

To effectively conserve biodiversity, an understanding of the human–environmental
interactions is needed, since basic human needs have a direct impact on various conser-
vation efforts through unsustainable agricultural practices, human encroachment, and
bushmeat consumption [4,5]. Agriculture is the primary source of income for the locals
around the BNR, with ‘tavy’, a cultural slash-and-burn system, being practiced by 80–85%
of farmers [5,12]. To ensure a source of income, locals around the BNR amplify and expand
agricultural production even if they are unable to sell their products to local markets [12].
The poorest households around the BNR spend two-thirds of their income on food [13] with
many households experiencing chronic or temporary food insecurity, which is intensified
by climate change-related events such as increased frequency of cyclones, causing flooding,
landslides, and damage from powerful winds, accidents, illness, deaths, and animal and
crop disease [12].

These human–environmental interactions are often studied by mapping the landscape
with different land cover and land uses using Remote Sensing. In recent studies, remote
sensing has been used to study the BNR and surrounding ecosystems [10,14] and the
entire island of Madagascar [4], producing detailed Land Use or Land Cover maps through
various methods [15]. Freely available imagery data from Landsat missions is a major
data source for both large- and small-scale classification maps [15]. However, coarse
resolution (10–100 m) images are not spatially detailed enough for forest conservation
mapping projects [16] or the identification of individual tree species [17]. WorldView-3
(WV-3) has a high spatial resolution with a resolution of 1.2 m for visible bands (VNIR),
3.7 m for shortwave infrared (SWIR) bands, and 0.3 m in the panchromatic band. With the
increased spatial resolution, pixel-based models that use only spectral information within
each pixel for classification are not as effective as the within-class variation is much greater
than the between-class variation. Classification accuracy is reduced, and maps derived
from pixel-based methods show a salt-and-pepper effect when created based on spectral
information alone using high-resolution imagery.

While the spatial and texture dimension of the remotely sensed imagery provides
information regarding feature extent, the spectral data provide information that can be
used to differentiate between classes [15]. The shortwave infrared (SWIR) bands within
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the WV-3 satellite provide added values for improved vegetation mapping. The SWIR
bands can detect non-pigment biochemical constituents of plants including water, cellulose,
and lignin [18]. SWIR-4 (1729.5 nm), SWIR-5 (2163.7 nm), and SWIR-8 (2329.2 nm) can
detect characteristic absorption features of nitrogen, cellulose, and lignin, respectively [18].
The inclusion of SWIR bands for tree-species classification has been shown to increase the
accuracy to varying degrees [18,19].

Support Vector Machines (SVM), Decision Trees (DT), Random Forests (RF), and
Deep Neural Networks (DNN) have been used for image classification [15]. However,
these methods are dependent on handcrafted features and require domain expertise [20].
Therefore, a shift is seen toward the use of deep learning algorithms for the creation of
classification maps with Convolutional Neural Networks (CNNs) dominating because
of their ability to extract relevant information automatically from imagery [20]. CNNs
are a type of Deep Neural Network model architecture that can extract various features
automatically and out-perform pixel-based machine learning models [19–21]. “Automated
learning” here is the process in which a computer program is trained to learn and apply
translationally invariant and spatially hierarchical patterns within the image through
convolutional and pooling layers [20]. Well-known deep CNN architectures used for
image classification problems include AlexNet [22], VGG Networks [23], ResNet [24],
DenseNet [25], among others. However, the fully connected layers at the end of any CNN
architecture do not preserve the 2D input image and predict a single class for each input
image. For mapping purposes, a per-pixel prediction of the 2D input image is required.
Thus, new methods were developed, such as Fully Convolutional Networks (FCNNs) [26]
for image classification through pixel-wise semantic segmentation. Ref [26] defined an
architecture that replaces the dense fully connected layers with a deconvolutional layer.
This FCNN architecture can create pixel-based classifications or semantic segmentation
of the input image. Segmentation and classification of the input image occurs through
the FCNN architecture, resulting in an end-to-end classification map. The input to the
model is a 2D image, which results in a classification based on both spectral and textural
features. SegNet and U-Net are types of FCNN for per-pixel semantic segmentation of
input images [27,28].

FCNNs and their variants have been used for end-to-end per-pixel image classifi-
cation of high-resolution satellite images [29–33]. The number of classification classes
varies with a maximum of 13 classes seen in [30]. For studies with more than 10 classes,
high-resolution GaoFen-1, GaoFen-2, IKONOS, WV-2, and Quickbird satellite imagery
were classified [29,30,32]. However, these studies that use fully convolutional networks
focus on the classification of land covers for an urban landscape [29,32] and agricultural
landscapes [30] with a few focusing on ecological landscapes [34].The importance of high
spatial resolution (3.7 m) SWIR bands for image classification, especially forest cover
classification, has been unknown because 3.7 m SWIR bands have not been previously
available for commercial or academic research. To the authors’ best knowledge, FCNNs,
that incorporate spatial features, have not been utilized for tropical forest cover mapping
using raw WV-3 satellite imagery.

While considering the size of the BNR and more importantly, the rugged terrain,
remotely sensed data is a top contender to map forest cover. It is hypothesized that (1) the
end-to-end FCNN model (U-Net) will outperform other pixel-based methods (SVM, RF,
DNN) due to the inclusion of textural features and end-to-end mapping capability, (2) the
exclusion of SWIR bands would reduce the overall accuracy for all classification methods,
with a greater reduction for SVM and RF, and (3) based on trends seen by [14], a negative
human influence on the BNR and surrounding habitat is expected. The objectives are to (1)
to develop an end-to-end automated deep learning model for forest cover mapping using
WV-3 imagery, (2) to evaluate the influence of WV-3 SWIR bands for tropical forest cover
mapping, and to evaluate the impact of conservation efforts in the region by international
organizations by analyzing land cover change from 2010 to 2019.
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2. Materials and Methods
2.1. Study Area

The 13 km × 13 km study area (Figure 1) is located approximately 40 km northwest
of the coastal city of Toamasina and is centered over the BNR. The area is characterized
by steep slopes varying from 0 to 55◦, isolated forest patches, and extensive agriculture.
There are 21 streams that flow through the BNR, and it represents an important watershed
for the region that includes the headwaters for two major river systems. The region is
characterized by a hot and humid climate with an annual rainfall of over 2000 mm and
an average humidity ranging between 80% and 90%. The annual average temperature is
24 ◦C, with a low of 16 ◦C in the months of June through August and highs of 32 ◦C in the
months of December through February [10].

Figure 1. (a) WorldView-3 0.3 m pansharpened RGB imagery with minimal cloud cover, over
the study area—the Betampona Nature Reserve (BNR) (white boundary polygon), located on the
(b) eastern coast of Madagascar, which is (c) an island to the southeast of Africa.

2.2. Data
2.2.1. Ground Truth Data Collection

Ground truth data were surveyed in 2018 by a local field team facilitated by the
Madagascar Fauna and Flora Group (MFG). For each surveyed location, the type of land
cover, approximate surface area covered, and associated image was documented. Survey
plots were selected such that the target land cover or land use class covered a large and
homogenous area. Then, GPS data was recorded at least one location within or on the
border of a plot, depending on accessibility. The size of the plots varied, based on the
location. Then, these data were categorized into 11 classes (Figure 2; Table 1). These ground
truth points were used as a reference to create samples for model training and testing.

The choice of classification scheme has implications on the map application, and
different classification schemes are of value to different management groups. In this
research, classes were defined according to land cover (4 classes) and forest cover type
(7 classes). The description of each class is seen in Table 1.
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Figure 2. In situ images of a few classes being mapped, collected during the ground reference data
collection in 2018. Additional classes include invasive guava, residential, and open water.

Table 1. This table lists the classes and descriptions used in order to create the classification map.
Eleven classes were defined that relate to land cover (Open Water, Row Crops), land use (Resi-
dential, Fallow), and forest cover (Mixed Forest, Evergreen Forest, Molucca Raspberry, Shrubland,
Madagascar Cardamom, Grassland and Guava).

Classes Description

Mixed Forest Young and mixed forest or degraded forest
Evergreen Forest Pristine and degraded forest

Residential Built-up areas
Molucca Raspberry Invasive plant species

Row crops Agricultural land
Fallow Area cleared prior to planting

Shrubland Shrubs dominating the land cover
Open Water Water bodies within the study area, i.e., rivers, streams

Madagascar Cardamom Plant species invasive to Betampona region
Grassland Grasses dominating the land cover

Guava Invasive plant species

2.2.2. Imagery Data

WorldView-3 imagery over the study area imaged on 19 February 2019 (Figure 1) with
minimal cloud cover was acquired. The data were atmospherically and radiometrically cor-
rected [35–37] and orthorectified by the vendor, Maxar Technologies [38]. The WorldView-3
data contain 8 bands in the visible (400–1040 nm with a spatial resolution of 1.2 m) and 8
bands in the shortwave infrared (1210–2365 nm with a spatial resolution of 3.7 m). Then,
the imagery was stacked and resampled to a 1.2 m spatial resolution using the nearest
neighbor resampling method with ENVI 5.4.1 software package (ENVI® image processing
and analysis software, from Exelis Visual Information Solutions). Resampling of the SWIR
data from 3.7 m to 1.2 m was necessary to analyze the data at a uniform spatial resolution.

2.2.3. Training Samples

Sample polygons were generated such that only pure pixels were selected, using the
ground truth data as a reference. Polygons were created with the survey points projected to
0.31 m GSD WorldView-3 pan-sharpened visual imagery, ensuring that only homogenous
polygons were digitized using the GPS recordings. Additional training samples were
created through photointerpretation to create a total of 360 polygons spread out over the
entire study area. To compare results from multiple models, the same training and testing
data were used for all classification models. Thus, once the sample polygons were created,
it was split into training (70%) and testing (30%). The ground truth data, imagery, model
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training data, and model testing data were georeferenced to the Universal Transverse
Mercator (UTM) coordinate system, zone 39 South with the World Geodetic System Datum
of 1984 (WGS 84).

2.3. U-Net

A typical Convolutional Neural Network (CNN) contains a convolutional layer and
a pooling layer. In the convolutional layer, a filter of size N × N pixels slides over the
input image and performs element-wise multiplication to produce a single value. The
filter slides right to left and downward bottom to repeat the element-wise multiplication,
resulting in a feature map with a shape reduced by a value of N-2. The pooling layers aim
to reduce all the useful information extracted from convolutional layers to much smaller
dimensions. CNNs have been used for imagery-based applications because of their ability
to extract spectral and textural information from the images [20]. Textual information
derived from convoluting kernels in the neural network enhances the existing spectral
information. In a Fully Convolutional Neural Network (FCNN), the final fully connected
dense layer within a CNN architecture is replaced with an up-sampling convolutional
network. The architecture of the U-Net model (Figure 3) first implemented by [27] for
biomedical image segmentation has been used in forest type and tree species mapping [17]
as well as the delineation of human-induced deforestation [16].
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The U-Net algorithm [27] is a type of FCNN where the encoding path follows the
standard ResNet CNN structure: repeated 3 × 3 unpadded convolutions with ReLU as
activation functions and standard 2 × 2 max pooling operations with different numbers
of kernels. However, the decoding path replaces max pooling operations with transpose
convolutions, which doubles the resolution of each feature map. In addition, each up-
sampled feature map is concatenated with cropped feature maps from the “same level” of
the encoding path. This enables the precise localization and compensates for the loss of
information in the pooling layers. As a result of this, the U-Net architecture was used over
other FCNNs. The final layer of U-Net is 1 × 1 convolution with softmax activation, which
produces a per-pixel segmentation map for the image.
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The quantity of training data derived from ground data collection in 2018 was limited.
A U-Net implemented with Keras produced a low training and testing accuracy with
segmentation results on testing data differing between repetitions. Implementing a U-Net
model within the arcgis.learn module of the ArcGIS API for Python [39] removed the
requirement for a quantitatively massive dataset. Additionally, the U-Net implemented
through argis.learn is pretrained on ImageNet to further improve classification accuracies.
This reduces the time and resources spent on ground truth data collection. Hyperparameter
tuning was done to select the best U-Net model [31,34,40]. Based on hyperparameter
optimization, it was found that the best model uses an input patch size of 64 × 64 pixels
and a ResNet-50 backbone [31,34,40].

2.4. Support Vector Machine (SVM)

Support Vector Machine (SVM) is a non-parametric method that attempts to classify
non-linearly separable data through the kernel trick in which input data are mapped to a
higher-dimensional feature space where a linear decision plane can be easily computed
to separate the classes [41]. This hyperplane is drawn such that the distance between the
nearest data vectors and the hyperplane is maximized. The SVM model was created using
the sklearn module (scikit-learn 0.24).

The accuracy of the SVM model is dependent on the choice of kernel, and a radial bias
kernel is shown to outperform other kernels for remote sensing applications [42]. The RBF
kernel requires tuning of two parameters—C and γ. Choice of the C parameter involves a
trade-off between correct classification and maximization of the margin. Thus, a smaller
C value will result in a wider margin and thus a lower accuracy. The γ value controls the
radius of influence of the training samples. Thus, a greater value will result in a model that
overfits on the training data and poor generalization on the testing data. The best values
for C and γ were optimized using GridSearchCV (scikit-learn 0.24) and were found to be
1000 and 1, respectively.

2.5. Random Forest (RF)

The RF algorithm constructs multiple decision trees (DTs), or classifiers, that each
predict a class [43]. Each tree within the RF is created using different training data subsets,
which are selected through repetition and replacement of the original training dataset.
This repetition and replacement create a ‘bagged’ dataset for each of the decision trees
within the random forest. The samples that are out of the bag, the so-called out-of-bag
samples (OOB), are used for validation of the RF model. The final prediction of the RF
is based on the majority vote from all trees. The RF model was created using the sklearn
module (scikit-learn 0.24). The number of trees and the maximum number of features
to be considered for the best split were tuned via GridSearchCV (scikit-learn 0.24) and
were found to be as follows: best number of trees = 130; maximum features required for
split = auto.

2.6. Deep Neural Network

A Deep Neural Network (DNN) consists of multiple hidden layers, made up of ‘n’
number of neurons. These neurons are interconnected with neurons of the preceding and
next layer, through some weight (m) and bias (c), such that,

y = mx + c (1)

The network attempts to learn the values for the various weights and biases, the
parameters of the model, by minimizing the cost function. The choice of the cost function
is important, as this function guides the model in the direction of the correct weights and
biases for accurate predictions. The cross-entropy loss function is used for the DNN model.

The number of neurons and the number of hidden layers all affect the predicting
power of the network. Thus, these parameters were adjusted, resulting in the architecture
seen in Figure 4. The presence of a dropout layer, with a value of 0.23, after hidden
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layer 5 and a batch normalization layer after hidden layer 2 increased the testing accuracy
of the model. These additional layers—dropout and batch normalization—reduce the
over-fitting of the model on the training data and increase generalization on testing data.
The hyperparameters in this network—the learning rate, number of epochs, and batch
size—were further tuned such that the testing accuracy and the kappa were the best among
all models. The optimized hyperparameter values for learning rate and batch size were
0.007 and 48, respectively.
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Figure 4. Network architecture implemented for the Deep Neural Network (DNN) model along
with the number of neurons that were optimized for each hidden layer. The output layer contains
11 neurons, corresponding to the number of classes to be classified.

2.7. Accuracy Assessment

To compare the accuracy of various models independent testing data, i.e., same for all
models, is used for model evaluation. The confusion/error matrix and subsequent metrics
are calculated on a pixel-level basis. This confusion matrix shows the model prediction
of each class (rows) compared to the original class (columns) as defined by the testing
data. The quantitative evaluation was conducted by using overall accuracy (OA), kappa
coefficient, user’s accuracy, producer’s accuracy, and F1 scores, which were derived using
the error matrix.

The OA is defined as the ratio of the number of correctly classified samples to the total
number of test samples (Equation (2)). While OA measures simple percentage agreement,
the Kappa coefficient measures the degree of agreement by considering the correctly
classified samples that may happen by chance and is usually less than or equal to 1 (perfect
agreement) (Equation (3)).

OA =
∑(TP + TN)

∑(TP + TN + FP + FN)
(2)

kappa coe f f icient =
Po − Pe

1− Pe
(3)

where Po: Observed Accuracy & Pe: Accuracy obtained by chance.
Producer’s accuracy measures the accuracy of model predictions, while user’s accu-

racy measures whether the predictions reflect true ground cover (Equations (4) and (5)).
These values for producer’s and user’s Accuracy—TP, FP, and FN—are based on an error
matrix that is weighted according to the proportion of area in each cell of the matrix [44].
The F1 score is mathematically defined in Equation (6).

True Positive (TP) is the number of pixels for a class correctly predicted by the model.
False Negative (FN) is the number of pixels for a certain class wrongly predicted as another
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class, while False Positive (FP) counts the number of pixels predicted as a certain class that
actually belong to another class.

Producers′ accuracy =
∑ TP

∑(TP + FN)
(4)

Users′ Accuracy =
∑ TP

∑(TP + FP)
(5)

F1 score =
2 TP

2 TP + FP + FN
(6)

2.8. Land Cover and Land Use Change

Conservation efforts were quantified by investigating the land cover and land use
change over time. Since the types of land cover classes studied here were the same as the
2010 classification [10], the map created here was compared with one created by [10]. Since
the 2019 imagery covered a much larger extent than the 2010 classification product, the
change metrics were based on the 2010 imagery extent. Zone of protection (ZOP) is defined
as a 100 m wide ecotone at the perimeter of the BNR, which extends 100 m outside the
boundary of the BNR [14]. The activities within the ZOP have an impact on flora and fauna
within the BNR due to the forest edge effect, since both human and ecological activities
overlap in the ZOP. Therefore, change metrics for ZOP were computed for an area that
extends 100 m inward and outward from the boundary. In other words, the statistics of the
changes for the ZOP include 100 m within the BNR plus the ZOP, which extends 100 m
from the boundary outside the reserve. The overall percent change for each land cover and
land use was calculated by dividing the difference between 2019 and 2010 total area by the
total area in 2010 for that specific land cover and land use; see Equation (7).

Percent Change =

(
2019 area− 2010 area

2010 area

)
× 100 (7)

In order to visualize the trajectory of change spatially, we used a grid cell approach
as in [45]. A grid cell size of 10 × 10 m was used to aggregate pixel-level land cover and
land use types. We chose this grid size as it is approximately the size of mature trees so
that we can track the changes to the scale of individual trees. The percent change was
computed based on aggregated percent land cover and land use type within each grid cell
using a combination of ArcGIS processing tools and python code. First, a 10 m fishnet grid
was created using ArcGIS Pro, which was intersected with 2010 and 2019 classification
shapefiles. Then, polygons of the same class that intersect (fall within) a fishnet grid were
aggregated to produce the sum of each unique land cover within the fishnet cell (using
ArcGIS Pro ‘Summarize Attributes’ tool). This resulted in a table with multiple rows with
the various land cover types in the same column. In order to organize each land cover
percentage in separate columns (which is needed to calculate spatio-temporal change), the
table was pivoted (using ArcGIS Pro “Pivot” tool) such that each grid cell has the total
percentage of a specific land cover organized by a table of columns. Finally, the percent area
of a specific land cover per grid cell was calculated, and the percent change was computed
as the difference between 2010 and 2019 classification products.

3. Results
3.1. Classification Results

The U-Net model produced a 90.9% accuracy, outperforming other pixel-based models
(Table 2). The SVM, RF, and DNN models produced an overall accuracy of 88.6%, 84.8%,
and 86.6% respectively. Among SVM, RF, and DNN models, SVM was able to better
distinguish between the classes.
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Table 2. Results—overall accuracy (Equation (2)), kappa coefficient (Equation (3)), producer’s (Equation (4)), and user’s
accuracy (Equation (5)) for Support Vector Machine (SVM), Random Forest (RF), Deep Neural Network (DNN), and U-Net
models, based on independent testing data.

Accuracy Metric Classification Class U-Net SVM RF DNN

Producer’s Accuracy

Mixed Forest 91.5 67.5 64.5 70.2
Evergreen Forest 78.6 69.9 59.4 68.8

Residential 100.0 97.8 98.4 88.2
Molucca Raspberry 95.4 96.7 99.4 99.4

Row Crops 96.9 97.6 90.3 92.8
Fallow 100.0 95.4 91.0 99.0

Shrubland 79.8 79.2 76.2 72.0
Open water 100.0 100.0 100.0 100.0

Madagascar Cardamom 81.6 90.0 80.0 93.3
Grassland 81.6 88.7 85.0 81.7

Guava 89.8 82.0 80.6 81.0

User’s Accuracy

Mixed Forest 82.2 75.8 70.6 72.3
Evergreen Forest 85.1 75.1 64.1 68.2

Residential 99.9 95.1 89.8 99.0
Molucca Raspberry 95.5 96.0 96.3 99.8

Row Crops 100.0 98.9 95.4 94.2
Fallow 100.0 98.2 98.7 91.0

Shrubland 70.8 75.0 67.7 80.7
Open Water 100.0 100.0 100.0 100.0

Madagascar Cardamom 84.5 81.8 77.5 76.9
Grassland 97.3 93.9 93.7 93.2

Guava 81.3 72.9 71.2 73.4

Overall Accuracy (%) 90.9 88.6 84.8 86.6
Kappa Coefficient 0.901 0.875 0.835 0.854

The U-Net model provided the highest producer’s and user’s accuracy for Mixed
Forest and Evergreen Forest. The producer’s and user’s accuracy for Molucca Raspberry
was greater than 95% for all methods, with the DNN model providing the highest accuracies
and U-Net providing the lowest accuracies. Although the U-Net model produces the
highest producer’s accuracy of 81.6% for Madagascar Cardamom, only 84.5% is actually
Madagascar Cardamom. An increase in both the producer’s and user’s accuracy was seen
for the U-Net model for Guava. The producer’s accuracy for Shrubland is seen to increase
for the U-Net model, while the user’s accuracy decreased. The U-Net model resulted in
the highest user’s accuracy and the lowest producer’s accuracy for Grassland compared to
other methods, while the SVM model produced the best producer’s and user’s accuracy
for Grassland. Open Water, due to its unique spectra compared to other classes, results in
100% user’s and producer’s accuracy across all models. The U-Net model resulted in 100%
producer’s and user’s accuracy for the Residential and Fallow classes. As shown in Figure
5, the F1 score from U-Net is the highest for all classes considered, indicating that U-Net is
a better model overall for tropical forest habitat mapping.
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Figure 5. F1 score (Equation (6)), for all classes and models, showing the superiority of the FCNN U-Net model.

3.2. SWIR Bands

The removal of SWIR bands reduced the accuracy by 5.42%, 3.18%, 8.55%, and 1.87%
for the SVM, RF, DNN, and U-Net models, respectively (Table 3). The confusion matrix
for the DNN and U-Net models from which accuracy metrics are derived is shown in
Figure 6. The DNN model is chosen for comparison because of the greatest percent change
due to the removal of SWIR bands, producing the worst accuracy when SWIR bands
were removed. The U-Net model is chosen because of the lowest reduction in accuracy
when the SWIR bands were removed. The removal of the SWIR bands amplifies the
number of misclassified pixels between classes: for example, guava pixels being classified
as Madagascar Cardamom (Figure 6). A decrease in the producer’s and user’s accuracy for
Madagascar Cardamom and Guava, which are invasive plant species, is seen (Figure 7).

Table 3. Overall accuracy (Equation (2)) and percent change for all classification models including
(16 bands) and excluding (8 bands) the shortwave infrared (SWIR) bands.

Accuracy Metric U-Net SVM RF DNN

Overall Accuracy (%) (16 bands) 90.9 88.6 84.8 86.6
Overall Accuracy (%) (8 bands) 89.2 83.8 82.1 79.2

Percent Decrease −1.87 −5.42 −3.18 −8.55
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3.3. Spatial Distribution of LCLU

A LCLU map was created through post-classification editing of the best model (U-Net)
results to further reduce the errors in an effort to create a “gold standard” classified map
(Figure 8) by further removing spurious pixels and majority analyses. Each pixel within the
map was manually scanned for misclassified pixels using photointerpretation of the 0.31 m
GSD pan-sharpened image, and such pixels were reclassified using the ‘Pixel Editor’ tool
in ArcGIS Pro. This map accurately describes the class of each 1.2 m × 1.2 m pixel within
the map. Based on Figure 8, around 50% of the study area is covered by shrubland, 33%
is covered by mixed and evergreen forests, and 4.7% is covered by invasive plant species.
Another 8% of the study area is used for cultivation (Row Crops and Fallow). The detailed
distribution in percent of the total study area is shown in Table 4.
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Table 4. Percentage and area in hectares of each class type mapped in 2019 within the study area,
based on the classification map seen in Figure 8.

Classes 2019 (%) 2019 (ha)

Mixed Forest 19.74 32,990.21
Evergreen Forest 13.22 22,099.87

Residential 0.38 650.62
Molucca Raspberry 1.31 2190.60

Row Crops 3.08 5147.37
Fallow 4.97 8313.04

Shrubland 48.55 81,148.99
Open Water 1.39 2327.05

Madagascar Cardamom 2.02 3386.98
Grassland 3.81 6369.07

Guava 1.49 2490.60
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3.4. Land Cover and Land Use Change Analysis
3.4.1. Change in the Study Area

The quantitative change was conducted for the overlapping extent (Figure 9) between
the two classification maps produced for 2010 and 2019 (Table 5). An increase is seen for
the following classes: Evergreen Forest (1.5%), Mixed Forest (4.9%), Residential (44.3%),
Shrubland (37.2%), Open Water (53.6%), and Madagascar Cardamom (47.5%); a decrease is
seen for the following classes: Molucca Raspberry (−55.7%), Row Crops (−56.1%), Fallow
(−31.0%), Grassland (−63.4%), and Guava (−6.1%).
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Table 5. Total hectares for each class mapped in 2010 and 2019 are listed below based on overlapping
extent (Figure 9), along with the amount of percent increase (or decrease) (Equation (7)) over time for
each class.

Classification Category 2010 (%) 2019 (%) Percent Change

Mixed Forest 18.15 19.04 4.87
Evergreen Forest 21.52 21.85 1.54

Residential 0.23 0.33 44.31
Molucca Raspberry 3.27 1.45 −55.69

Row Crops 6.43 2.82 −56.13
Fallow 6.03 4.16 −31.01

Shrubland 31.11 42.69 37.22
Open Water 0.62 0.95 53.57

Madagascar Cardamom 0.86 1.26 47.49
Grassland 9.80 3.59 −63.39

Guava 1.98 1.86 −6.10
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The 44% increase in Open Water is attributed to the extensive mapping of the streams
in the study area as well as increased panchromatic resolution of 0.3m that enabled the
discernment of very narrow streams, which is not possible with the 4 m spatial resolution
of IKONOS data used in the 2010 classification. Since the area represents an important
watershed for the region, mapping all the streams within the area is important to guide
decision-makers and conservationists.

With the increasing population, an increase in Residential land use is seen within the
study area. This is seen both in the increase in the spatial extent of residential areas as well
as the emergence of new hamlets (Figure 10). Furthermore, the increased spatial resolution
of the 2019 imagery (from 4 m to 1.2 m) has resulted in the identification of isolated huts
believed to be seasonal agricultural homes called lasy. Its isolated nature along with the
near distance to the agricultural fields validates this hypothesis.
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It should be noted that trees within the boundaries of residential areas, originally
classified as Mixed Forests, were re-classified as Residential in this study to quantify the
change in residential tree cover for agroforestry analysis. Based on the re-classified pixels,
tree cover within residential areas was estimated for 2010 and 2019 (Figure 11). A 32%
increase in the tree cover in residential areas was observed in 2019, which may be associated
with tree growth and increased fruit tree plantation within residential areas encouraged by
conservation groups and local authorities to combat food insecurity.

The reduced area for Row Crops and Fallow is seen primarily within the ZOP. It can
potentially be attributed to a seasonal shift in agriculture. The imagery from which the
2010 classification map was derived was collected in May, while the current imagery was
collected in February. Additionally, the replanting of native flora in the ZOP to protect the
degradation of evergreen forest at the forest edges is also a major factor in the reduction of
agriculture in the ZOP.
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Figure 11. An increase in tree cover in residential areas in hectares from 2010 (gray diagonal bar) to
2019 (black solid bar) is attributed to maturing native trees and successful agroforestry efforts.

The classes that were converted to Shrubland in 2019 are shown in Figure 12. The
conversion of 2010 Evergreen Forest to Shrubland areas in 2019 is considered as land degra-
dation and is seen in forest fragments within the study area, east of the BNR (Figure 13).
Around 70% of the conversion was seen from Fallow and Grasslands to Shrubland. The
vegetation in these areas could be late inter-cropping periods when agricultural fields
have been left fallow for several years, or it could be the early stages of a Mixed Forest
or regenerating Evergreen Forest, but the small height of these trees has resulted in a
Shrubland classification.
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awareness-raising and conservation efforts.
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3.4.2. Change within the BNR

The land cover changes within the BNR are shown in Table 6. Increases within Mixed
Forest and Evergreen Forest are observed while decreases in invasive plant species are
observed within the BNR (Figure 9; Table 6). The classes that were converted to Mixed
Forest in 2019 are shown in Figure 14. When comparing land cover in 2010 and 2019,
3080 ha, 3101 ha, and 459 ha of invasive Molucca Raspberry, Madagascar Cardamom, and
Guava respectively were converted to Mixed Forest in 2019 probably due to tree growth.
However, 876 ha of Evergreen Forest were also converted to Mixed Forest in 2019.

Table 6. Percentage of forest cover types in 2010 and 2019 observed within the boundary of the BNR
(Figure 1).

Forest Cover Class 2010 (%) 2019 (%) Percent Change

Mixed Forest 10.3 11.5 12.5
Evergreen Forest 81.0 81.6 0.7

Molucca Raspberry 1.8 1.3 −28.4
Madagascar Cardamom 2.5 2.2 −12.8

Guava 3.1 3.1 −0.3
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3.4.3. Change within the Zone of Protection (ZOP)

The ZOP, also called the buffer zone, acts as a transition between protected areas and
surrounding unmanaged landscape that reduces the negative impacts on protected areas.
In this zone, human and ecological activities clash. In the ZOP, while the extent of invasive
Molucca Raspberry has decreased over time, an increase in the extent of Madagascar
Cardamom and Guava is observed (Figure 15; Table 7). Within the ZOP, anthropogenic
land use (i.e., residential) decreased by 17.9%, and Row Crops and Fallow areas decreased
by a 76% and 4%, respectively. The decrease in anthropogenic land use is complemented
by an increase in the extent of Mixed and Evergreen Forests. Detailed mapping of streams,
which can be seen in Figure 15, accounts for the 430% increase in Open Water. It must be
noted that this significant increase in Open Water class was the result of the super-high
resolution of the 2019 WV-3 imagery compared to the IKONOS imagery used in 2010,
which allowed better discrimination of smaller streams or streams that are covered by trees.

Table 7. Percentage of classes within the ZOP, a 100 m buffer zone that borders the BNR. Invasive
forest cover types are highlighted.

Classes 2010 (%) 2019 (%) Percent Change (%)

Mixed Forest 16.55 21.23 28.36
Evergreen Forest 16.82 26.79 59.43

Residential 0.15 0.12 −17.91
Molucca Raspberry 8.42 2.70 −67.93

Row Crops 11.27 2.69 −76.13
Fallow 1.51 1.43 −4.93

Shrubland 25.63 30.23 18.04
Open water 0.07 0.36 430.64

Madagascar Cardamom 5.26 5.26 0.06
Grassland 10.03 1.99 −80.13

Guava 4.29 7.21 68.09
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Figure 15. Invasive plant species within the BNR and the land cover types seen 100 m within the
BNR boundary (gray line) and within the ZOP (100 m extending from the BNR boundary). Forest
covers are observed along with a few scattered agricultural fields within the 200 m wide region on
two sides of the boundary. Note that wider streams represented by the Open Water class are located
further south of this map extent, which is not visible here. The Open Water and Streams classes
should be treated as the same class.

4. Discussion
4.1. Land Cover and Land Use Classification

Only spectral information is used as input features for classification using SVM, RF,
and DNN. Although classification accuracies are greater than 80% for all models, a salt-and-
pepper effect is seen in the classification maps (Figure 16), which is common for pixel-based
classification with very high-resolution satellite data. Note that the SVM classification map
is shown here because of its higher accuracy compared to RF and DNN models. With very
high-resolution images such as WV-3, the increased spatial resolution results in an increase
in the within-class variation and a decrease in the between-class variation, decreasing
the separability between classes [46]. This can be observed in the confusion matrix with
higher percentages of misclassified pixels (Figure 6). Additionally, as seen in Figure 17,
all forest covers have similar-looking spectral curves. To reduce these misclassified pixels,
researchers have used vegetation indices and textural features such as the Gray Level
Co-occurrence Matrix (GLCM) [46]. However, the creation of such handcrafted features is
time consuming, requires tuning, and needs domain expertise, highlighting the advantage



Remote Sens. 2021, 13, 3495 20 of 29

of end-to-end CNN-based classification that utilizes texture information through an FCNN
architecture.
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The FCNN U-Net model produced an overall accuracy of 90.9%, outperforming the
other pixel-based models studied here. Similarly, U-Net has outperformed other pixel-
based models in other studies [40]. The improvement in accuracy can be attributed to the
architecture, which is common within all FCNN encoder–decoder type models. Firstly, the
2D kernels within convolutional layers consider spatial information. The convolutional
layers extract hierarchical features, and therefore, raw WV-3 imagery input alone is able
to produce >90% accuracies [17]. Finally, the fully convolutional nature can segment and
classify each pixel in the input image resulting in an end-to-end classification map [26,30,40].
Thus, semantic segmentation at the pixel level along with the extraction of features through
convolutional layers and the inclusion of spatial information results in the higher accuracy
of the FCNN-based U-Net over other pixel-based models. However, one disadvantage of
the U-Net model is the labeling of each pixel in the training data. Abundant data are needed
for training deep neural networks of at least 1000 image samples. In such cases, a pretrained
network can reduce the amount of training data needed [47]. The U-Net implemented
within arcgis.learn had a ResNet-50 backbone that was pretrained on ImageNet.

The following classes provided a higher user’s accuracy and producer’s accuracy
across all pixel-based models: Open Water, Molucca Raspberry, and Row Crops. These
classes have unique spectral signatures that enable the separation of each class from other
classes (Figure 17). SVM, RF, and DNN models in this study suffer from misclassified
Fallow (bare land) and Residential (built-up) pixels because of similar reflectance curves
(Figure 17). The misclassification can be reduced by using an FCNN-based U-Net model
that includes textural features (Table 2, Figure 5) [30]. A lot of misclassified pixels are
seen between forest covers—namely, Mixed Forest, Evergreen Forest, and Guava [48].
Training data for Mixed Forest were created based on limited ground reference data
points. Misclassified pixels among these three classes—Mixed Forest, Evergreen Forest,
and Guava—could stem from inconsistent training data. The training data might not have
been able to capture the spectral variability within each class, which could have reduced the
separability between the classes. The spectral signature of Guava is difficult to recognize
even with using other sources of data [10]. Furthermore, guava does not need direct
sunlight and therefore grows beneath the forest canopy which makes its identification
through satellite imagery challenging. The producer’s and user’s accuracy decreased for
Madagascar Cardamom and Molucca Raspberry using the U-Net model. This decreased
accuracy may be due to the limited training samples for the U-Net model implemented.
Deep architectures usually require thousands of training data so that the model is able
to generalize on the testing data. The samples were limited, and images were rotated to
increase the training and testing data.
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4.2. Contribution of SWIR Bands

WV-3 SWIR bands can detect non-vegetative pigments [18], and thus, the removal of
these bands reduced the overall accuracy by 5.42%, 3.18%, 8.55%, and 1.87% for SVM, RF,
DNN, and U-Net models, respectively (Table 3). Therefore, the inclusion of WV-3 SWIR
bands improves the separability between vegetative classes and improves classification
accuracy.

Since the RF, SVM, and DNN models use only the spectral features for classification,
the removal of SWIR bands has a greater impact on the overall accuracy. Based on the
percent decrease in accuracy, the SWIR bands were most useful in separating classes in the
DNN model, followed by the SVM and RF models. Within U-Net, the inclusion of spa-
tial/textural features results in only a 1.87% decrease in accuracy when SWIR bands were
excluded, confirming that CNN-based approaches can provide robust and accurate results
just with VNIR data, excluding the need for expansive SWIR data collection. However, it is
worth noting that we used a 2D CNN architecture in this paper. A 3D CNN architecture
that fully utilizes spectral differences among classes along with texture and patterns may
show the benefit of SWIR bands differently.

WV-3 VNIR and SWIR bands have been used to discriminate between tree species [18,19]
and crop types [49]. These studies showed that the contribution of each SWIR bands is
class-specific and varied for different land cover and land use types, which was further
confirmed by this study. A decrease is observed in the F1 score of Mixed Forest, Fallow,
Open Water, and Guava when SWIR bands were removed across all classification methods
employed. For the remaining classes, an increase in the F1 score is seen for at least one
classification method.

The F1 scores for all classification methods and selected land cover classes are shown
in Figure 18 Guava is highlighted in Figure 18a, because of the highest decrease in F1 score
for SVM, RF, and DNN models compared to all other classes. For the U-Net model, the
removal of SWIR bands reduced the F1 score by almost 50% for Madagascar Cardamom
(Figure 18b). In Figure 18c, Evergreen Forest is highlighted for 16 (VNIR + SWIR) bands
and eight (VNIR) bands as the F1 score increased for RF and U-Net models upon removing
SWIR bands. Figure 18d shows the decrease in F1 score for Mixed Forest without SWIR
bands; similarly, in Figure 18e, decreases are evident for Molucca Raspberry. For Row
Crops and Residential, the F1 score slightly increased when SWIR bands were removed for
both RF and DNN, respectively. This increase could be attributed to the fact that both Row
Crops and Residential land use are best differentiated by VNIR bands and the relatively
lower resolution of SWIR may have affected the metric. For Fallow, as shown in Figure 18h,
a decrease is evident when SWIR bands are removed, indicating the importance of SWIR
bands for identifying Fallow, as SWIR regions are most effective for mapping crop residue
in Fallow. Finally, for Shrubland (Figure 18i) and Grassland (Figure 18j), SVM, RF, and
DNN were unable to identify the class without the presence of SWIR bands, producing a
percent decrease in F1 scores, while the U-Net model was able to produce better F1 scores
when the SWIR bands were removed.
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Figure 18. F1 scores of all classification methods employed including (16 bands) and excluding
SWIR bands (8 bands), showing the percent change due to the removal of SWIR bands for (a) Guava,
(b) Madagascar Cardamom, (c) Evergreen Forest, (d) Mixed Forest, (e) Molucca Raspberry, (f) Row
Crops, (g) Residential, (h) Fallow, (i) Shrubland, and (j) Grassland.

4.3. Accuracy of Classification Maps

Land cover and land use maps are highly advantageous to conservationists and land
managers for the establishment of new conservation programs, for quantitative evaluation
of various existing conservation programs, and for the estimation of forest fragmentation
rates [4,16]. Moreover, it is beneficial to users that these land cover maps are 100% accurate.
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Accuracy estimation for each pixel in classification maps is not possible, since ground
truth data are not available for each pixel. Therefore, the accuracy of classification maps
is calculated based on pixels that are representative of the image [50]. These pixels are
taken at random and are not used to train the classification model. If the sample pixels
selected are not true representations of the study area, the resulting map accuracy will be
inaccurate [50], and these accuracy values should be treated with caution.

To increase the accuracy of land cover maps created through classification, the maps
can be inspected and subsequently edited. Although such a process is labor-intensive and
time consuming, it ensures a near 100% accuracy of the land cover map. Therefore, the
final classified map was manually inspected, fine-tuned, and edited to reflect true land
covers. For example, trees within the Mixed Forest class that obstruct rivers and streams
are reclassified as Open Water. Other edits included the re-classification of misclassified
Fallow pixels to Residential and vice versa. The land cover map was edited to correctly
reflect the distribution of Madagascar Cardamom and Molucca Raspberry. The outcome of
this post-editing as mentioned in previous sections is a gold standard map of the entire
study area. Confusion matrices were computed by comparing the gold standard map and
the LCLU maps produced by the machine learning algorithms including the U-Net and
SVM models (Table 8).

Table 8. Accuracy metrics—overall accuracy (Equation (2)) and kappa coeff. (Equation (3))—based
on the predictions of best performing models, SVM and U-Net, compared with the edited map seen in
Figure 8. The accuracy of modelsis much lower compared to the accuracy derived from independent
testing data.

Model Name Accuracy (%) Kappa Coeff.

SVM 66.5 0.650
U-Net 77.3 0.655

Although the overall accuracy of the U-Net model based on testing data of limited
random pixels is over 90%, the accuracy based on the gold standard map is only 77%,
which reflects the accuracy over the entire study, including all pixels in the imagery as
opposed to the testing accuracy based on the limited testing pixels. Similarly, a much
lower accuracy is seen with the SVM model. There are numerous reasons for the resulting
low accuracy for the U-Net model, which can be attributed to the training of the models
themselves. With additional training data, the spectral variation within each class (Figure
17) could be learned to better predict the land cover. Another source of error for the lower
accuracy (Table 8) is Open Water. Although the overhead imagery shows tree cover above
a stream, these tree pixels over water features are reclassified to Open Water in the gold
standard map. Since the area represents an important watershed for the region, accurate
mapping of these streams is important. Similarly, landslides expose bare rock, and their
spectral signature is very similar to that of the Fallow class. Thus, both models classify
those exposed rocks as Fallow. Although this classification is ‘spectrally’ accurate, it is not
reflective of the true LCLU. Additionally, the low accuracy of 66% for the SVM model can
be attributed to the salt-and-pepper effects of pixel-based classification.

4.4. Conservation Efforts in the BNR

Ref [14] found, based on imagery acquired in 2010, that 81% of the BNR consists of
undisturbed and/or degraded evergreen forest, and 10% of the BNR consists of regen-
erating or degraded mixed forest. Results from the 2019 imagery show a 12.5% increase
in regenerating Mixed Forest and a 0.7% increase in Evergreen Forest (Table 6). The
regeneration of Evergreen Forest is a lengthy process, and therefore, the success of the
restoration work within BNR is only slightly apparent with a 0.7% increase in Evergreen
Forest. However, given that the trend in 2010 was toward increasing deforestation and
forest fragmentation [14], this is already a worthwhile result, especially when coupled with
a 13% and 28% increase in Mixed Forest in the BNR and the ZOP, respectively.
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The Madagascar Flora and Fauna Group (MFG), an association of zoos and botan-
ical gardens, manages the BNR in collaboration with the Madagascar National Parks
(MNP) [12]. Since 2007, the MFG has run a community-based native forest restoration
project in the BNR’s ZOP, a 100 m buffer extending out from the BNR, in partnership with
the Madagascar National Parks. Another initiative is the control of invasive Guava in the
BNR as well as the control of local invasive plants Madagascar Cardamom and invasive
Molucca Raspberry, both of which have contributed to the 0.7% increase in Evergreen
Forest in the BNR.

Knowing where and which LCLU types have been converted to Shrubland (Figure 12)
within the study area is very valuable to the MFG and their partners at the MNP. This
knowledge targets awareness raising and conservation efforts in areas of particular concern
for example, the deforestation of formerly evergreen forests that are mainly remnant
“Classified Forests”. These “Classified Forests” have a legally protected status but little
practical protection. Similarly, knowledge of which classes were converted to Mixed Forest
in 2019 in BNR (Figure 14) is also beneficial. For instance, although the conversion of
Evergreen Forest to Mixed Forest amounted to 876 ha, the majority of classes that was
converted to Mixed Forest was Molucca Raspberry (3080 ha), Fallow (2648 ha), Madagascar
Cardamom (3102 ha), and Grassland (2697 ha).

Land use in the vicinity of protected areas is seen to negatively affect conservation
efforts [51]. Since human and ecological activities overlap in these areas, the land cover
changes are studied in the ZOP. The size of this transition zone is further dependent
on the ecological, socio-economic, and hydrological interactions with the surrounding
landscape [51], and therefore, it differs between protected areas. For the BNR, the size of this
zone is taken as 100 m extending out from the BNR boundary. In the ZOP and 100 m within
the BNR boundary, a decrease in anthropogenic land use is observed (residential areas,
agricultural fields, and fallow land), which is complemented by an increase in mixed and
evergreen forests (Table 7; Figure 19). These results are most likely a direct consequence of
the MFG’s native forest restoration program and increased awareness-raising and lobbying
by the MFG and Madagascar National Parks to discourage slash-and-burn agriculture
in the ZOP. More recently, the MFG has initiated two efforts to reduce forest loss and
promote more sustainable agriculture: the promotion of agroforestry and the distribution
of fuel-efficient stoves.

Agroforestry around villages has been promoted by the MFG and their agroecol-
ogy specialists since 2005. A 32% increase is seen in tree cover within residential areas
(Figure 11), and it is found that there is an average of 6.5 species found in residential home
gardens [12]. The increase in tree cover is indicative of native trees maturing over time and
is also indicative of successful agroforestry efforts. The local population has already been
practicing agroforestry for many generations, so it is not possible to quantify the impact
due to the MFG’s specific efforts. However, the provision of training, trees and equipment
since 2005 seems to be making a positive difference to tree cover in residential areas despite
the overall growth of many of the residential areas. Ref. [12] also found that local farmers
around the BNR are willing to increase tree crop production.

Ref. [5] found that 96% of the local population relies on firewood for cooking. To reduce
the need for wood for firewood production, 2100 fuel-efficient stoves were distributed in
12 villages around the BNR. Distributions were made during three time periods: September
2018, May 2019, and September 2020. Prior to the collection of the imagery used for this
analysis, 700 stoves were distributed. The change that occurred in this period (September
2018 to February 2019) is too short compared to the months where these stoves were not
being used to assess their impact. In addition, trees are not generally felled completely for
firewood but rather coppiced, or deadwood is collected below the forest canopy. Therefore,
it would be almost impossible to quantify the impacts of fuel-efficient stoves through
remote sensing techniques.
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4.5. Human Geography Implications

Since agriculture is the main source of income for the locals [5,12], the mapping of
agricultural land becomes important. In 2019, 5147 ha (3.08%) (Table 4) of the study area
accounts for agricultural cover, which is associated with human settlements that account
for 650 ha (0.38%) of the study area. The presence of these agricultural fields in the ZOP
(Figure 15; Table 7) leads to an increase in human interaction in the buffer zone, which
often has negative impacts on the biodiversity within the BNR. These agricultural fields
are spread out over the study area, but a higher concentration is seen in the southern part,
close to residential areas.

Figure 19 shows the comparison between percent changes in Evergreen Forest (Figure 19a)
and percent changes in Agriculture (Figure 19b), highlighting the human impact (or lack
thereof) on the BNR. Increases are seen in the Evergreen Forest within the BNR and
surroundings and even the ZOP (outer edge of the gray polygon). Comparatively, decreases
are seen in agricultural fields in the ZOP and other areas surrounding the BNR. These
changes can be attributed to the fallow species succession and fallow/cropping regimes
over 9 years. The fallow species succession can be used to either a forest restorative
path or a forest degradative path. The land can be restored back to a forest from the
regeneration of a shrub fallow. However, if the shrub fallow is cultivated it develops into
a herbaceous fallow. The forest can still be restored at this stage; however, if it is further
cultivated, it develops into grasslands whereupon if cultivated, it has low productivity. For
a more detailed explanation of fallow species succession and ‘restoration’ or ‘degradation’
pathways, the reader is advised to read [52].
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overlain over a DEM, showing areas of increased (red) and decreased (blue) extents based on a 10 m × 10 m grid cell. The
BNR boundary is shown via the black line and the ZOP and 100 m region within the BNR used for change analysis is
displayed through the gray polygon.

Locals around the BNR face food insecurity because of the growing population, which
is based on the increased residential land cover (Table 4) and decreasing agricultural
yields [12] in the study area. This food insecurity is further driving the forest cover conver-
sion to agricultural fields. Food insecurity leads to the consumption of livestock (chickens,
ducks, etc.) and to the consumption of wildlife—particularly lemurs [5,12]. Children
around the BNR are reported to becoming weak, falling ill, and even performing poorly
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in school because of hunger [13]. Health care services are poor, costly, and inaccessible
to locals around the BNR. It was common for locals to use medicinal plants as a cheaper
option [13]. Therefore, although the conservation of species is important, it is also nec-
essary to consider the needs of the local population. Future conservation efforts by the
MFG include improving human health and recognizing the importance of people-oriented
strategies in order to provide cash crops and a sustainable food source for the locals [13].

5. Conclusions

This paper demonstrated that FCNN models that utilize texture information in a fully
automated, end-to-end mapping outperformed pixel-based conventional machine learning
approaches in mapping tropical rainforest habitats. Our results showed that the FCNN
model (U-Net) produced an overall accuracy of 90.9% compared to accuracies of 88.6%,
84.8%, and 86.6% for SVM, RF, and DNN models respectively. Moreover, the WV-3 SWIR
bands increased the accuracy by 1.87% for the U-Net model. The decrease in accuracy
without SWIR bands was much greater for DNN (8.55%), SVM (5.42%) and RF (3.18%)
models that use only spectral features for classification, demonstrating the potential of
the FCNN approach without using expansive SWIR data collections. Comparing LCLU
maps generated in 2010 and 2019, changes in classes were quantified to understand human
interactions with the environment and quantify the impact of conservation efforts. A
44% increase in Residential is seen in the study area, and a decrease in Row Crops in the
ZOP. Within the BNR, invasive plant species are seen to decrease, which is complemented
by increases in Mixed (12%) and Evergreen Forest (0.7%). This increase in forest cover
indicates a reversal of the trends described by Ghulam et al. (2014). In addition, a 32%
increase is seen in the tree cover within residential areas either due to native tree maturing
or successful agroforestry efforts by the MFG. Conservation efforts worldwide should
consider the needs of the local human population. As such, future conservation efforts
by the MFG include improving human health and recognizing the importance of people-
oriented strategies in order to provide cash crops and a sustainable food source for the
locals.

Machine/deep learning has been far advanced in some application domains; however,
challenges exist for remote sensing applications especially for tropical forest monitoring
due to in part the lack of sufficient training data representing various biomes and forest
types globally that must be manually created and in part the challenges of managing
and analyzing big satellite data at the global scale. We presented a fully automated deep
learning model in this paper which can be applied to any part of the world. Taking
advantage of cloud computing, the approach can be duplicated for national-scale forest
cover mapping and change detection, which has significant impact on our understanding
of tropical forests and biodiversity for better implementation of REDD+.
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