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Abstract: As the fastest growing trend in big data analysis, deep learning technology has proven to
be both an unprecedented breakthrough and a powerful tool in many fields, particularly for image
segmentation tasks. Nevertheless, most achievements depend on high-quality pre-labeled training
samples, which are labor-intensive and time-consuming. Furthermore, different from conventional
natural images, coastal remote sensing ones generally carry far more complicated and considerable
land cover information, making it difficult to produce pre-labeled references for supervised image
segmentation. In our research, motivated by this observation, we take an in-depth investigation on
the utilization of neural networks for unsupervised learning and propose a novel method, namely
conditional co-training (CCT), specifically for truly unsupervised remote sensing image segmentation
in coastal areas. In our idea, a multi-model framework consisting of two parallel data streams,
which are superpixel-based over-segmentation and pixel-level semantic segmentation, is proposed
to simultaneously perform the pixel-level classification. The former processes the input image into
multiple over-segments, providing self-constrained guidance for model training. Meanwhile, with
this guidance, the latter continuously processes the input image into multi-channel response maps
until the model converges. Incentivized by multiple conditional constraints, our framework learns
to extract high-level semantic knowledge and produce full-resolution segmentation maps without
pre-labeled ground truths. Compared to the black-box solutions in conventional supervised learning
manners, this method is of stronger explainability and transparency for its specific architecture
and mechanism. The experimental results on two representative real-world coastal remote sensing
datasets of image segmentation and the comparison with other state-of-the-art truly unsupervised
methods validate the plausible performance and excellent efficiency of our proposed CCT.

Keywords: remote sensing; image segmentation; coastal areas; deep learning; co-training

1. Introduction

Image segmentation, one of the most fundamental and important research topics
in remote sensing, mainly concerns the process of partitioning the image into multiple
non-interesting regions, among which the pixels in each one belongs to an identical land
cover category and the pixels in any two adjacent ones belong to diverse categories [1,2]. As
an initial step of other relevant remote sensing image analysis tasks, it plays a vital role and
draws considerable attention. In recent years, with the continuous development of Earth
observation technology, an increasing number of remote sensing images have been more
easily accessible. Due to their wide coverage and high resolution, current remote sensing
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images provide abundant detailed land cover information, making them highly valuable
for a wide range of real applications, for example, road centerline extraction [3], building
footprint extraction [4], land cover mapping [5], and change detection [6]; however, they
suffer from more redundancy and noise. Therefore, remote sensing image segmentation is
not only a profound task but also a challenging problem [7].

Over the past decade, the advent and development of deep learning technology have
shown the fastest growing trend and proven to be both an unprecedented breakthrough
and a powerful tool in many fields. Various classic neural network (NN) models, such as
recurrent NN (RNN) [8], basic convolutional NN (CNN) [9], fully convolutional network
(FCN) [10], generative adversarial network (GAN) [11], etc., have emerged and achieved
remarkable performance in multiple image-processing tasks, including but not limited to
image segmentation. Relying on the powerful capabilities in feature expression and data
fitting, these models or their variations have been extensively applied in remote sensing,
for example, scene classification [12], super-resolution [13], ice-wedge detection [14], and
damaged building identification [15]. For remote sensing image segmentation, according
to diverse algorithms, current deep learning-driven approaches can be broadly classified
into three principal categories, which are fully supervised, semi-supervised, and transfer
learning-based ones, respectively.

Fully supervised methods generally regard image segmentation as a specific type of
one-sided pixel-level mapping task and attempt to simulate this process using an end-to-
end model. Wang et al. [16] introduced a gated CNN for semantic segmentation of high-
resolution images. Fu et al. [17] combined the strengths of FCNs and conditional random
fields (CRFs) and proposed an accurate classification method for high resolution remote
sensing imagery. Liu et al. [18] took advantage of several advances in CNN designs and
proposed an hourglass-shaped network to segment aerial images. Diakogiannis et al. [19]
integrated a UNet with the residual connection and developed a ResUNet-a network for
semantic segmentation. Yang et al. [20] applied the attention mechanism and developed
an attention-fused network for semantic segmentation. These methods are advantageous
at the directness and simplicity of their working mechanisms, which can achieve the best
performance, even competing with the human visual system. Nevertheless, nearly all
the success depends on sufficient high-quality pre-labeled training samples, which are
label-intensive and time-consuming. In addition, this type of enclosed black-box solution
lacks explainability and transparency, which has always been criticized and questioned.

Semi-supervised methods substantially still follow the standard training protocol of
fully supervised ones but require the assistance of some advanced strategies and human
intervention. Zhang et al. [21] proposed a new framework, combining active learning
and hierarchical segmentation, for spectral-spatial classification of hyperspectral images.
Hua et al. [22] took incomplete annotations into account and achieved the feature and
spatial relational regularization in the process of semantic segmentation. Niu et al. [23]
adopted a generic CNN to iteratively modify the segmentation mask and performed aerial
image segmentation. Wang et al. [24] integrated ideas of consistency regularization and
an average update of pseudo-label and applied a teacher–student model for semantic
segmentation. Protopapadakis et al. [25] employed four semi-supervised learning schemes
and applied a stack autoencoder-driven CNN to extract buildings from near infrared im-
ages, with an extremely small portion of data. Compared to fully supervised methods,
semi-supervised ones have improved the utilization of training samples and model inter-
pretabilities, and meanwhile, they still perform well when facing the issue of unbalanced
sample categories. However, if the domain discrepancy of training and testing samples
is large enough, the well-trained models in both types of methods yield unsatisfactory
performances.

Transfer learning-based methods thoroughly consider the problem of domain gaps
and attempt to utilize a set of labeled training samples to achieve reference-free semantic
segmentation of other datasets. Focusing on image domain mismatches, Zhang et al. [26]
proposed a curriculum-style domain adaptation network for cross-domain segmentation.
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Zou et al. [27] proposed an unsupervised domain adaptation framework to eliminate the
large discrepancy of the source and target data, which was guided by the class-balanced self-
training strategy. Li et al. [28] developed a bidirectional model and a self-supervised learn-
ing algorithm to jointly realize domain adaptation and image segmentation. Luo et al. [29]
integrated ideas of co-training and adversarial learning and proposed a category-level
adversarial network to enforce local semantic consistency during the trend of global fea-
ture alignment. Fang et al. [30] embedded a geometry-consistent GAN in a co-training
adversarial network and introduced a category-sensitive domain adaptation method for
land cover mapping using optical aerial images. Although most classic transfer learning
models are specifically designed for natural images, they can still be directly utilized for
remote sensing ones. In practice, based on their specific mechanisms, these methods can
effectively distill high-level semantic knowledge from remote sensing images. However,
the structures of GAN-based models are generally quite complex, leading to low training
efficiency and unstable convergence procedure.

Different from common natural images, coastal remote sensing ones generally carry
more complicated and considerable land cover information [31,32]. In reality, it is mainly
reflected in three aspects: (1) ground targets are susceptible to the environmental factors,
such as imaging time, seasonal variation, and illumination intensity, as shown by the red
circles in Figure 1, where the farmlands without crops have diverse texture distributions;
(2) different categories of targets display low inter-class variances, as shown by the green
box in Figure 1, where the paddy fields and water have similar appearances; (3) the same
category of targets display high intra-class variances, as shown by the blue box in Figure 1,
where the upland fields with different crops have diverse appearances. To address the
above problems, in our previous research [33,34], we have proposed a fully supervised
model and a transfer learning-based model for image segmentation using coastal remote
sensing images. However, we find that, in addition to the primary land cover categories,
including water, vegetation, buildings, roads, and impervious surfaces, certain particular
coastal elements may be agnostic to any exact category [35]. All the observation indicates
that it is difficult to manually pre-label the coastal remote sensing images specifically for
image segmentation, even with advanced deep learning strategies [36,37]. Therefore, it is
very essential to explore truly unsupervised image segmentation algorithms.
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Figure 1. Illustration of specific characteristics in coastal remote sensing images.

To relive the aforementioned limitations, in this paper we investigate the utilization
of NNs for unsupervised learning, then propose a novel method, namely, conditional
co-training (CCT), specifically for truly unsupervised remote sensing image segmentation
in coastal areas. To drive our idea, a global image filter, a replaceable encoder, and two
constant decoders are composed to a multi-model framework to simultaneously perform
the pixel-level classification. This framework comprises two parallel data streams, which
are superpixel-based over-segmentation and pixel-level semantic segmentation. They aim
to separately process the input images into two different types of segmentation maps in the
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forward procedure. Nevertheless, in the backward procedure, the former iteratively fine-
tunes the outputs of the latter and provides self-constrained guidance for model training,
and the latter continuously outputs multi-channel response maps. By training our multi-
model framework with multiple conditional constraints between these two data streams,
our method progressively learns to perform reference-free image segmentation, which is
of stronger explainability and transparency when compared to the black-box solutions in
supervised learning manners. In summary, this work has the following contributions:

• We introduce a novel deep learning-driven approach for truly unsupervised remote
sensing image segmentation in coastal areas. In this method, the advantages of both
conventional and deep learning algorithms are seriously taken into consideration.

• We introduce a multi-model deep learning framework to drive our idea. To the best of
our knowledge, this is the first time simultaneously applying ideas of superpixels and
co-training in unsupervised image segmentation tasks.

• We adopt multiple conditional constraints, including pixel similarity, superpixel
continuity, classification consistency, and decoder diversity, then specifically design a
novel objective to facilitate training our framework.

• Considering the uncertainties in unsupervised learning, we perform comprehensive
discussions on the settings and designs of our framework to explore the optimal
determinations of the global image filter and deep learning model architectures.

The Section 1 is introduction. The remainder of this paper is arranged as follows. The
background of our research is briefly introduced in Section 2. The methodology regarding
formulation, objective, and implementation of our proposed CCT is elaborated in Section 3.
The experimental results and their evaluations on two datasets are presented in Section 4.
Relevant discussions on the settings and designs of our models are performed in Section 5.
Finally, the conclusion of this research is summarized in Section 6.

2. Background
2.1. Superpixels

With the rapid development of Earth observation technology, the spatial resolution of
remote sensing images has gradually improved, providing abundant image information
but more noise and redundancy. In this case, the pixel-level features are seriously lacking
representativeness, and regarding them as the elementary units in image understanding
tasks leads to numerous errors. Recently, relevant researches have shifted to increasingly
rely on superpixels, which group pixels into perceptually meaningful regions. Since they
provide more convenient primitives from which to analyze images, and distinctly reduce
the complexity of subsequent image analysis tasks, superpixel-based over-segmentation
processes have become the key blocks of extensive computer vision algorithms. To better
alleviate the negative influences from noise and redundancy, the superpixel-based image
segmentation methods should strictly adhere to the following three protocols:

• The pixels with similar visual features should belong to the same superpixel.
• The contiguously distributed superpixels should be assigned as the same category.
• The scales of all superpixels should be larger than the size of the smallest object.

Although some of the above protocols are incompatible and may never satisfy each
other perfectly, simultaneously considering all of them is still beneficial to produce the
optimal results of image over-segmentation.

The concept of superpixels goes back at least to the image Gestalt theory [38], which
developed various principles for perceptual grouping, such as proximity, similarity, and
continuation. Thereafter, Vedaldi et al. [39] took superpixels as the image primitives and
introduced an efficient clustering algorithm, which explicitly traded off under- and over-
fragmentation. Levinshtein et al. [40] described a geometric-flow-based algorithm, which
was very fast and could even be applied to megapixel-sized images with high superpixel
densities. Veksler et al. [41] observed the irregularity of superpixels, then formulated the
partitioning problem in an energy minimization framework, which was optimized using
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graph cuts. Numerous relevant reports suggest that superpixels are the most meaningful
and optimal elementary units for image segmentation.

2.2. Co-Training

In practical, the capability volumes of current deep learning models are greater than
the information content of images, leading to a high possibility of data overfitting during
the training process. Unfortunately, merely simplifying the model structures may reduce
their capabilities in feature expression, and then distinctly reduce the utilization of image
information. To address this problem, the co-training strategy is established based on the
theory that the solution in tasks, such as image segmentation and semantic labeling, is not
unique. Different from the single chained models in general deep learning methods, this
strategy is characterized by multi-view learning in which learners are trained alternately
on two or more views from unlabeled data. Specifically, for image segmentation tasks, it
is suggested to simultaneously train two classifiers on two single views, but for the same
purpose. Along this way, the two classifiers and the corresponding outputs should meet
the following three requirements:

• Both classifiers can perform well and produce similar outputs on the same dataset.
• Both classifiers are simultaneously trained on strictly different images.
• Both classifiers are likely to satisfy Balcan’s condition of ε-expandability [42], which is

a necessary and sufficient pre-condition for co-training to work.

All the above principles substantially enforce the two classifiers to be always diverse
but achieve the same performance, even without references [43]. The diversity between
these two models is mainly reflected in their learned parameters, and currently there are
many tricks that can be applied to reach this purpose, for example, dropout regulariza-
tion [44], consensus regularization [45], and parameter diverse [46].

The co-training strategy was first introduced for data combination [47], which used
large unlabeled samples to boost the performance of a learning algorithm when only a
small set of labeled examples was available. Thereafter, Chen et al. [48] introduced a variant
of co-training and applied it in domain adaptation. To further improve the learning ability,
Saito et al. [49] proposed an asymmetric tri-training algorithm, which kept two classifiers
producing pseudo labels and then used them to train a third classifier. As a considerable
innovation in the development from supervised to unsupervised learning, this algorithm
is practically appropriate and essential for unsupervised image segmentation.

3. Methodology

In this section, the problem formulation of unsupervised image segmentation using
coastal remote sensing images is first presented. Secondly, the full objective of our multi-
model framework is defined and interpreted in detail. Finally, relevant implementations
regarding the network architectures and training details are described.

3.1. Formulation

Given a remote sensing image I that is captured in coastal areas, the main goal is
to learn a framework that can effectively extract semantic features from it and precisely
perform pixel-level classification for it. As described by Kanezaki et al. [50], the input
image can be regarded as a finite collection of pixels

{
Pn ∈ R3}N

n=1, where P and N denote
the pixel value and the total number of pixels, respectively. In the case of pre-labeled
classification maps {Cn ∈ Z}N

n=1, where C denotes the category to which each pixel belongs,
the segmentation model can be regarded as a mapping function G : R3 → Z , which is
trained in a supervised learning manner. Along this way, all the pixels are transferred from
their original matrix space to the category space by {Cn} = G({Pn}). However, in this
research, the category attributes and the total number of categories are both completely
unknown, say in a nutshell, there is no ground truth to facilitate training the model in a
supervised learning manner. In this situation, two important sub-problems are essential to
be settled urgently, which are the optimal prediction of {Cn} and the parameter training
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of G. Although the definition of categories is independent of the segmentation model,
there must be some mutually restrictive relationships between them. Motivated by this
observation, we adopt the concept of superpixels and introduce a multi-model framework
to simulate the process of our proposed CCT, as illustrated in Figure 2. This framework is
composed of two parallel data streams, namely, superpixel-based over-segmentation and
pixel-level semantic segmentation. They are structurally independent and will not interact
with each other in the forward propagation, while the former will constantly guide the
latter in the backward propagation, aiming to facilitate training all the models.
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As the driving draft of our method, the superpixel-based over-segmentation stream
aims to divide the input image into excessive segments in which all of the pixels have
similar feature distributions. Achieved by a global superpixel-based image filter F, the
process of this stream is formulated as shown in Equation (1).

IS = F(I) (1)

where IS is the over-segmentation map that can be regarded as the regional distribution
of superpixels

{
Sk ∈ R1}K

k=1, where S and K denote the superpixel region and the total
number of superpixels, respectively. Specific to the superpixel-level, this process can also
be formulated as shown in Equation (2).

{Sk} = F({Pn}) (2)

where K is less than N, but much larger than the total number of land cover categories. In
addition, the size of each superpixel should not be less than that of the smallest meaningful
object on the image, making all of the possible inter-class contours are completely outlined
by the superpixel boundaries. Therefore, the total number of superpixels can be initially
set as shown in Equation (3).

K =
W × H

δ2 · Omin
(3)

where W and H are the width and height of an input image, respectively. δ means the
image scale and Omin denotes the size of the smallest meaningful ground target, such as
cars or isolated buildings.

As the driven draft of our method, the pixel-level semantic segmentation stream has
the analogous mechanism as an end-to-end deep learning model, which aims to translate
the input image to a response map based on pseudo categories. Simultaneously achieved
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by one replaceable encoder En and two constant decoders {De1, De2}, the process of this
stream is formulated as shown in Equation (4).

IR = I(1)R + I(2)R = De1(En(I)) + De2(En(I)) (4)

where IR is the response map that can be recognized as the probabilistic distribution of
pseudo categories

{
Rn ∈ RM}N

n=1, where R and M denote the pixel pseudo category and

the total number of pseudo categories, respectively. I(1)R and I(2)R denote two secondary
response maps, which are produced by those two decoders.

With these two data streams, the training and testing processes simultaneously take
place. In the forward propagation, as the latter stream outputs a multi-channel category-
based response map, the former stream will fine-tune it with the assistance of {Sk}, then
produces a refined response map, which can also be recognized as a periodical reference
segmentation map. In the backward propagation, the three deep learning models will be
alternately updated under the guidance of a refined response map, similar to supervised
learning manners. Here, the refinement is defined as shown in Equation (5).

R∗n = countmax{Rn1 , Rn2 , . . . , Rnt}n ∈ {n1, n2, . . . , nt} ∈ Sk (5)

where nt denotes the tth pixel that belongs to Sk. In addition, particularly for the latter
stream, there are two more conditions that need to be taken into account. The first one
is that the outputs of two decoders should be similar at the pixel level, which is defined
as shown in Equation (6). The second one is that the weights of two decoders should be
diverse, which is defined as shown in Equation (7).

I(1)R (i, j) ≈ I(2)R (i, j) (6)

→
De1⊥

→
De2 (7)

where IR(i, j) means the response value of the pixel located at (i, j), and→ denotes the
one-dimensional vector representation of all weights in a model. Analogous to the above
refinement, these two conditions will alternately facilitate updating the three deep learning
models in the backward propagation.

With the iterative optimization of this multi-model framework, the total number of
pseudo categories continues to decline, and meanwhile, the response map progressively
approaches the probability distribution of real land cover categories. Along this way, the
final predicted pixel-level classification map can be obtained by a basic argmax function,
which is expressed as shown in Equation (8).

C∗n = argmax
{

R(1)
n , R(2)

n , . . . , R(M)
n

}
(8)

3.2. Objective

With our multi-model framework, several important constraints, including the pixel
similarity, superpixel continuity, category consistency, and decoder diversity, are highly
emphasized and seriously considered. Meanwhile, based on these constraints, we design
four corresponding loss functions, and then introduce a novel objective for unsupervised
remote sensing image segmentation in coastal areas. In the following, each component of
this objective is described and interpreted in detail.

3.2.1. Pixel Similarity

In general, most deep learning-driven semantic segmentation models end up with a
fully connected layer, which aligns the multi-channel response map to the single-channel
pre-labeled reference using a SoftMax-like loss. In this work, although there is no ground
truth to supervise the training of models, the pixel similarity can still be recognized as an



Remote Sens. 2021, 13, 3521 8 of 22

important basis specifically for image segmentation, which provides self-supervision for
the automatic pixel clustering. Derived from Kanezaki et al. [50], an argmax classification
strategy is adopted as our segmentation principle. Intuitively, the predicted category Cn
for each pixel is mainly obtained by selecting the dimension that has the maximum value
in the corresponding response map Rn no matter what specific category it belongs to, as
illustrated in Equation (8). To implement this condition, we design the constraint of pixel
similarity to assign all pixels of similar visual features to the same category, even though
some pixels are distant from others on the original image. Along this way, this constraint
can be quantified as a cross entropy loss between {Cn} and {Rn}, which is formulated as
shown in Equation (9).

LPS =
N

∑
n=1

M

∑
m=1
−ϕ(Cn, m) · log R(m)

n (9)

where ϕ(Cn, m) denotes a conditional operation, as defined in Equation (10).

ϕ(Cn, m) =

{
1 i f Cn = m
0 i f Cn 6= m

(10)

Minimizing this loss will enforce the feature distributions of pixels in the same pre-
dicted category to be similar to each other, then facilitate our encoder to efficiently extract
more meaningful high-level features for unsupervised clustering.

3.2.2. Superpixel Continuity

For a well over-segmentation map, the pixels in the same superpixel display similar
appearances, and they are more likely to belong to the same pseudo category. Therefore,
in the corresponding response map, each superpixel should be continuous for its feature
distributions. Considered by Kim et al. [51], it is preferable for the clusters of pixels to be
spatially continuous and exploring an additional constraint on the relationship between
the cluster labels and their neighboring ones is very essential. Relevant reports generally
concentrate only on the global continuity and ignore the importance of a local one, leaving
some regions of the segmentation map with numerous ambiguous predictions. To avoid
this situation, we adopt the constraint of superpixel continuity to ensure each superpixel to
be consistent in the feature distribution. Concretized from Equation (5), this constraint can
be quantified as a loss function, which is formulated as shown in Equation (11).

LSC =
K

∑
k=1

T

∑
t=1
‖Rnt − R∗n‖2 n ∈ {n1, n2, . . . , nt} ∈ Sk (11)

where ‖ · ‖2 is the L2 distance loss. Minimizing this loss will suppress the error predicted
pixel-level categories caused by complicated patterns or textures, then distinctly enhance
our two decoders’ resistance to image noise and redundancy.

3.2.3. Category Consistency

Due to its specific mechanism, the co-training strategy is practically integrated with
other deep learning techniques for unsupervised domain adaptation of semantic labeling
tasks, and the corresponding loss function is generally embedded in other full objectives.
From our perspective, although this strategy is not strong enough as existing end-to-end
mapping ones in supervised learning, it still provides a rigorous constraint if added with
certain reliable conditions in either supervised or unsupervised learning. As observed by
Fang et al. [29], the same prediction of a pixel by two classifiers offers high confidence in
its classification result, even without references. Motivated by this observation, we adopt
the constraint of category consistency to make our two decoders supervise each other for
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their alternate updating. Concretized from Equation (6), this constraint can be quantified
as a loss function, which is formulated as shown in Equation (12).

LCC =
W

∑
i=1

H

∑
j=1
‖I(1)R (i, j)− I(2)R (i, j)‖1 (12)

where ‖ · ‖1 is the L1 distance loss. Alternatively, this constraint can also be quantified in a
type of weaker form, which is formulated as shown in Equation (13).

LCC =
W

∑
i=1

H

∑
j=1

1− cos
(

I(1)R (i, j), I(2)R (i, j)
)

(13)

Minimizing this loss will make our two decoders output similar multi-channel category-
based response maps, then significantly increase the stability of our framework in image
segmentation tasks.

3.2.4. Decoder Diversity

As described by Zhou et al. [52], the classifiers in co-training should always be kept
diverse, otherwise all the semantic segmentation maps predicted by them will be exactly
the same, making co-training degenerate to self-training with a single classifier. In effect,
early researches usually use sufficient and redundant views to enable these classifiers be
different, which strictly follows the standard co-training principle. Nevertheless, current
extended researches choose to directly set certain conditions to reach this purpose. Based on
this mechanism, we adopt the constraint of decoder diversity to enforce divergence of the
weights of convolutional layers in our two decoders by minimizing their cosine similarity.
Concretized from Equation (7), this constraint can be quantified as a loss function, which is
formulated as shown in Equation (14).

LDD =
W(De1) · W(De2)

‖W(De1)‖ · ‖W(De2)‖
(14)

whereW(·) denotes the operation that collects all the weights of a network, then flatten
and stack them into a one-dimensional vector. ‖ · ‖means the norm of a vector. Minimizing
this loss will make our two decoders orthogonal vectorially, then effectively improve the
generalization of our framework in image segmentation tasks.

In general, the full objective of our CCT is an integration of the aforementioned four
constraints, which is formulated as shown in Equation (15). Therefore, the main solution
for this full objective can be expressed as shown in Equation (16).

L(En, De1, De2) = λPS · LPS + λSC · LSC + λCC · LCC + λDD · LDD (15)

En∗, De∗1 , De∗2 = arg min
En,De1,De2

L(En, De1, De2) (16)

where λ denotes the relative importance of each constraint. Different from conventional
supervised deep learning models, the training and testing of the multi-model framework
are carried out on the same timeline and end up simultaneously. Thus, it is not necessary
to specifically prepare the training and testing samples for our CCT. Accordingly, all the
well-trained models are practically invalid for the untrained samples.

3.3. Implementation
3.3.1. Network Architectures

Our proposed CCT is mainly driven by a multi-model framework consisting of four
models, which are a global superpixel-based image filter, a replaceable encoder, and
two constant decoders, respectively. Only the latter three models are deep learning net-
works and the suggested architectures of them are illustrated in Figure 3. Derived from
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ResNet [53], the encoder comprises three convolutional blocks and six residual ones. This
model conducts two-fold down-sampling on the input images, aiming to produce the high-
level semantic features and pass them to the decoders. Inspired by Encoder-Decoder [54],
each decoder comprises a transposed convolutional block and a convolutional block, fol-
lowed by a single convolutional layer and a single normalization layer. These two models
conduct two-fold up-sampling on the input feature maps, aiming to simultaneously pro-
duce the response map through element-wise summation of the two secondary ones. For
these three models, all the parameters of their layers are initialized using the strategy of
Xavier [55]. In addition, it is mentioned that our encoder is a replaceable deep learning
network, which can refer to the down-sampling parts of any well-known model architec-
ture, such as ResNet or VGG [56]. In this work, we highly recommend referring to ResNet
because of its low model complexity and high training efficiency. Technically speaking, no
matter what architecture is adopted in this encoder, using the corresponding pre-trained
model as the initial one can significantly improve the convergence efficiency of the entire
multi-model framework.
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3.3.2. Training Details

For all the experiments, our primary goal is to learn well-trained models during the
training process that minimizes the full objective L(En, De1, De2). In this work, according
to the interpretation in BackProp [50], we apply SLIC [57] in our global superpixel-based
image filter and set the compactness and max iteration of F to 1 and 10, respectively,
in Equations (1) and (2). Moreover, referring to the implementations in DFC [51] and
CsDA [30], we set both λPS and λSC to 1, and set λCC and λDD to 0.01 and 0.1, respectively,
in Equation (15). To pursue the most optimal framework, we repeat the training process
for multiple times, and finally choose the one with the best performance.

Given the complexity of our multi-model framework, the alternate learning strategy
is utilized to accelerate the convergence of all models. In each iteration, the input remote
sensing image is forwarded into our three deep learning models for one time. Thereafter,
the encoder is updated two times while the decoders are updated three times. The pseudo
code and more details about our training process are presented in Table 1.
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Table 1. Overview of the training process for our multi-model framework.

Input: Remote sensing image: I =
{

Pn ∈ R3}
I → F ⇒ IS
for iteration← 1 to iterationmax do

forward: I → En, De1, De2 ⇒ IR → IS ⇒ {R∗n}
backward 1: update En, De1, De2 with LPS,LSC, {R∗n}
backward 2: update En, De1, De2 with LCC
backward 3: update De1, De2 with LDD

end for
IR ⇒ {C∗n}

Outputs:
Well-trained encoder: En∗

Well-trained decoders: De∗1 and De∗2
Image segmentation result: {C∗n}

4. Experiments

In this section, the datasets description, baseline methods, and evaluation metrics of
this research are first introduced in detail. Thereafter, the experimental setup of our CCT
is provided and interpreted. Finally, the experimental results and related analyses of our
method and other comparative ones are presented.

4.1. Datasets Description

Provided by Chen et al. [34], two coastal remote sensing datasets are selected as the
study areas in this research. The first dataset is located in the southeast of Shanghai City,
China and was captured in 2016, while the second dataset is located in the northeast of Zhe-
jiang Province, China and was captured in 2017. Obtained by Google Earth (DigitalGlobe),
these two large-scale remote sensing images are located near the east coastline of China,
each of which comprises three bands corresponding to the red (R), green (G), and blue (B)
bands. As illustrated in Figure 4, the image in the Shanghai dataset covers approximately
46 square kilometers with the size of 11776× 6144, while the image in the Zhejiang dataset
covers approximately 61 square kilometers with the size of 12800× 7424. However, the
two images have the same spatial resolution, which is about 0.8 meters per pixel.
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As can be seen, although both datasets are captured from the coastal areas of China,
the appearances of them are distinctly diverse, which are principally caused by different
imaging sensors, capture times, and illumination and atmospheric conditions. Moreover,
influenced by the humid subtropical monsoon climate, some of the land cover categories
display complex detailed features and low inter-class discrepancies, for example, vegeta-
tion, farmland, and water. Nevertheless, except for certain impervious surfaces and bare
lands, most land cover categories display high intra-class similarities. In addition, all the
land cover categories in the two datasets are proportionally unbalanced in terms of their
coverage area. Generally speaking, the image in Shanghai dataset provides more detailed
land cover information but more image noise and redundancy as compared with the one
in Zhejiang dataset.

4.2. Baseline Methods

In this research, our proposed CCT is compared with other state-of-the-art unsuper-
vised image segmentation methods. As the representatives of conventional ones, the two
strategies, namely, the globalized probability of boundary (gPb) [58] and the ultrametric
contour map (UCM) [59], respectively, are the best ones before 2010. The former one
concentrates on the image contours and junctions and then develops a novel contour
detector using a combination of local and global cues, offering a solid foundation for image
segmentation tasks. The latter one adopts gPb as the backbone and then introduces a
generic grouping algorithm that constructs a hierarchy of regions from the output of any
contour detector, achieving region-based image segmentation. On the other hand, as the
representatives of deep learning-driven ones, BackProp [50] and DFC [51] are the pioneers
in exploring the utilization of CNNs for unsupervised image segmentation. Following the
proposed three criteria, the former one chooses to train a simple NN only by backpropa-
gation, while the latter one chooses to train it based on differentiable feature clustering.
For the above five competitors, we perform all the experiments in unsupervised learning
manners.

4.3. Evaluation Metrics

To validate the effectiveness and robustness of all comparative unsupervised image
segmentation methods, three commonly used indicators are applied to comprehensively
evaluate the corresponding experimental results, which are interpreted as follows.

Overall Accuracy (OA): this index is generally used to assess the total performance of
the image segmentation methods, as expressed in Equation (17).

OA =
1
C

C

∑
c=1

TPc + TNc

TPc + TNc + FPc + FNc
(17)

where TPc, TNc, FPc, and FNc indicate the numbers of true positive, true negative, false
positive, and false negative pixels, respectively, for the cth land cover category.

Mean F1 Score (mF1): as the harmonic average of the precision and recall rates, this
index is generally used to evaluate the NNs, as expressed in Equation (18).

mF1 =
1
C

C

∑
c=1

2TPc

2TPc + FPc + FNc
(18)

Mean Intersection over Union (mIoU): by calculating the average of the ratios of the
intersection and union for all categories, this index is regarded as a standard measure for
classification-based methods, as expressed in Equation (19).

mIoU =
1
C

C

∑
c=1

TPc

TPc + FPc + FNc
(19)



Remote Sens. 2021, 13, 3521 13 of 22

Different from supervised image segmentation methods, unsupervised ones cannot
directly produce the semantic segmentation maps. Relevant researches generally choose
to align the segmented regions and the specified categories with the assistance of manual
scribbles [60]. Based on this, the unsupervised methods can also be assessed normally. In
addition, for the above three indicators, larger values suggest better results.

4.4. Experimental Setup

Different from supervised image segmentation methods, there is no need to initially
prepare the non-overlapping training and testing samples for our CCT. Say in a nutshell,
any region in the two datasets can be taken as an image sample, which will be input into
our framework for simultaneously training and predicting. The only question that needs
considered is how to select the size of input images. In theory, if the computing power of
GPUs is powerful enough, the size of input images can be set to infinity. Nevertheless, in
terms of the computing power of current common computers, we set the size of image
samples to 512× 512. In addition, to accelerate the convergence of all parameters in the
comparative deep learning models, we conduct mean subtraction normalization on each
channel of image samples, from 0 to 255 to 0 to 1, before the experiments.

For the optimization process, we set two different termination conditions to achieve
overall convergence, which are the maximum iteration number and minimum clustering
number, respectively. In the training process, if the iteration number increases to 103 or
the clustering number decreases to 6, it is believed that the framework has converged. In
addition, for the three deep learning models, we utilize stochastic gradient descent (SGD)
with a momentum [61] of 0.9 as the optimizer, and the learning rate is initially set to 0.01
and progressively decayed to 0 by a poly learning rate policy.

In this research, our proposed CCT is implemented in PyTorch [62], which provides a
high-performance environment with easy access to the automatic differentiation of models
executed on different devices. All the experiments are performed on two computers with
Intel Core i7, 32 GB RAM, and NVIDIA GTX 1080 GPU.

4.5. Training Visualization

In the training process, with our multi-model framework, certain representative
images, their periodical segmentation results, and the corresponding convergence processes
are presented in Figure 5. In general, the image segmentation of the Zhejiang dataset is
basically completed at approximately the 150th iteration, which is visually faster than that
of the Shanghai dataset.

With the convergence of our framework, the image segments progressively become
complete, and meanwhile, their contours gradually become precise and smooth. Some of
the large-scale ground targets, such as water and farmlands without crops, are accurately
segmented and labeled the identical color, as shown in the second, third, and fourth
columns in Figure 5. Nevertheless, certain upland fields are incorrectly labeled the different
colors, as shown in the fifth and sixth columns in Figure 5.

4.6. Result Presentation

Based on the aforementioned two coastal datasets, the unsupervised remote sensing
image segmentation results obtained by our CCT and other competitors are illustrated in
Figures 6 and 7, where the pixels in the same colors indicate that they belong to the same
land cover categories. In general, the image segmentation results on the Zhejiang dataset
are slightly better than those on the Shanghai dataset, because the land cover information
on the latter one is more complex and diverse than that on the former one.
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As shown in Figure 6a,b and Figure 7a,b, although the two conventional approaches
perform well on small-scale natural images, they give unsatisfactory results on the large-
scale coastal remote sensing images. Since gPb and UCM merely apply simple filters and
linear statistics to analyze the pixels and their surroundings, they pay too much attention
to the local details. This makes the results involve too many tiny segments, including the
target contours, disrupted textures, and dense noises, which are completely meaningless
for pixel-level semantic segmentation. Due to the limited capability in feature expression
and global perceptron, gPb generally fails to detect the long-range spatial relations of the
pixels that belong to the same categories. By contrast, UCM sorts the close local pixels by
similarity and iteratively merges some similar regions, displaying a slightly better result.
Nevertheless, for some large-scale targets, both methods still divide them into numerous
different land cover categories, as depicted in the seventh row in Figure 6 and the fourth
row in Figure 7. In general, conventional methods cannot extract the high-level semantic
features, making them suitable for edge detection rather than image segmentation.
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Figure 6. Representative examples of unsupervised remote sensing image segmentation results on
Shanghai dataset: (a) gPb, (b) UCM, (c) BackProp, (d) DFC, (e) our CCT.

As shown in Figure 6c,d,e, and Figure 7c,d,e, deep learning-driven approaches yield
significantly better performance than conventional ones, though there are still some gaps
between their results and land cover ground truths. Relying on the powerful capabilities
in feature expression and data fitting, deep learning models are able to effectively extract
high-level semantic features and facilitate clustering the similar pixels, even though they
are distant from each other. With the optimization of weight parameters, DFC displays a
slightly better result than BackProp, specifically for targets with complicated textures. By
integrating ideas of superpixels and co-training, our CCT can display better results than
other competitors, which can not only produce the clear and complete regions of targets,
but also alleviate the negative influences of image noise and redundancy. For large-scale
regions, although our CCT fails to cluster all the pixels into the same category, it can still
classify them into several sub-categories in terms of their target attributes, as depicted in
the eighth row in Figure 6e and the fifth row in Figure 7e. It is confirmed that our CCT is
effective and robust for unsupervised image segmentation tasks. In general, if with some
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assistances of input scribbles, the results of deep learning-driven methods can be further
processed very close to the semantic segmentation references.
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With the image segmentation results of all competitors and the corresponding input
scribbles, the evaluation metrics OA, mF1, mIoU, and the processing rate on two datasets
are calculated and summarized in Tables 2 and 3. Compared to other state-of-the-art
unsupervised methods, our proposed CCT achieves the highest OA, mF1, and mIoU on
the two datasets. In addition, although our CCT is not the best in terms of processing rate,
its training efficiency is definitely higher than all the supervised methods.
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Table 2. Quantitative results of the comparative methods on Shanghai dataset. The best values are in
bold.

Method OA
(%)

mF1
(%)

mIoU
(%)

Rate
(s/image)

gPb 40.47 29.32 21.43 23.60
UCM 41.75 31.03 22.92 89.25

BackProp 48.94 39.79 31.15 0.41
DFC 50.24 41.46 32.07 0.55
CCT 54.87 47.02 36.96 0.76

Table 3. Quantitative results of the comparative methods on Zhejiang dataset. The best values are in
bold.

Method OA
(%)

mF1
(%)

mIoU
(%)

Rate
(s/image)

gPb 41.27 30.68 22.35 23.60
UCM 43.22 33.51 24.67 89.25

BackProp 53.30 45.83 35.39 0.41
DFC 55.61 49.17 37.82 0.55
CCT 58.49 52.24 41.10 0.76

5. Discussion

For our proposed CCT, the final experimental performance is primarily determined by
two decisive factors, which are the image filter and the model architecture. In this section,
relevant discussions on our settings and designs of these factors are performed.

5.1. Setting of Image Filter

As the key guidance of our encoder and decoders, the over-segmentation results by
the global superpixel-based image filter directly determine the qualities of unsupervised
image segmentation. High-density over-segmentation maps record more precise contour
information, which is beneficial to the separation of different categories. However, some
of the large-scale regions are divided into too many tiny pieces, among which some may
be meaningless for pixel-level classification, making the image segmentation results full
of noises. In contrast, low-density over-segmentation maps display more meaningful
segments, which have smooth boundaries and clear clustering centers. However, certain
isolated small-scale objects may be grouped into the adjacent other categories, leading to
some inevitable errors in the image segmentation results. Therefore, the proper setting of
image filter is essential for better experimental performance. To pursue the most optimal
setting of our global superpixel-based image filter, we kept the other models constant and
conducted several comparative experiments with different settings of compactness and
superpixel number in SLIC, and the results are presented in Figures 8 and 9.

From the perspective of compactness, the lower value of it enforces superpixel con-
tours to be smoother, making the segmented regions accurate and complete. However,
certain false superpixel boundaries provide wrong guidance to the deep learning models,
which may recognize part of a large-scale target as the other categories, as illustrated in
the first column in Figures 8 and 9. In contrast, higher value of it encourages superpixel
contours to be squarer, making the segmented regions stable. However, the corresponding
results are severely rasterized; furthermore, nearly all the region boundaries are heavily
jagged, which distinctly contradicts the real information on the input images, as illustrated
in the third column in Figures 8 and 9.
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Figure 9. Representative examples of image segmentation results on Zhejiang dataset, influenced
by diverse settings of our image filter: (a) superpixel number equals K/2, (b) superpixel number
equals K, (c) superpixel number equals 2K. The left image in each group is the superpixel-based
over-segmentation map, while the right one is the image segmentation result.

From the perspective of superpixel number, the value of it determines the degree of
over-segmentation. With a lower superpixel number, the average area of over-segments is
larger, which can facilitate the deep learning models to learn implicit high-level features.
However, the constraint of superpixel continuity will be indirectly reinforced, then some
close pixels may be grouped into the same category, even if they have completely different
appearances, as illustrated in Figures 8a and 9a. In contrast, with a higher superpixel
number, the average area of over-segments is smaller, which can effectively improve the
classification capabilities of deep learning models. However, owing to the weakening on
the constraint of superpixel continuity, the corresponding results may be plagued by the
negative influences of noise and redundancy, as illustrated in Figures 8c and 9c.
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5.2. Design of Model Architecture

For different image-processing tasks, deep learning models are specifically designed
with diverse architectures, aiming to pursue the best performance. Networks with larger
depth and more complex structures generally have stronger capability in knowledge
distillation, but they tend to overlook massive, detailed information on the input images.
On the contrary, networks with smaller depth and simpler structures usually display higher
training efficiency and stability, but their limited information capacities seriously hinder
them from performing complicated classification tasks. Therefore, the optimal designs of
our model architectures are important for better experimental performance. To pursue the
most optimal designs of our encoder and decoders, we kept the image filter invariant and
conducted several comparative experiments with different model architectures, where the
numbers of down- and up-sampling operations are different, and the results are presented
in Figure 10.
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Figure 10. Representative examples of image segmentation results driven by diverse designs of
our three deep learning models: (a) none down- and up-sampling operation, (b) one down- and
up-sampling operation, (c) two down- and up-sampling operations. The left three images are from
Shanghai dataset, while the right ones are from Zhejiang dataset.

It is noteworthy that the models without any operation are sensitive to the detailed
information and can always give the precise position and shape of each target; however,
they are also suffering from the negative influences of noise and redundancy, as depicted
in Figure 10a. As the operation number increases to three, the image segmentation results
become more abstract, where nearly all the similar pixels and regions have been grouped
into the same category, however, there are a wealth of deformations and distortions that
appear in the results, as depicted in Figure 10c. In addition, for our three NNs, the less the
operation number, the more parameters involved in updating, and the lower the training
efficiency. Conversely, the more the operation number, the fewer parameters involved in
updating, and the higher the training efficiency.

6. Conclusions

In this paper, we investigated the utilization of NNs for unsupervised learning and
proposed a novel method, namely, CCT, for unsupervised remote sensing image segmenta-
tion in coastal areas. With the introduced multi-model framework and four conditional
constraints, we successfully extracted high-level semantic knowledge and produced full-
resolution segmentation results. The experiments on two coastal remote sensing datasets



Remote Sens. 2021, 13, 3521 20 of 22

validated the plausible performance and excellent efficiency of our CCT, as compared to
other state-of-the-art unsupervised image segmentation methods.

Nevertheless, our proposed method still involves a primary limitation. Without pre-
labeled references, all of the conditional constraints are auto-correlative, which makes our
framework sensitive to the over-segmentation maps. In each training process, our image
filter may output a slightly different superpixel map where this tiny discrepancy will be
continuously amplified by the deep learning models, leading to a visible diversity on the
final image segmentation result, just like the butterfly effect. Therefore, in future studies,
we plan to explore certain constants and robust constraints specifically for our framework
to reduce the randomness of final image segmentation results.
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