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Abstract: The aerodynamic roughness length (Z0) and surface geometry at ultra-high resolution in
precision agriculture and agroforestry have substantial potential to improve aerodynamic process
modeling for sustainable farming practices and recreational activities. We explored the potential
of unmanned aerial vehicle (UAV)-borne LiDAR systems to provide Z0 maps with the level of
spatiotemporal resolution demanded by precision agriculture by generating the 3D structure of
vegetated surfaces and linking the derived geometry with morphometric roughness models. We
evaluated the performance of three filtering algorithms to segment the LiDAR-derived point clouds
into vegetation and ground points in order to obtain the vegetation height metrics and density at
a 0.10 m resolution. The effectiveness of three morphometric models to determine the Z0 maps
of Danish cropland and the surrounding evergreen trees was assessed by comparing the results
with corresponding Z0 values from a nearby eddy covariance tower (Z0_EC). A morphological
filter performed satisfactorily over a homogeneous surface, whereas the progressive triangulated
irregular network densification algorithm produced fewer errors with a heterogeneous surface. Z0

from UAV-LiDAR-driven models converged with Z0_EC at the source area scale. The Raupach
roughness model appropriately simulated temporal variations in Z0 conditioned by vertical and
horizontal vegetation density. The Z0 calculated as a fraction of vegetation height or as a function
of vegetation height variability resulted in greater differences with the Z0_EC. Deriving Z0 in this
manner could be highly useful in the context of surface energy balance and wind profile estimations
for micrometeorological, hydrologic, and ecologic applications in similar sites.

Keywords: unmanned aerial vehicles (UAVs); light detection and ranging (LiDAR); aerodynamic
roughness length; point cloud classification; precision agriculture; morphometric roughness models

1. Introduction

To achieve more sustainable land and water-use management in precision agriculture,
the serviceable description of the complex interactions between the vegetation growth,
water availability, and aerodynamic characteristics of a canopy is pivotal. In this context,
aerodynamic roughness length for momentum transfer (Z0) is a key factor in micrometeo-
rological and hydrological applications, since it can elucidate how surface geometry may
lead to alterations in energy, gas, and water exchanges surface friction; and the deflection of
airflow [1–3]. Many models have been developed to estimate the components of surface en-
ergy balance and evapotranspiration (ET) [4–7] using passive remote sensing observations
and a set of algorithms to retrieve surface parameters such as the aerodynamic resistance to
heat transfer (rah), which is a function of Z0 [8,9]. Obtaining an efficient parameterization
for rah has been a challenging task, and there is no single method to accurately estimate
Z0 over a wide range of land cover types [10,11], introducing further uncertainty in the
modeling of energy fluxes and ET. As such, incremental advances in resolving Z0 using
canopy structure data at ultra-high resolution from drone-borne instrumentation have the
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potential to improve the accuracy of surface energy balance models in the context of energy,
gas, and water exchange estimations in precision agriculture and related applications.

Two primary approaches exist in assigning Z0 values. The most commonly used
method is based on micrometeorological observations obtained by an eddy covariance (EC)
system and the Monin–Obukhov similarity theory. A disadvantage of this approach is that
Z0 is restricted to single average values in the flux footprint of the EC system. Moreover,
estimates of Z0 cannot always rely on field-based experiments due to practical limitations
and high costs. The second approach relies on the demarcation of surface objects using
remote sensing observations and the establishment of empirical relationships between Z0
and measurable characteristics of site-specific roughness elements. In this morphometric
method, theoretical models of the boundary layer are combined with more sophisticated
physical models of vegetation canopy to determine Z0 (e.g., [12]). Following this approach,
Z0 is often associated with the frontal area index (fai), which is the area of windward
vertical faces of the roughness elements to the total area under consideration, and the plan
area index (pai), which equals the horizontal area occupied by roughness elements divided
by the total area [13]. For agricultural and natural sites without density information, Z0
is often simply related to canopy height (h) [14]. However, this relation is not always
constant, since the density, the type of vegetation, and the micro- or macrotopographic
characteristics can affect Z0 variations as well [15].

Using remote sensing optical imagery and morphometric models, numerous re-
searchers have developed semi-empirical formulas applicable to obtain fractional values
of Z0/h of vegetation surfaces [16], and some of them have included the effects of veg-
etation indices (VIs) [17]. However, precise observations of vegetation height or VI in
both high spatial and temporal resolution are difficult to obtain from publically available
satellite datasets [18]. A major weakness of airborne/satellite imagery is its limitation in
viewing beneath the canopy, leading to sparse points and low-density information on bare
soil [19], whereas light detection and ranging (LiDAR) scanners can provide quantitative
information on the 3D structure of a canopy because the laser pulses can partly penetrate
vegetation cover. The technology of airborne LiDAR scanners (ALS) has now successfully
been employed for the extraction of surface roughness characteristics in forests [20,21],
urban areas [22], and low-vegetation areas [23]. The representation of a mixed grassland
prairie by ALS datasets revealed that up to 76% of the variation in Z0 was due to the height
variability of vegetation and up to 65% of the variation could be explained by estimates
of vegetation height [24]. Li et al. [25] found that the accuracy of the estimated Z0 of a
semi-arid shrubland using ALS data depends on the adopted morphometric models and
the precise representation of shrub height in these models. In short and dense canopies, the
estimation of vegetation height using ALS is prone to errors [26], mainly due to the lack of
identifiable referenced objects and of detectable differences between first (i.e., vegetation)
and last (i.e., ground) LiDAR returns [27,28].

Given these challenges, the advantages conferred by unmanned aerial vehicle (UAV)-
borne-LiDAR scanners may yield fine-grained spatiotemporal estimations of Z0 in agri-
cultural areas. Compared to manned ALS, the comparatively cost-effective UAV-LiDAR
systems are more flexible in data sampling and produce higher point cloud density due
to the larger field of view of the scanner and lower flight altitude and speed, allowing a
larger number of LiDAR beams per scan [29]. These characteristics may limit the com-
monly observed underestimation of canopy heights and mitigate difficulties in deriving
individual roughness element canopies from airborne LiDAR data [30]. Resop et al. [31]
documented that higher-resolution UAV-LiDAR data facilitated the identification of small
vegetation and micro-alterations in a heterogeneous terrain that were not detectable by
ALS observations. In a similar study, the 3D characterization of individual plant species of
a shrubland area was achievable at the submeter scale using a UAV-LiDAR system [32].
However, the technology of UAV-LiDAR is not currently used in precision farming, despite
its ability to effectively monitor canopy density [33] and fine-scale variations in crops
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attributes compared to UAV-optical imagery [34–36], which is widely employed in such
applications [37–40].

Most published methods for the estimation of crop height from LiDAR sensors are
based on the determination of the canopy height model (CHM), which is derived from
the difference between rasterized ground elevation data (digital terrain model (DTM) and
rasterized original point cloud elevation data (digital surface model (DSM)). A DTM of an
agricultural field can be easily retrieved by scanning the bare soil before vegetation growth,
but such data acquisitions are not always feasible due to land management practices,
so a variety of filtering methods to generate DTMs and CHMs from airborne LiDAR
data have been developed. As automatic separation of ground and non-ground points
from LiDAR data has proved to be challenging and the filtering algorithms typically
have problems distinguishing ground returns and points reflecting vegetation [41], the
adaptability of existing approaches for processing point cloud obtained by UAV-LiDAR is
currently inadequate.

Poor filtering performance, particularly in areas of dense vegetation that hides under-
lying terrain features, may result in erroneous surface morphologies or in sparse ground
points, which, when interpolated, fail to reproduce surface morphology. In this framework,
a detailed understanding of the errors associated with producing CHMs using UAV-LiDAR
technology and a context-specific approach to assess filtering algorithms and morphometric
methods to estimate surface characteristics are required.

We explored the potential of UAV-borne LiDAR in the estimation and mapping
of surface roughness of a typical dense agricultural environment at very high spatial
resolution. The major components of the project were as follows:

• An evaluation of the performance of three segmentation approaches (i.e., a morpholog-
ical filter (MF), a progressive triangulated irregular network densification filter (TIN),
and a combination of MF and TIN) to reliably partition the UAV-LiDAR-derived point
cloud data into bare earth and vegetation and, consequently, to generate CHMs at
centimeter resolution.

• An assessment for calculating Z0 values from UAV-LiDAR data using three dif-
ferent morphometric methods (Kustas et al. [14], Raupach, [42], and Menenti and
Ritchie [43]), and a comparison of the respective results with the Z0 obtained from EC
observations.

• A discussion of the challenges and further potential of UAV-LiDAR in precision
agriculture and related applications.

2. Materials and Methods
2.1. Site Description

The experimental site is part of the Integrated Carbon Observation System network
(ICOS) located in Jutland, Denmark (56.037644◦ N, 9.159383◦ E). The site is a dense agricul-
tural area with negligible topographic relief covered by potato plants with heights varying
from 0.3 to 1.7 m and sparse trees (Figure 1). The climate is humid temperate; during the
summer of 2019, the mean temperature was 18.54 ◦C and the mean relative humidity was
66.65%. The site’s prevailing winds originated from the west (199◦) and the mean wind
speed recorded was 2.83 m/s.

2.2. Data Collection

The aerial campaign was conducted on a monthly scale before and during the ger-
mination of vegetation (14 May, 26 June, 14 July, and 12 August 2019). Point cloud data
were acquired using a UAV-LiDAR system (LidarSwiss GmbH, CH) onboard an octocopter
Matrice 600 Pro drone (Figure 2). The LiDAR system included an internal navigation
system (INS—Oxts Xnav 550 OEM IMU/GPS system) that fused data from an inertial mea-
surement unit (Oxts micro electro-mechanical systems) and GPS data received by a Global
Navigation Satellite System antenna, a beam LiDAR scanner (Quanergy M8), a 20 mp
SONY RGB camera (16 mm lens), and an integrated data storage unit. A Trimble real-time
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kinematic GNSS base station was used to provide additional overhead communication
with the INS. The horizontal field of view (FOV) of the laser scanner was 360 degrees and
the vertical FOV was 20 degrees. The LiDAR data were recorded at 40 m above the ground,
producing an average point density of 250 points/m2 (max 400 points/m2). The swath
width of a single pass was 89 m, and the overlap between two adjacent swaths was greater
than 25%. The raw GNSS data files obtained by the INS were converted to position data in
pos format using trajectory software (RT Post-process of the NAVsuite software package).
The laser scanner’s data were initially produced in bin format and were converted to point
clouds in las format using the position data (Geo-LAS software).

An EC system was installed at the western edge of a fenced measuring plot (80 × 20 m),
approximately in the center of the agricultural field (orange point in Figure 1). The instru-
mentation included a Gill R3-50 sonic anemometer (Gill Instruments Ltd., Lymingdon, UK)
and a LI7000 closed-path infrared CO2/H2O gas analyzer (LI-COR, Lincoln, NE, USA).
During the sampling period, EC data were recorded at a nominal sampling frequency of
20 Hz and ancillary meteorological data at 1 Hz (for further details, see [44]).

Figure 1. Illustration of the agricultural area (56.037644◦ N, 9.159383◦ E) surveyed by the Unmanned
aerial vehicle-Light detection and ranging (UAV-LiDAR) system (30.68 ha), and the two subscenes
with a range of roughness element densities: Plot 1 with more homogeneous heights corresponding
to the wind regime 190◦ to 347◦ (yellow, left rectangle), and Plot 2 with more heterogeneous heights
corresponding to the wind regime spanning from 90◦ to 190◦ (red, right rectangle). The orange label
indicates the location of the Eddy covariance tower.

Figure 2. Illustrations of (a) part of the UAV-surveyed area covered by potato plants and (b) the
LiDAR instrumentation mounted on a Matrice 600 Pro UAV.
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2.3. Evaluation Procedure

A relative homogeneous subscene area of the agricultural field (100 × 150 m covered
area) was used to evaluate the performance of the different filtering algorithms applied
to the LiDAR dataset retrieved in June (Plot 1 in Figure 1). The optimal set of parameters
for each filter was estimated by comparing their effectiveness in terms of the total errors
(TEs) of misclassification. Each filter with the optimized parametrization was then applied
to the point cloud data, representing the subscene Plot 1 for July and August, and to a
second subscene (100 × 270 m) covered by low and high vegetation (Plot 2 in Figure 1).
The manual classification of point clouds into terrain and vegetation cannot entirely be
employed in a GIS framework because filtering errors in such dense areas are not so
obvious to interpret with the naked eye. Instead, bare earth elevation data, as resourced
in May before vegetation growth, were combined with the rest of the collected point
cloud data from June to August in order to manually label the non-ground points as
referenced data of vegetation. The plant heights, represented by the CHMs produced at
0.10 m resolution, were compared with the plant heights that were manually measured
in randomly selected 1 × 1 m geolocated plots during the aerial campaign. Based on the
CHMs’ various geometric parameters, we evaluated the effectiveness of the morphometric
models to obtain Z0 values by comparing them with the anemometric-based method for
specific flux footprint areas.

2.4. Point Cloud Processing

Due to multi-path reflection, the pulses emitted from a LiDAR scanner may reach
the ground without returning directly to the instrument but rather reaching neighboring
surface points, creating noise data within the point clouds. By calculating the standard
deviation of each point’s surrounding fitting plane and by defining an expected relative
error (RE = 2), a point was labeled as an outlier if its distance from the fitting plane was
greater than the mean average distance plus the product of relative error and standard
deviation [45]. Additionally, low noise points that were close to the ground were excluded
from further analysis by comparing the maximum height difference between each point
and their neighboring points with a height threshold (max height = 0.2 m).

The classification of the point cloud data to vegetation and bare earth was based on
the triangulated irregular network densification filter (TIN) [46], a morphological filter
(MF) [47], and progressive triangulated irregular network densification (PTD), introduced
by Zhao et al. [48]. The efficiency of a filtering algorithm depends on the choice of opening
window/grid step and threshold used within each filter. These values are uncertain in all
filters and are expected to depend on the size of the objects and the land cover type [49].

The morphological filter (MF) is based on a progressively increasing window size in
an iterative process. If the elevation difference between the original data and the data after
the opening operation is higher than a user-defined elevation threshold (zthresh), the grid
is labeled as a non-ground grid. A number of runs was conducted for the MF filter using
a maximum window size from 0.4 to 1 m with an increment of 0.2 m and an elevation
threshold from 0.25 to 1.5 m in 0.25 m intervals using a commercial software package [50].

To identify likely ground points in the TIN method, some of the terrain-local minimum
points were used as the initial ground seed points to build an initial triangulated irregular
network. The sensitivity of the filter was tested by setting it in a software package [51]:
a grid step of 0.2 to 1.6 m in 0.2 m intervals based on practical experience, and the spike
parameter to 0.10 m, 0.25 and 0.5 m considering the standard deviation for planar patches
equal to 1. The spike parameter describes the distance above the coarsest triangulated
network for which the points are classified as terrain.

In the PTD algorithm, ground seed points are acquired through a morphological
opening operation instead of using the lowest points in user-defined grids. The parameters
of iterative distance were set to vary from 0.2 to 1 m in an increment of 0.2 m, and an iterative
angle from 2◦ to 18◦ in an increment of 4◦, using a commercial software package [52].
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To assess the performance of the three applied filtering methods, total error (TE) was
calculated according to the following equation [53]:

TE = (a + b)/e (1)

where a is the number of ground points that have been incorrectly classified as vegetation
points, b is the number of vegetation points that have been incorrectly classified as ground
points by comparing the processed point cloud datasets to the referenced data for Plot 1,
and e is the total number of points tested.

Once vegetation was segmented from the LiDAR dataset, the resultant ground points
were interpolated to replace non-ground points with an approximation of the correct
surface morphology. The inverse distance weighted method [54] was used to interpolate
the voids (Figure 3). The point clouds were converted to raster gridded elevation layers
of 0.03–0.05 m resolution by connecting all the available point features into a network of
triangles and interpolating over the triangular faces using the feature elevation and slope
values. To reduce the noise in the raster images by using all the point features, the point
cloud data were spatially binned into areas corresponding with the size of the output grid
cells [50]. In our analysis, one elevation value from each of the spatial bins was used to
generate a gridded layer with a 0.10 m resolution.

Figure 3. Example of rasterized point clouds after interpolation representing part of the agricultural field.

2.5. Description of Morphometric Methods

Three morphometric models were assessed to determine the Z0 of the subscenes, Plot
1 and Plot 2, surrounding the EC tower through surface morphology.

2.5.1. Roughness Length Based on Vegetation Height

The rule of thumb (RT) method only requires the average roughness element height
(h) per pixel, which is linearly related to Z0 [14] as follows:

Z0_RT = 0.1 h (2)

2.5.2. Roughness Length Based on Vegetation Geometry and Wind Conditions

In more advanced morphometric models, the alterations and resulting effects of
canopy drag can be included by calculating the drag coefficient [55]. Raupach’s model
(RAP), described in Equation (3a, 3b), includes the drag coefficient of an isolated roughness
element (cs = 0.003); the drag coefficient for the substrate surface at h (cr = 0.3); the
roughness sublayer influence function (ψh = 0.193, accounting for the correction to the
logarithmic wind profile); the wind speed (U), the friction velocity, u*, (u*/U)max = 0.3;
and a free parameter (cd1 = 7.5). Zd (m) is the zero-plane displacement and k is the von
Karman’s constant (= 0.4).

Z0_RAP = h (1 − Zd/h) exp(−k U/u* + ψh) (3a)
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Zd/h = 1 + {(exp [−(2cd1 fai)0.5] − 1)/(2cd1 fai)0.5}

u*/U = min [(cs + cr fai)0.5, (u*/U)max]
(3b)

The frontal area index (fai) can be defined by integrating positive height changes (∆y)
over a cross-sectional line divided by the distance (∆x) in that section length, assuming an
isotropic surface [25,56].

fai = (∑∆y)/(∑∆x) for ∆y > 0 (4)

The advantage of this technique is that we do not consider the precise shape of a
plant but rather its cross-sectional area perpendicular to the wind [22]. In this analysis, we
extracted cross-sections along 360/24 sectors reflecting different wind directions from each
generated CHM to derive the frontal area indexes. The associated morphometric Z0 from
all directions were averaged into one value at each grid cell.

The plan area index (pai), which equals the horizontal area occupied by roughness
elements divided by the total area under consideration, was also calculated since it can be
associated with Z0 and Zd [15]. For instance, it was observed that as surface cover increases,
the magnitude of Zd/h produces a convex curve asymptotically increasing from zero to
unity, which is the maximum possible value of pai. The pai and fai for each wind direction
were calculated using the UMEP plugin [57] in the open-source geographical information
software QGIS [58].

2.5.3. Roughness Length Based on Vegetation Height Variability

This empirical model of Menethi and Ritchie [43] (MR) determines Z0 as a function of
vegetation height variability for each grid cell that is segmented by subcells following:

Z0_MR = (1/N) ∑ (σi,j/hi,j) havg (5)

where N is the number of subcells within each grid cell; σi,j is the standard deviation of the
LiDAR-derived vegetation height (hi,j) per each subcell I; j. havg is the average vegetation
height calculated from the LiDAR’s CHM. It was documented that coarser grid cells reduce
the standard deviation of height regardless of the size of the subcells, while larger subcells
lead to higher values of Z0 [25]. Based on these observations, the size of each grid cell was
chosen to be equal to 1 m and the segment size inside each grid was 0.25 m, reflecting
the maximum expected variance in plant height within a 1 × 1 m cell. All the geometric
parameters of vegetation from the CHMs were retrieved using QGIS.

2.6. Description of the Anemometric Method

The raw data of wind, carbon dioxide, water vapor, and sonic temperature data
were processed using EddyPro 4.2.1 software (LI-COR, Lincoln, NE, USA) to estimate
half-hourly turbulent scalar fluxes. The processing included statistical tests for raw data
screening [59], angle of attack correction [60], 2D coordinate rotation, block averaging, time
lag optimization to maximize covariance between vertical wind speed and gas concen-
trations, humidity corrections applied to the sonic temperature [61], and compensation
for density fluctuations [62]. Flux quality flags were assigned according to the test for
steady-state conditions and fully developed turbulence following Foken et al. [63] and
simplified by CarboEurope-IP.

From the EC micrometeorological data, the estimations of friction velocity, sensible
heat flux, and Obukhov length, as well as the meteorological data of wind speed and
direction, were used to calculate Z0 (Z0_EC) following the logarithmic wind law. For stable
or unstable atmospheric conditions, the logarithmic wind profile [64] is given by:

Z0_EC = (z − Zd)/exp(kU/u* + ψm) (6)
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where z is the measurement height (m). The stability correction for momentum ψm was
computed using the parameterizations suggested by Högström [65]. Under neutral atmo-
spheric conditions, ψm equals zero. Zd was considered here to be equal to 0.7 h [14].

Half-hourly estimations of Z0_EC from 25 to 27 June, from 13 to 15 July, from 12 to 13
of August, and for daytime hours (from 9:00 to 19:00 local time) were used as reference
values for validating the morphometric-derived Z0. This EC dataset was selected for the
comparison analysis of the different methods to calculate Z0 in order to minimize the effect
of the differences in the temporal and spatial resolution of the remote sensing data acquired
on the 26 June, 14 July, and 12 August, and in situ EC data.

3. Results
3.1. Segmentation of Point Cloud Data

The morphological filter performed poorly with small window size values when the
optimal size of the opening operation was close to 1 m due to the lack of a sufficient number
of ground points (Figure 4a). There were fewer Type I errors (accepting a ground point as a
vegetation point) than Type II errors (accepting a non-ground point as ground) because
there were many local maxima for the filter to identify. When zthresh was increased to
0.5, the Type I errors reduced, meaning that the filter could distinguish morphological
differences between ground and non-ground. The optimum threshold was 1 m (Table 1)
and Type II errors increased as zthresh increased beyond 1.5 m since fewer non-ground
points were classified correctly. Generally, the filter was not as sensitive to the value of
zthresh, performing nearly as well as the optimal parameter combination across a range
of values of elevation threshold (Figure 4a). In PTD, the iterative distance is related to the
topographic relief that would be expected to be relatively small for flat terrains. From the
sensitivity analysis, the iterative distance became stable when it was greater than 0.4 m for
an iterative angle equal to 4◦ (Figure 4b). The TIN model was more sensitive to the grid
size, which should be as large as the size of the biggest object located in the filtered area.
The suggested step size is between 0.6 and 1.2 m (Figure 4c) and the optimal size was 0.8 m
for this type of landscape (Table 1). By decreasing the value of spikes, small non-ground
objects were removed from the final point cloud.

Figure 4. Filter performance sensitivity in terms of total errors to: (a) window size and threshold
for the morphological filter (MF), (b) iterative distance and angle for the progressive triangulated
irregular network densification (PTD), and (c) grid step and spikes for the triangulated irregular
network densification (TIN). All filters were applied to the Plot 1 subscene of the agricultural site.
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Table 1. Optimized parameters of each filtering algorithm for the tested point cloud dataset.

Methods

Parameter Set

Window
Size (m)

Elevation
Threshold (m)

Iterative
Distance (m)

Iterative
Angle (◦)

Grid
Size (m) Spike (m)

MF 1 1
PTD 0.4 4
TIN 0.8 0.2

Although the TE obtained at both sites was high because the referenced data included
the ground elevation data collected in May, the MF and PTD filters performed satisfactorily
compared to TIN (Table 2). The MF achieved the minimum TE in Plot 1, which was a
homogeneous area, whereas PTD performed better in Plot 2, which consisted of low and
high vegetation. The nature of the dense vegetation area resulted in a small number of
ground points and, consequently, in fewer ground seeds for the interpolation-based filters
(TIN and PTD), affecting the densifying process where the morphological filter could
provide more ground seed points in general, enabling better coverage. The PTD probably
performed better than TIN because TIN considers the lowest point in each grid with a fixed
size as ground seed points [48].

Table 2. Comparison of the ratio of incorrectly classified points to the total number of points tested
(TE) of the filtering algorithms using their optimal set of parameters for the two subscenes, Plot 1
and 2, monitored in June, July, and August.

Subscene/Date PTD TIN MF

Plot 1/26 June 15.57 26.38 9.27
Plot 1/14 July 28.75 46.10 18.28

Plot 1/12 August 23.84 40.56 16.36
Plot 2/26 June 14.75 34.73 19.62
Plot 2/14 July 18.32 37.46 25.65

Plot 2/12 August 16.84 32.39 20.52

Mean Error 19.67 36.27 18.28

3.2. Validation of Canopy Height Models

To validate the resulting CHMs, the field-based measurements of tree height, a build-
ing, and plants within randomly selected and geolocated experimental plots (Figure 5a)
were compared to the height of the respective objects within each CHM. The heights of
these roughness objects were calculated after: (i) segmenting each point cloud dataset
into terrain and non-terrain points using the optimized parameters of the MF and PTD
segmentation approaches, (ii) normalizing each dataset to the ground (e.g., Figure 5b–d),
and (iii) rasterizing the normalized point clouds to generate the CHMs.

Table 3 outlines the average height of vegetation determined from the field-based
measurements in each month and from GIS analysis of the respective LiDAR-derived height
values. Regression analysis between the LiDAR canopy height (hLiDAR) and measured
canopy height for 21 plants (hfield) exhibited a linear relationship (Equation (7)) with a
coefficient of determination (R2) of 0.89 and root mean square error (RMSE) of 0.028 m.

hLiDAR = 0.98 hField − 0.07 (7)

The vegetation dynamics in terms of height metrics and the volume of the plants
within a subscene area covering 850 m2 around the EC tower were calculated for each
UAV survey to quantitatively assess the validity of the CHMs (Table 4). The estimated
CHMs indicated an increase in vegetation height and volume from June to August, but
the standard deviation of vegetation height decreased in August. This pattern could be
explained by the mechanical removal of potato vines and the ridging of soil to cover
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growing tubers that both occurred at the end of July to facilitate the harvest of the potato
plants by the end of August.

Figure 5. (a) Canopy height model (CHM) of the agricultural field indicating the locations of the
experimental plots (yellow points), and profile view of point clouds normalized to the terrain
illustrating the height of (b) vegetation in June (brown points), July (light green points), and August
(dark green points), (c) a building, and (d) trees.

Table 3. Comparison between LiDAR-derived height of plants (h) and plants’ h measured manually
in geolocated experimental plots. Number of plant samples = 21.

Date Field h (m) LiDAR h (m)

26 June 0.52 0.44
14 July 0.71 0.56

12 August 0.78 0.72

Table 4. Vegetation dynamics as expressed by the statistics of height of plants (h) and the net volume
of a subscene of the CHMs around the EC tower covering 850 m2.

Date Mean h (m) Mode h (m) Standard
Deviation h (m)

Increase in
Vegetation (%)

26 June 0.61 0.60 0.11
14 July 0.76 0.75 0.16 30.25

12 August 0.91 1.00 0.15 44.36

3.3. Source Turbulent Areas Using Morphometric Models

The footprint model of Kljun et al. [66] is a parameterization of a Lagrangian stochastic
particle dispersion model and was applied to calculate the extent of turbulent source areas
for each 30-min period of the EC observations (Figure 6). For the comparison analysis,
we used the morphometric Z0 values as calculated for the cross-sections of the CHM that
coincided with the wind direction that was considered as the input for each run of the
footprint model. The footprint model requires the standard deviation of the lateral velocity
component, the measurement height, the Obukhov length, the friction velocity, and wind
direction (all derived by the EC system), an estimation of the boundary-layer height, and a
minimum fetch around the EC tower (approximately 100 m). The 80% cumulative source
area for each 30-min EC measurement was utilized to weight the fractional contribution of



Remote Sens. 2021, 13, 3538 11 of 21

each grid square of the CHM. This allowed the calculation of a single value of Z0_EC (by
weighting the values in the source area) and the calculation of the average morphometric-
derived Z0 for each turbulent source area (Figure 7). Unstable atmospheric conditions were
defined as those corresponding to the ratio z/L < −0.032, while near-neutral atmospheric
conditions reflected the relation −0.032 ≤ z/L ≤ 0.032 [67]. The source area climatology
was biased toward the dominant west-southerly wind direction, as in Plot 1. During the
experimental campaign, only in June did wind originate from the east-southerly direction,
as in Plot 2.

Figure 6. Anemometric-derived roughness length Z0_EC, corresponding to different turbulent source
areas from: 25 to 27 June; 13 to 15 July; 12 to 13 August. The central mark indicates the median of Z0,
while the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively. The
whiskers represent the most extreme data points.

Figure 7. Canopy height model of the agricultural site as obtained by the UAV-LiDAR survey in June.
The ellipsoid shapes indicate the probable surface areas contributing to turbulent flux measurements
imposing the respective prevailing meteorological conditions.
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3.4. Comparison of Methods to Derive Roughness Length

The mean values of Z0 as calculated by the anemometric and all morphometric
methods gradually increased from June to August, following the progression of vegetation
growth resulting from the increases in fai and Zd due to the higher vegetation density and
height. On average, the morphometric-based Z0 presented strong linear correlations with
Z0_EC (Figure 8), and a standard deviation of less than 4.2 cm with averages ranging from
an underestimation of 1.3 cm (Z0_RT) to an overestimation of 1.9 cm (Z0_MR) (Table 5).

Figure 8. Scatterplots of the anemometric roughness length (Z0_EC) and the morphometric-derived
roughness length (Z0) using the Menethi and Ritchie (MR), Raupach (RAP), and the rule of thumb
(RT) methods.

The observed positive correlation between the mean Z0 obtained by the EC method
and the mean Z0_RT (i.e., the height of the plants) during the vegetation-growing period
indicated that an accurate representation of vegetation height derived by a LiDAR system
could be effective for estimating Z0 using the simple rule of thumb method (Figure 8).
However, the correlations between Z0_RAP and Z0_MR with Z0_EC exhibited higher
coefficients of determination (R2 = 0.96 and 0.93, respectively) and smaller RMSEs compared
to Z0_RT. Thus, the investigation of a suitable morphometric method may be crucial to
improving the accuracy of canopy aerodynamic characteristics estimations.

The overall difference in Z0 derived by RAP and the anemometric method was less
than 10% for June, July, and August. The RT method had a similar performance to RAP
for July and August, while the estimated Z0_MR was 4% to 19% greater than the mean
Z0_EC. The mean roughness length values under near-neutral conditions were higher than
the Z0 calculated for unstable conditions (Table 5), since the extent of the turbulent source
areas was typically larger in the former case with smaller values of friction velocity or
wind speed. Perhaps the inclusion of the effect of frontal surface U and u* in the RAP
method as well as the inclusion of vegetation height variability in the MR method enabled
the capture of Z0 amplification under near-neutral conditions, whereas the dependency
of Z0_RT to the averaged h per grid cell produced similar roughness lengths for unstable
and near-neutral conditions. The mean Z0_EC, Z0_RAP, and Z0_MR in August and under
unstable atmospheric conditions were smaller than the respective Z0 in July. This could be
attributed to the decreased standard deviation of vegetation height within the cumulative
source areas observed in August (σh = 0.1 m), which may have translated to a higher
density in foliage compared with the respective one for July (σh = 0.15 m).
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Table 5. Comparison of Z0 (m) derived by the morphometric methods with the anemometric Z0

averaged over the source areas for daytime hours (from 9:00 to 19:00). The data were screened for
wind speed higher than 2m/s and friction velocity higher than 0.2 m/s.

Z0_RAP Z0_RT Z0_MR Z0_EC fai

Differences to Z0_EC

June (n = 63) 0.009 0.037 −0.025 0.148 0.048
July (n = 62) 0.018 0.008 −0.023 0.171 0.048

August (n = 36) 0.015 0.013 −0.006 0.200 0.058
Average 0.014 0.013 −0.019

Standard deviation 0.031 0.042 0.022

Unstable conditions Plot 1

June (n = 8) 0.028 −0.003 −0.043 0.117 0.039
July (n = 46) −0.016 −0.026 −0.042 0.137 0.045

August (n = 3) −0.022 −0.065 0.022 0.123 0.042

Neutral conditions Plot 1

June (n = 13) 0.078 0.05 0.006 0.171 0.041
July (n = 16) 0.027 0.018 −0.053 0.182 0.042

August (n = 33) 0.018 0.02 −0.009 0.207 0.060

Unstable conditions Plot 2

June (n = 36) −0.020 0.036 −0.035 0.141 0.054

Neutral conditions Plot 2

June (n = 6) 0.017 0.077 −0.002 0.188 0.046

The role of vegetation structure in the roughness length was identified in the Z0 varia-
tions retrieved in June. The average Z0 in June calculated for the source areas corresponding
to Plot 1 (mean h = 0.61 m) was smaller than that obtained in Plot 2 (mean h = 0.55 m) for
both unstable and near-neutral conditions. The mean friction velocity in the direction of
Plot 1 was also considerably higher, indicating turbulent disturbance (u* = 0.53–0.54 m/s
in Plot 1 vs. u* = 0.38 m/s in Plot 2). The decreased Z0 in Plot 1, even if the average plants’
h was shorter than the respective one in Plot 2, could be attributed to the concurrent lower
roughness vegetation density (fai) of Plot 1 and the higher planar vegetation density (pai)
compared to Plot 2 (Figure 9), which was the experimental field covered by short grass.
The roughness density (fai) is related to the shapes of plant crowns and to the average
density of the canopy elements (pai). The pai is related to the effect of intervening spaces
between roughness elements in the overall drag efficiency of a canopy, where a higher pai
has a smothering effect on the canopy that increases the Zd; therefore, Z0 would decrease
for a given value of fai, as in Plot 1.

Traditionally, it has been observed that as fai increases, the magnitude of Z0/h also
increases at some intermediate level of vegetation densities until it reaches a maximum
value for a critical value of fai. The critical fai depends on the method used to determine
Z0 and can be interpreted as the level of homogeneity of the canopy at which adding
further roughness elements to the surface does not affect the bulk drag because additional
elements merely shelter one another [68]. Similarly, as the pai approximates unity, the
surface elements are so densely packed that they merge to form a new surface with limited
resistance to airflow. In this study, the spatial distribution of Z0 exhibited maximum values
for pixels with an fai of 0.08 (Figure 10), where the height of the momentum sink starts to
move upward since a large fraction of the total drag is exerted by the outermost leaves and
branches rather than the background. The drag Z0 values for pixels with an fai higher than
0.08 are expected to be smaller than the maximum Z0. This pattern, however, cannot be
described with the application of the RT method.
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Figure 9. (a) Frontal area index (fai) and (b) planar area index (pai) in the form of wind rose for winds
oriented from the west (Plot 1) and east (Plot 2) in June.

Figure 10. Contours of the anemometric roughness length for June, July, and August with frontal
area index and planar area index as predictor variables, indicating that Z0 depends on the fai and pai
and is maximized for fai and pai values close to 0.08 and 0.75, respectively.

3.5. Influence of Wind Orientation for Deriving Roughness Length

Based on morphometric-based methods, Z0 can be mapped for a larger area beyond
the turbulent source areas of the EC tower by calculating the CHM and the wind directions
for which the morphometric parameters are modeled. By considering an isotropic surface,
the LiDAR-derived height metrics for each wind direction can be integrated into one value
in each grid of the map [47]. Figure 11 illustrates the maps of Z0_RT, Z0_RAP, and Z0_MR
for a subscene corresponding to the wind regime of 190◦ to 347◦ (130 × 250 m), which was
surveyed in June. The RAP and MR tended to exhibit higher roughness length values than
the RT. The averaged Z0_RAP over the homogeneous part of the crop field (e.g., Figure 11)
resulted in similar values when different win directions were considered. However, when
the area was heterogeneous, the spatial distribution of Z0 varied significantly.

To assess the influence of wind direction on the spatial distribution of aerodynamic
roughness length over a heterogeneous area with low and high vegetation, Z0_RAP was
mapped for a subscene (200 × 300 m) corresponding to the wind regime spanning from 90◦

to 190◦ (Figure 12). The orientation of the trees and lower vegetation compared to the wind
direction altered the spatial distribution of Z0, with higher values of Z0 occurring when the
tree arrays and the longitudinal dimension of tramlines were perpendicular to the wind
flow (105◦). Lower Z0 values were observed when crops were perpendicular to the wind
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flow (205◦), reflecting the smaller frontal surface of the roughness objects opposed to the
wind orientation compared to the frontal surfaces opposed to the wind direction of 105◦.

Figure 11. Maps of roughness length for a relative homogeneous agricultural site estimated by the (a) RT, (b) RAP, and
(c) MR methods. The CHM was acquired by a UAV-LiDAR survey conducted on 26 June at 12:00 local time.

Figure 12. Maps of Z0_RAP for a subset of the CHM covered by field crops and trees considering two different view angles
that correspond to the wind directions of (a) 205◦ and (b) 105◦ from the north. The CHM was acquired by a UAV-LiDAR
survey conducted on 12 August at 12:30 local time.

4. Discussion

Morphometric approaches may facilitate the estimation of the aerodynamic surface
roughness of an agricultural field with trees at high spatial resolution and over a larger
area than the EC turbulent source area but require precise measurements of the height of
roughness objects, such those obtained by a UAV-LiDAR system.

The comparison between the height of potato plants and trees as derived by UAV-
LiDAR with the respective field-based measurements indicated that UAV-LiDAR may
yield strong predictions of the actual height of vegetation canopy. The observed low RMSE
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is consistent with other reported accuracies for agricultural fields populated by wheat,
triticale, and rice [69–71] using a terrestrial LiDAR configuration. Within low vegetation
ecosystems, airborne LiDARs with a small-diameter footprint exhibited good performance
in deriving correlations between the LiDAR-determined vegetation heights and those
measured in the field moderately well [72]; however, it was also well-documented that
ALS tends to underestimate the vegetation height by at least 30%, depending on the point
density [73]. UAV-LiDAR systems may decrease this uncertainty because they generate
point clouds with much higher point density, increasing the likelihood for the laser pulses
to reach the underlying terrain and reflect from the maximum top of every stem they
contact. However, the proper classification of ground and vegetation point cloud data
is a crucial step for further processing the geometric characteristics of a canopy in order
to calculate the aerodynamic and biophysical properties of low-vegetation canopies. For
example, Wang et al. [74], using a slope- and angle-based filtering method [75] to classify
UAV-LiDAR point clouds into ground and grassland, found that LiDAR underestimated
the canopy height, whereas at the locations where the grassland was less than 5 cm, LiDAR-
derived heights were overestimated. To separate ground points from points representing
winter wheat as acquired by UAV-LiDAR [33], the authors argued that the cloth simulation
filtering algorithm [76] had to be parameterized according to the temporal variations in the
vegetation density. Since criteria for choosing the most appropriate filtering method and
the optimized parameters of every filtering algorithm are lacking, we used the calculation
of the total errors of morphological and interpolated-based filtering algorithms by setting
different values of their parameters. This approach eliminated misclassification and the
resulting biases in the CHMs without requiring the visual interpretation of the results,
which could consider the effect of heterogeneous vegetation on the segmentation process
for this specific land cover and topography. The morphological filter could detect more
ground points in the dense low vegetation site, whereas the PTD performed better when
trees and low vegetation had to be segmented. In both cases, the optimal window size
needed to be considered, which depends on the sizes of the contained objects [77] and is
subjected to variations in the acquired point density, which can be altered by changing the
flight line distance or the flight speed.

Another critical issue for defining Z0 at both high temporal and spatial resolution
using UAV-based observations is the appropriateness of the applied morphometric model.
In agricultural studies that are based on remote sensing data to estimate turbulent heat
and gas fluxes, Z0 is usually calculated as a fraction of the mean height of roughness
objects (e.g., [78]) or as a dependent variable of a VI assuming a homogeneous area to
derive the resistance to heat transfer [4–7]. However, the temporal variations in Z0 even in
agricultural areas do not always simply correlate with the vegetation height, or the area
is not always homogeneous; therefore, these approaches may introduce uncertainty to
the estimated energy or gas fluxes [79]. In this study, Z0 depended on the height-based
geometric parameters and on the vegetation structure, expressed by the frontal and planar
area indices (e.g., Figures 9 and 10), resulting in better correlations between Z0_RAP and
the Z0_EC averaged within each source area compared to Z0_RT (Table 5).

The mean Z0_MR could be considered as the upper limit of the mean Z0_EC using
a 0.25 m subcell scale that can describe the height variation of a plant. This method can
accurately capture the vegetation variability using high-resolution CHMs (e.g., 0.10 m)
from UAV-LiDAR measurements, but it may be sensitive to the choice of the grid cell size
and its subcell sizes. For example, it was observed that coarser subcell scales resulting from
coarser ALS-derived CHMs can lead to less convergence between Z0_EC and Z0_MR [25].
The RAP method may be more appropriate to simulate the temporal variation in Z0 in
this type of landscape, since the formula describes an interplay between roughness length
and alterations in airflow orientation (through fai) and wind speed for regular arrays of
roughness elements that characterize our study site.

The assessment of the accuracy of the Z0_RAP and Z0_MR values across differ-
ent wind fields outside the turbulent source areas would necessitate the acquisition of
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anemometric-derived Z0 across the whole field. Therefore, a precise statement about
how these morphometric-based Z0 respond to vegetation variability is difficult. How-
ever, differences in the spatial distribution of Z0 between crop fields, bare soil, and trees
were generated (e.g., Figure 11), and the effect of wind direction on the fai and Z0 for
the heterogeneous subscene of the agricultural site was evident using the RAP method
(Figure 12). These observations are aligned with the findings of Colin and Faivere [23],
who documented that the RAP approach could account for the heterogeneity of an area
covered by grassland with staggered arrays of trees.

The morphometric models, though, do not account directly for the potential effect
of vegetation’s porosity on the amount of drag exerted on the flow [80]. Thus, it could be
claimed that the calculated aerodynamic resistance would be overestimated by considering
the porosity of the foliage structures equal to one. That would probably be more effective
for areas where the dominant roughness element is trees, which, in contrast to compact
obstacles, mainly oppose a resistance to the airflow for tree heights with the highest
foliage density. Kent et al. [81] found that the effect of the porosity of low vegetation on
the roughness length compared to higher obstacles was negligible. For more complex
croplands, a sensitivity analysis of the drag coefficient used in various morphometric
models may provide further information regarding the alterations in shear stress sourced
from the internal structure of high vegetation. Although we tested the applicability of the
Macdonald [12] and Millward-Hopkins [82] morphometric models, which can account for
the differential drag imposed by different types of obstacles, the results were not exploited
in this study because they did not capture Z0 variations in low vegetation, probably because
these models were designed to determine Z0 in urban areas.

The methods assessed here could generate the spatial distribution of Z0 at centimeter-
level resolution for an agricultural site and for selected prevailing wind directions, but the
contribution of the upstream roughness elements cannot be quantified. The choice of an
appropriate spatial scale of analysis for computing Z0 could be derived from a general
analysis of the landscape characteristics along the prevailing airflows.

5. Conclusions

In this study, we explored a method of generating maps of roughness length at ultra-
high spatial resolution (0.10 m) of a typical dense temperate agricultural field with sparse
trees using the newly developed UAV-LiDAR scanners and morphometric roughness
models without requiring any other data sources, such as optical photogrammetry or eddy
covariance observations. This method is particularly useful for enhancing the sustainability
of farming practices and recreation activities in agroforestry and agroecology applications,
since the spatial distribution of Z0 can delineate how land cover alterations affect shear
stress and turbulence, which, in turn, regulate the air–surface exchange of energy, water,
and greenhouse gases.

For the determination of Z0, the selection of the appropriate morphometric method
and the effective classification of UAV-LiDAR-derived point clouds into vegetation and
terrain that generates precise CHMs are both critical.

Overall, convergence was observed between the EC-derived Z0 values and those
found through the UAV-LiDAR-driven models at the turbulent source area scale. All
morphometric models showed a standard deviation of less than 4.2 cm with averages
ranging from an underestimation of 1.3 cm (Z0_RT) to an overestimation of 1.9 cm (Z0_MR).
The detailed comparison indicated that the Raupach roughness model is more suitable
for simulating the temporal variations in Z0. The spatial distribution of zo_RAP for a
heterogeneous subscene beyond the turbulent source areas was conditioned by the shape
of the frontal surface opposed to wind direction, with a higher Z0 occurring when the tree
arrays were perpendicular to the wind flow.

A sensitivity analysis of three filtering approaches to segment the point cloud data to
low vegetation and ground highlighted the errors associated with CHM preparation. The
morphological filter performed satisfactorily over the more homogeneous area covered by
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plants with a 1 m window size of the opening operation while the filter was not so sensitive
to elevation threshold due to the relative flat landscape. The PTD filter produced fewer
errors in a subscene consisting of low and high vegetation for an iterative distance close to
0.4 m and an iterative angle of 4◦. The TIN interpolation-based filter generated more errors
in detecting ground and non-ground points for this type of vegetation and landscape.

This technique may advance the establishment of more precise spatial representation
of potentially nonlinear relationships between canopy structural characteristics and surface
water and gas dynamics across heterogeneous land cover types. The application of all the
elaborated approaches to derive precise CHMs and Z0 values in agricultural fields with
other crop species and different climatic conditions could be used to assess their adequacy
in other contexts. Further research is needed to improve the morphometric models for Z0
in vegetated landscapes that can benefit from canopy height models of ultra-high spatial
resolution to account for surface drag effects of upstream roughness elements.
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