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Abstract: Freshwater is becoming scarce worldwide with the rapidly growing population, developing
industries, burgeoning agriculture, and increasing consumption. Assessment of ecosystem services
has been regarded as a promising way to reconcile the increasing demand and depleting natural
resources. In this paper, we proposed a multidimensional assessment framework for evaluating
water provisioning ecosystem services by integrating multi-source remote sensing products. We
applied the multidimensional framework to assess lake water ecosystem services in the state of
Minnesota, US. We found that: (1) the water provisioning ecosystem services degraded during
1998–2018 from three assessment perspectives; (2) the output, efficiency, and trend indices have stable
distribution and various spatial clustering patterns from 1998 to 2018; (3) high-level efficiency depends
on high-level output, and low-level output relates to low-level efficiency; (4) Western Minnesota,
including Northwest, West Central, and Southwest, degraded more severely than other zones in
water provisioning services; (5) human activities impact water provisioning services in Minnesota
more than climate changes. These findings can benefit policymakers by identifying the priorities for
better protection, conservation, and restoration of lake ecosystems. Our multidimensional assessment
framework can be adapted to evaluate ecosystem services in other regions.

Keywords: multidimensional assessment; water provisioning ecosystem services; lake water storage;
surface water; remote sensing; Google Earth Engine

1. Introduction

Ecosystem services are defined as the many benefits humans obtain from ecosystems.
These include provisioning services such as food and water; regulating services such as
flood and disease control; supporting services such as biodiversity maintenance and habitat
preservation; cultural services such as entertainment and landscape aesthetics [1]. The con-
cept of ‘ecosystem services assessment’ has been regarded as a promising way to describe
the situation of ecosystem services [2], scale natural resources storage [1,3–5], manage eco-
logical properties [6,7], support natural resources-related policymaking [8–10], including
freshwater [11–13]. As one of the primary provisioning services, water provisioning has
become a focus because of its economic and social importance and the increasing scarcity.

Freshwater is becoming scarce worldwide with the rapidly growing population, de-
veloping industries, burgeoning agriculture, and increasing consumption [14–18]. Climate
change and the growing demand for freshwater to support industrial and agricultural
development have worsened the situation, and the population suffering from water scarcity
has been increasing during the past decades [19,20]. Some quantitative indicators mapping
the capacity of nature to provide water for human beings were created in quantitative
assessment of water provisioning ecosystem services, such as the freshwater provisioning
index for humans [21], and the water security index [22]. Freshwater scarcity not only
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impedes economic development and triggers food crises, but also threatens human health
since it is directly associated with food quality, energy, and environmental security. To
cope with the population explosion and the resulting water shortage, a large variety of
ecosystem services related to water resource management have been addressed by as-
sessments [23–25]. Economic methods have been flourishing since they were adopted by
Costanza [13,26–30], which focus on the economic benefits of ecosystem services and scale
it with monetary value. Energy-based methods emerged to mitigate the inaccuracy caused
by converting the ecosystem contribution to currency because economic market mecha-
nisms do not always ensure the conservation of ecosystem services [31,32]. Investigators
attempted to regard ecosystem services as a counterpart of energy flows, such as solar
energy [33,34]. We adopted the material-based method, which is based on the theory that
humans consume ecosystem services via natural resource materials from the ecosystem,
such as food, water, wood, oxygen, clean air [2,35,36]. We believe that the process of
transferring ecosystem services to humans benefits through some specific carriers. For
example, the cropland ecosystems provide food provisioning services, while humans can
only obtain and consume this service via obtaining food such as corn and potatoes. There-
fore, the weight of the food generated in the cropland ecosystem, which could be measured
directly, reflects the amount of food provisioning services [5]. Similarly, human beings
enjoy water provisioning services provided by natural hydrological systems via accessible
water. Therefore, water storage in nature can be used to scale water provisioning services.

The capability of remote sensing to perform synoptic, spatially continuous, and
frequent observations resulting in large data volumes and multiple datasets at varying
spatial and temporal resolutions contributed to spatially explicit ecosystem services as-
sessment [2,37–40]. Compared with the traditional ecosystem services research based on
statistical data, remote sensing data can map the spatial distribution of natural resources,
mitigating the limitations resulting from administrative boundaries [41–43]. However,
sound scientific information is critical for making effective environmental policies [44].
Scientific results should have a scalable maturity that makes them available to the decision-
making process. This scalability should correspond to the aggregated level of political units
that transforms scientific findings into practical applications. In this paper, we aggregated
the assessment results derived from remote sensing data at the county level. We proposed
a quantitative approach that reflects the natural situation and provides a promising mech-
anism for linking scientific information to decision-making via demographic, landscape,
and economic statistics based on administrative divisions.

Some of the limitations of existing research can be summarized as follows: (1) While
the ecosystem services assessment has made significant progress in recent decades, existing
methods largely focus on estimating the total output from ecosystems [45–48], which
cannot reflect the ecosystems in full-spectrum; they cannot distinguish the ecosystems with
the same assessment results but in various sizes. For example, it is unreasonable to equate
a lake covering an area of a hundred hectares to another lake covering twenty hectares just
because they have the same water provisioning output. They also put the same assessment
results on the ecosystems with an opposite trend. For instance, a progressive ecosystem
whose assessment result has risen to a certain threshold should be distinguished from a
deteriorating ecosystem whose result has fallen to this threshold. (2) In terms of temporal
scale, few studies followed a long continuous timeline (over 20 years). Most existing
research is limited to a short time period [2,49–53]. (3) From a spatial perspective, most
existing studies mapped the spatial distribution of ecosystem services; few studies explored
the spatial characteristics and changes over time [54–58]. (4) Even though numerous
research targets ecosystem services, quantitative relationships between influencing factors
and ecosystem services have not been revealed precisely [59]. (5) Although the potential of
remote sensing application in ecosystem services assessment has been explored gradually,
the remote sensing-based results are not available at the decision-making level because
these results are based on natural boundaries rather than county boundaries [49,60–62],
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which is challenging to apply in policymaking, measures taken, and practical management.
All of the requirements mentioned above call for systematic quantification studies.

Compared with previous studies, the highlights of this paper are as follows: (1) We
expanded the water provisioning ecosystem services assessment from an ‘output’ perspec-
tive to an ‘output-efficiency-trend’ multidimensional framework [5], assessing ecosystem
services from outputs, efficiency, and trend simultaneously (see Figure 1). Thus, some
neglected information in traditional single perspective assessment can be revealed. (2) We
analyzed 21 years of water provisioning ecosystem services in the study area, characterizing
the changes over a long time period. (3) We revealed the spatial distribution characteristics
via exploratory spatial analysis methods, identified and classified the degradation zones,
and put forward the priorities in lake ecosystem management. (4) We constructed a model
to explore the quantitative relationships between the main influencing factors and the
multidimensional assessment results. (5) We analyzed the water provisioning services
derived from remote sensing data at the county level, making it available to policymakers
and natural resource managers as a reference in practical works.
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Figure 1. The flowchart of this study.

2. Materials and Methods
2.1. Study Area

The state of Minnesota is known for its abundance of surface water bodies, known
as the “Land of 10,000 Lakes” [63]. According to the statistics provided by the Minnesota
Department of Natural Resources, there are 11,842 lakes over 4.0 ha in size [64]. Due to the
limited availability of lake bathymetric data, this study focused on 1290 lakes in 70 counties
in Minnesota (Figure 2). The lake areas range from 0.04 ha to 52,426.39 ha, with a total
surface water area of 441,363.64 ha (2018). We adopted the regional definition proposed by
the Minnesota Department of Agriculture [65], which divides Minnesota into nine regions:
Northwest, North Central, Northeast, West Central, Central, East Central, Southwest, South
Central, and Southeast (see Figure 2).
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Figure 2. Our study area with lake bathymetric data in the state of Minnesota.

2.2. Geospatial and Statistical Datasets

The datasets we used in this study include lake bathymetric data, remote sensing
products, and demographic and economic data (see Table 1). More details about each
dataset are described below. We derived the influencing factors from remote sensing
images at the pixel scale and then aggregated them to the county-level statistics.

Table 1. Multi-source remote sensing datasets used in this study.

Remote Sensing Dataset Resolution Application

Lake Bathymetric Digital Elevation Model (DEM) 5 m Extracting lake elevation
European Commission’s Joint Research Centre (JRC) Global

Surface Water (GSW) 30 m Extracting lake surface area

Penman–Monteith–Leuning Evapotranspiration V2 (PML_V2) 500 m Extracting evapotranspiration
Daily Surface Weather and Climatological Summaries

(Daymet V3) 1 km Extracting precipitation

Terra Land Surface Temperature and Emissivity 1 km Extracting annual temperature and
temperature difference between day and night

The USGS National Land Cover Database (NLCD) 30 m Extracting land cover information
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2.2.1. Lake Bathymetric Data

Lake bathymetric data were acquired from the Minnesota Geospatial Information
Office [66], which contains lake bathymetric contours, lake bathymetric digital elevation
model (DEM), and lake bathymetric outline. The lake bathymetric DEM has a 5 m spatial
resolution with one attribute representing lake depth in (negative) feet, covering approxi-
mately 1900 lakes. An example of the lake bathymetric DEM is shown in Figure 3.
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Figure 3. An example of the lake bathymetric DEM of Turtle Lake in the state of Minnesota.

2.2.2. Remote Sensing Data

We used various remote sensing products (see Table 1) to quantify lake water dynamics
and explore influencing factors. All of these remote sensing products [67] and the main
data processing are completed on the Google Earth Engine platform. Google Earth Engine
is a remote sensing archive with petabytes of data in one location, as well as a cloud-
based geospatial processing platform for large-scale data analysis. It is unique in the
field as an integrated platform due to the following advantages: (1) The public data
catalog has vast amounts of publicly available data including imagery, geophysical, climate
and weather, demographic, and vector data. (2) Unprecedented speed resulted from the
distributed, cloud-based computing power which reduces processing times by orders of
magnitude. (3) The application program interface (code editor) empowers traditional
remote sensing scientists, and the graphical user interface (explorer) provides a friendly
way to begin exploring and analyzing data for a much wider audience that lacks the
technical capacity [67].

The European Commission’s Joint Research Centre (JRC) Global Surface Water (GSW)
was derived from three million Landsat satellite images (i.e., Landsat 5/7/8), recording
the months and years when water was present, where occurrence changed and what form
changes took in terms of seasonality and persistence at a 30 m resolution from 1984 to
2019 [68]. Each pixel was individually classified as water/non-water. We derived multi-
temporal water surface areas based on the JRC GSW images. Figure 4 shows examples of
lake water areas extracted from Landsat images for the year 1998, 2003, 2008, and 2018,
respectively. Each background image shown in Figure 4 is a false-color composite.
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(GSW) dataset.

The Penman–Monteith–Leuning Evapotranspiration V2 (PML_V2) products include
evapotranspiration (ET) and gross primary product (GPP) at a 500 m spatial resolution
with an 8 day temporal frequency from 2002 to 2017. Each PML_V2 imagery consists
of five bands, including the gross primary product (GPP), vegetation transpiration (Ec),
soil evaporation (Es), interception from vegetation canopy (Ei), waterbody, snow, and ice
evaporation (ET_water). We derived the waterbody evaporation, a vital influencing factor,
from the ET_water band in this study.

The Daily Surface Weather and Climatological Summaries (Daymet V3) dataset pro-
vides gridded estimates of daily weather parameters for the United States. It was derived
from selected meteorological station data and various supporting data sources during
1980–2020. Each Daymet V3 imagery has seven bands with a 1 km spatial resolution, in-
cluding the duration of the daylight period (day1), daily total precipitation (prcp), incident
shortwave radiation flux density (srad), Snow water equivalent (swe), Daily maximum
2 m air temperature (tmax), daily minimum 2 m air temperature (tmin), daily average
partial pressure of water vapor (vp). As one of the influencing factors of water provisioning
ecosystem services, the annual precipitation was derived from the ‘prcp’ band.

The Terra Land Surface Temperature and Emissivity dataset from the United States
Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center in-
cludes an average 8 day land surface temperature (LST) in a 1 × 1 km2 grid with 12 bands
since 2000. We used the ‘day land surface temperature’ band to extract the average daily
temperature in 2018 for influencing factor analysis.
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The National Land Cover Database (NLCD) is a 30 m Landsat-based land cover
database. The ‘landcover’ band, which classified land use into 20 categories, was used to
calculate the vegetation coverage rate and the artificial land coverage rate. We identified
developed areas (open space, low intensity, medium intensity, and high intensity) as
artificial land, forest, grassland, and shrub areas as vegetation coverage land.

2.2.3. Demographic and Economic Data

As indicators that directly reflect the intensity of human activities, population, and
gross domestic product (GDP) statistics at the county level were obtained from the United
States Department of Commerce database [69]. Figure 5 shows that the population and
GDP in Minnesota have been rising steadily since 1998. It was reported that 4,726,411 peo-
ple lived in Minnesota in 1998, and 20 years later in 2018, the total population increased to
5,608,762, with an annual growth rate of 0.86% (1998–2018). With these new numbers, Min-
nesota became the 21st most populous state in the US [70,71]. The economy of Minnesota
produced USD 166.87 billion of gross domestic product in 1998, and it increased to USD
337.22 billion in 2018 [72,73], with an annual growth rate of 5.44% (1998–2018) [74].
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2.3. Water Storage Estimation Method

Lakes are one of the most important natural ecosystems, being highly valued for a wide
range of ecosystem services. According to the ecosystem services classification proposed
by the Millennium Ecosystem Assessment (MA), a lake ecosystem provides provisioning
services, regulating services, cultural services, and supporting services (Figure 6). We
focused on the water provisioning ecosystem services of lakes in this study, and water
storage is an essential assessment component.
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Wu et al. [75] proposed a new approach for estimating the above-water volume of
wetland depressions in the Prairie Pothole Region (PPR) using a contour-tree method with
DEMs derived from light detection and ranging (LiDAR) data. The above-water volume
(VAW) of each depression was calculated based on a statistical analysis of the LiDAR DEM
cells enclosed by the depression boundary contour:

VAW = (Z× C− S)× R2 (1)

where Z is the elevation of the depression boundary contour; C is the number of cells
enclosed by the depression boundary contour; S is the summation of elevation values of all
cells enclosed by the contour; R is the spatial resolution of the LiDAR DEM.

We adopted the same method to calculate lake water storage based on the bathymetric
data cells with a 5 m spatial resolution. As shown in Figure 7, the lake water was divided
into cuboids based on pixels of DEM, and the above-water volume was calculated by the
summation of the volumes of these cuboids. The total lake water storage can be calculated
as follows:

Vlk =
m

∑
i=1

(ECi × Ni − Si)× R2 (2)

where Vlk is the total lake water storage; m is the number of lakes, which is equal to 1290
in this study; ECi is the contour elevation of lake i; Ni is the number of cells enclosed by
the contour of lake i; Si is the summation of bathymetric elevation values enclosed by
the contour of lake i; R2 is the pixel area of bathymetry cells, which is equal to 25 m2 in
this paper.
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2.4. A Multidimensional Assessment Framework

The multidimensional ecosystem services assessment framework we proposed in
2020 [5] explores ecosystem services from multiple perspectives. It focuses on the ser-
vice output from the natural ecosystems and analyzes the service efficiency and trend
simultaneously. It considers the output per unit area among different ecosystems and the
changes over time in one ecosystem, which have been largely ignored in the traditional
assessment methods.

Ecosystem services are assessed in three dimensions in this framework, including
output (P), efficiency (Q), and trend (D). The output is defined as the total amount of
ecosystem services provided by natural ecosystems, and it is the total water storage in
this research. The ecosystem service efficiency is defined as the proportion of ecosystem
services generated per unit area of ecosystem, which is lake surface area in this paper.
The trend index indicates the change in ecosystem efficiency, defined as a vector whose
direction and magnitude represent the direction and rate of change, respectively. We used
the total water storage as the water provisioning output index, the water storage divided
by the lake area as the efficiency index, and the water provisioning annual change vector
as the trend index in this paper.

We constructed a multidimensional assessment framework based on three axes, output
(P axis), efficiency (Q axis), and trend (D axis). We defined eight assessment spaces with
various properties in the multidimensional assessment framework. Every object has a
unique ecosystem services assessment cuboid, which means how many assessment space
properties the object shows in the proposed framework. In Figure 8a, objects ‘a’ and ‘d’
are in Space 5, ‘b’ is in Space 3, and ‘c’ is in Space 2. Apparently, ‘a’ and ‘d’ share the
properties of Space 5, and ‘b’ and ‘c’ share the properties of Space 3 and Space 2, respectively.
However, cuboid ‘a’ is much larger than cuboid ‘d’, indicating that ‘a’ has more significant
Space 5 properties.
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A z-score describes the position of a raw score in terms of its distance from the mean,
which is measured in standard deviation units. The z-score is positive if the value is above
the mean, and negative if it is below the mean. It allows the comparison of scores on
different kinds of variables by standardizing the distribution. A z-score can be calculated
by the following formula:

x∗ =
x− x

σ
(3)

where x∗ is the z-score, x is the mean of the raw scores, σ is the standard deviation of the
raw scores. Observations are converted to a standard normal distribution via the z-score
standardization. The mean of the standardized data is 0, and the standard deviation is 1.
At the same time, the position of every object in all observations is revealed. For example,
where a z-score is equal to 2, the observation is larger than 97.7% of the overall data.
Conversely, when a z-score is equal to −2, the observation is smaller than 97.7% of the
overall data (Figure 8b). We defined P-score, Q-score, and D-score (Table 2) according to
the statistical significance of z-scores to express the regional relative level of ecosystem
services in each county.
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Table 2. Formulas of assessment indices.

Index Formula Introduction

P Pij =
P′ ij−P′ j

σP′ j

Pij is the P-score of the county i in the year j, P′ ij is the
lake water storage of the county i in the year j, P′ j is the
average lake water storage of the state in year j, σP′ j is

the standard deviation of all counties in year j.

Q Qij =
Q′ ij−Q′ j

σQ′ j

Qij is the Q-score of ecosystem service efficiency of the
county i in the year j, Q′ ij is the water storage of unit
lake area in the county i in the year j, is the average

water storage of unit lake area in the state in year, σQ′ j is
the standard deviation of all counties in year j.

D
Dij =

∆D′ ij−∆D′ j
σ∆D′ j

∆D′ ij = Qij −Qi(j−1)

Dij is the D-score of the county i in the year j, ∆D′ ij is
the annual efficiency change in the county i in year j,
∆D′ j is the average of annual efficiency change in the

entire state in year j, σ∆D′ j is the annual efficiency
change standard deviation of all counties in year j.

The multidimensional assessment scores (i.e., P, Q, and D) follow a standard normal
distribution. In other words, about 68% of the scores fall within one standard deviation
away from the mean; about 95% of the scores fall within two standard deviations; about
99.7% of the scores fall within three standard deviations (see Figure 8b). We identified
scores with absolute values greater than three as extreme objects. We then converted the
multidimensional assessment results to ‘Q-D,’ ‘P-D,’ ‘P-Q’ distributions by slicing the
multidimensional assessment framework on the P, Q, D plane, respectively (Figure 8c).
Bidimensional projections make the relationship between scores and extreme objects easier
to be identified. The properties of each assessment space are shown in Table 3.

Table 3. Multidimensional assessment spaces and their properties.

Space P Q D Properties Description

1 + + + The total output, efficiency, and trend index are above average. Progression

2 + + − The total output and efficiency are above average, but the trend index is
below average. Degradation

3 + − + Although the efficiency is below average, it has been raised. The
above-average output depends on the larger ecosystem area. Progression

4 + − − The efficiency is below average, and it has degraded. The above-average
output depends on the ecosystem scales. Degradation

5 − + + The output is below average, indicating that the ecosystem scale should be
expanded. Progression

6 − + − Both the output and the trend index are below average, but it has high
efficiency. Degradation

7 − − + The output and efficiency are below average, but it has an above-average
trend index. Progression

8 − − − All three indices are below average. It has a lower output and efficiency.
Simultaneously and unfortunately, it has degraded. Degradation

2.5. Exploratory Spatial Data Analysis

Much of the groundwork in spatial statistics is concerned with the description and
exploration of spatial datasets [76]. The generic term for such methods in the context of
spatial analysis is exploratory spatial data analysis (ESDA). In practical applications, ESDA
emphasizes the natural distribution of spatial data, focusing on the correlation of events,
inheriting the quantitative geographic analysis methods, and exploring the spatial patterns
of data [77].

Spatial clustering is the grouping of spatial datasets, with maximized intra-group
similarities and the differences among groups, which is an efficacious method for spatial
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distribution identification and outlier detection. Some traditional methods such as Moran’s
I analysis, hotspot analysis, and grouping analysis are used frequently in spatial clustering
analysis. We used hotspot analysis, supported by the Getis–Ord Gi* statistic, to identify
statistically significant clusters of high values (hot spots) and low values (cold spots) in
this study. Gi* is positive for a ‘hot spot’ and negative for a ‘cold spot’. The Getis–Ord Gi*
statistic with n observations (x1, x2, . . . , xn) can be calculated using the following formula:

Gi∗ =
∑n

j=1 wijxj − x ∑n
j=1 wij√

∑n
j=1 x2

j
n − 1

x2

√ [
n ∑n

j=1 ww
ij−
(

∑n
j=1 wij

)2
]

n−1

(4)

where x is the mean of the observations (x1, x2, . . . , xn), wij is the spatial weight between
xi and xj, i, j = 1, 2, . . . , n.

The z-scores and p-values derived from the hotspot analysis are measures of statistical
significance indicating whether or not to reject the null hypothesis that the values analyzed
have a random spatial distribution. In effect, they indicate whether the observed spatial
clustering of high or low values is more pronounced than one would expect in a random
distribution of the same values. The critical p-values and z-scores are shown in Table 4.

Table 4. Critical p-value and z-score with various confidence levels.

z-Score (Standard Deviation) p-Value (Probability) Confidence Level

z < −1.65 or z > +1.65 p < 0.1 90%
z < −1.95 or z > +1.95 p < 0.05 95%
z < −2.58 or z > +2.58 p < 0.01 99%

We analyzed P-scores, Q-scores, and D-scores using exploratory spatial data analysis
methods to describe the spatial distribution of ecosystem services output, efficiency, and
development trend, respectively.

2.6. Principal Components Regression

Principal components regression (PCR) is a technique for analyzing multiple regres-
sion data that suffer from multicollinearity. When multicollinearity occurs, least squares
estimates are unbiased, but their variances are large so they may be far from the true value.
The theory of PCR is to eliminate multicollinearity of original variables using principal
component analysis. The principal component variables are used as independent variables
in the regression model, and then they are substituted with the original variables according
to the score coefficient matrix to the regression model obtained. The principal components
regression model with n sets of observations and k original variables Xk×n can be outlined
as follows:

Xk×n =

 x11 · · · x1n
...

. . .
...

xk1 · · · xkn

 (5)

First, complete a principal components analysis of the X matrix and save the principal
components in Z. We then transform the original variables to their principal components as:

X′X = PDP′ = Z′Z (6)

where D is a diagonal matrix of the eigenvalues of X′X, P is the eigenvector matrix of
X′X, and Z is a data matrix made up of the principal components. P is orthogonal so that
P′P = I.

Second, fit the regression of Y on Z obtaining least squares estimates of A.

Â =
(
Z′Z

)−1Z′Y = D−1Z′Y (7)
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Third, set the last element of A equal to zero and transform back to the original
coefficients using B = PA. The two sets of regression coefficients, A for principal components
and B for original variables, are related using the formulas

A = P′B (8)

B = PA (9)

Last, the F test is adopted to test the statistical significance of the principal component
regression model in this study.

2.7. Mann–Kendall Test and Sen’s Slope Estimator

The Mann–Kendall test is used to determine whether a time series has a monotonic
upward or downward trend. It does not require that the data be normally distributed or
linear. It does require that there is no autocorrelation. The null hypothesis for this test is
that there is no monotonic trend in the series. The alternate hypothesis is that a trend exists.
This trend can be positive, negative, or non-null. The Mann–Kendall test with n sets of a
time series can be expressed as follows:

S =
n−1

∑
i=1

[
n

∑
j=i+1

sign
(
xj − xi

)]
(10)

If S > 0, the later observations in the time series tend to be larger than those that
appear earlier in the time series, and vice versa. It has been documented that when n ≥ 8,
the statistic S is approximately distributed with the mean E(S) = 0. The variance statistic
is given as:

Var(S) =
n(n− 1)(2n + 5)−∑m

i=1 ti(i− 1)(2i + 5)
18

(11)

where ti is the number of ties up to sample i, the Mann–Kendall test statistics Zc is defined
as follows:

Zc =


S−1√
Var(S)

, S > 0

0, S = 0
S+1√
Var(S)

, S < 0
(12)

Zc follows a standard normal distribution here. When Zc > 0, the original time series
signifies an upward trend, and vice versa. Suppose we want to test the null hypothesis H0:
There is no monotonic trend in a time series, versus the alternative hypothesis H1: There
is a statistically significate downward or upward trend. Given a confidence level α, H0
would be rejected if |Zc| > Z(1− α/2), which means the time series would be supposed to
experience a statistically significant trend, where Z(1− α/2) is the corresponding value
of p = α/2 following the standard normal distribution. On the contrary, H1 would be
rejected if |Zc| < Z(1− α/2), which means there is no monotonic trend in the time series.

In addition, the magnitude of a time series trend can be evaluated by a simple non-
parametric procedure developed by Sen. The trend is calculated by:

β = Median
( xj − xi

j− i

)
, j > i (13)

where β is Sen’s slope estimate. β > 0 indicates an upward trend in a time series, β < 0
significates a downward trend.
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3. Results
3.1. Spatio-Temporal Development of Water Provisioning
3.1.1. Temporal Analysis Results

The total water storage showed a fluctuating curve, with the total volume dropped
from 26.95 billion cubic meters in 1998 to 20.95 billion cubic meters in 2018. The fluctuations
strengthened year by year, indicating the stability of water storage gradually decreased.
Figure 9 shows that the total lake surface area and the total lake water storage have similar
development curves.
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Figure 9. The temporal trend of total lake water storage and lake surface area in Minnesota (1998–2018).

According to the Mann–Kendall test, |Zc| < Z (1− α/2), and p > 0.05, which means
we cannot reject the null hypothesis. The total lake water storage in Minnesota has no
statistically significant monotonic trend from 1998 to 2018 (Table 5), even though the curve
shows a slight downward trend visually.

Table 5. Mann–Kendall test and Sen’s slope estimator.

Zc α Var(S) Z(1−α/2) p-Value β

−0.8757 0.05 1096.67 1.9600 0.3812 −0.7027

3.1.2. Spatial Analysis Results

We selected 1998, 2003, 2008, 2013, and 2018 as the representative years to explore the
spatial characteristics of water provisioning ecosystem services at the county level. The
water provisioning ecosystem services provided by each lake belong to the county where
the lake contour geometric center is located.

From the perspective of water provisioning total output (i.e., P-score), water provision-
ing output has a stable spatial distribution. The above-average areas are mainly located
in the North Central and Northeast. St. Louis, Cass, and Mille Lacs (Figure 10) have the
highest water provisioning output where P-scores were three times the standard deviation,
higher than the average. In contrast, the below-average areas dispersed in West Center,
Central, Southwest, South Central, and Southeast. Moreover, there is no P-score less than
−1, which means no county where the P-score is one standard deviation less than the
average. In other words, water provisioning ecosystem services have been abundant in the
study area.
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According to the hotspot analysis results (Figure 10), water provisioning services have
a stable spatial clustering pattern without any cold spot for 21 years. The high P-score
values are concentrated in North Central, East Central, and Northeast. It reveals that the
zones with lower water provisioning services exhibited a random distribution while the
higher service output zones clustered with high spatial autocorrelation.

Q-scores reflect the efficiency of water provisioning services and have a stable spatial
distribution similar to P-scores. North Central, East Central, and Northeast are where the
above-average Q-scores concentrate, while the below-average Q-scores dominate other
zones. Hubbard and Mille Lacs (Figure 11) have the highest Q-scores from 1998–2013,
with twice the standard deviation above the average. It shows that Hubbard and Mille
Lacs counties have the best water provisioning service efficiency. Comparing the Q-scores
spatial distribution at these 5 years, we found that the water provisioning service efficiency
deteriorates. The areas with above-average Q-scores shrink year by year, while areas with
below-average Q-scores expand. The area with one standard deviation above the average
Q-scores dropped from 34.43% of the total area to 28.82% during 1998–2018. The Q-scores
area, one standard deviation below the average, grew from 2003 and expanded to 15.69%
of the total area in 2018.
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The Q-score hotspot analysis results identified hot spots and colds pots. Hot spots
are mainly located in North Central and Northeast, with an apparent eastward shift. Cold
spots expanded before 2008 and then contracted. There are two cold spots, and the larger
one was concentrated in Southwest, South Central, and Southeast in 1998, and shrank to
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Southwest in 2018. The other one appeared in Northwest in 2003, with expansion, reached
the enormous areal scale in 2008, and shrank afterwards.

The D-scores distribution shows a “comparable average values dominated, and ex-
treme values dispersed” pattern (Figure 12). They are mainly between one standard
deviation below the average and one standard deviation above the average. In compari-
son, the water provisioning service trend’s stability declines, which is witnessed by the
expansion of extreme D-scores and the erosion of comparable average D-scores.
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Cold spots and hot spots have changed significantly. Hot spots shifted towards the
south; they passed East Central from Northeast and moved to South Central. Cold spots
show a counterclockwise shift of “South Central −→ East Central −→ North Central
−→West Central”. The spatial changes of hot spots and cold spots are very active with
long-distance movements, indicating no stable spatial clustering pattern in the water
provisioning service trend.

3.2. County-Level Distribution in the Multidimensional Assessment Framework

We, respectively, projected the co-ordinates (P, Q, D) of each county in the multidi-
mensional assessment framework to the co-ordinate plane from the positive and negative
directions to concisely express the distribution of assessment results in the multidimen-
sional assessment framework at the county level (Figure 13).
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mensional assessment framework to the co-ordinate plane from the positive and negative 
directions to concisely express the distribution of assessment results in the multidimen-
sional assessment framework at the county level (Figure 13). 

Figure 13. Multidimensional assessment results projected on P plane at the county level.

The projection based on the P plane shows that the number of counties with below-
average water provisioning output far exceeds the number of above-average counties
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(Figure 13). The section with below-average efficiency accounts for 70% of the counties
where the P-score is negative and all of the counties with a positive P-score have above
average efficiency. From the perspective of the trend index, the number of counties with
below and above-average is similar.

According to the Q plane projection, the number of below-average efficiency counties
is similar to that of above-average ones (Figure 14). All of the output remains slightly below
average where the Q-score is negative, while it is dominated by comparable average values
where Q-score is positive. Most of the counties (almost 70%) have a below-average trend
index where the Q-score is negative and comparable average values where the Q-score
is positive.
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From the D plane projection perspective, the number of below-average trend counties
is also similar to that of above-average ones (Figure 15). Over 70% of the counties have
below-average output no matter whether the D-score is positive or negative. More than
60% of the counties have below-average efficiency when the D-score is negative, and this
percentage declines when the D-score is positive.
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3.3. Identification of Degradation Zones

We comprehensively analyzed the trend index of each county in five studied years
and classified the study area into five categories according to the degradation situation.
We identified the counties degraded at all the 5 years as type A degradation zones, 4 year,
3 year, 2 year, and 1 year degradation counties as type B, C, D, E, respectively (see Figure 16
and Supplementary Table S1).
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3.4. Analysis of Influencing Factors

Considering the guiding significance to current practice, we selected the newest year,
2018, to construct the influencing factor model. Previous studies commonly divided the
above-ground water storage factors into socioeconomic and climatic factors. We selected
the population (POP), artificial surface coverage rate (AS), cultivated area (CA), and
gross domestic product (GDP) as the socioeconomic factors, and evapotranspiration (ES),
precipitation (PRE), temperature (T), and vegetation surface rate (VS) as climatic factors.
Correlation analysis shows that these parameters have multicollinearity (Table 6).

Table 6. Correlation coefficients of influencing factors.

Correlation Coefficient AS GDP POP ES PRE T VS CA

AS 1.00 0.77 0.82 0.63 0.09 0.20 −0.50 −0.24
GDP 0.77 1.00 0.97 0.45 0.02 0.12 −0.41 −0.20
POP 0.82 0.97 1.00 0.46 0.02 0.12 −0.45 −0.25
ES 0.63 0.45 0.46 1.00 0.51 0.74 0.23 0.27

PRE 0.09 0.02 0.02 0.51 1.00 0.40 0.49 −0.02
T 0.20 0.12 0.12 0.74 0.40 1.00 0.56 0.42

VS −0.50 −0.41 −0.45 0.23 0.49 0.56 1.00 0.52
CA −0.24 −0.20 −0.25 0.27 −0.02 0.42 0.52 1.00
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We built a principal components regression model to explore the relationship between
the influencing factors and the multidimensional water provisioning services in Minnesota.
The results are as follows:

P = 1.64− 2.19AS− 1.06GDP + 0.34POP− 0.22ES + 0.66PRE− 0.89T − 1.62VS− 0.43CA (14)

Q = 1.34 + 1.44AS + 0.80GDP + 1.03POP− 1.53ES + 0.84PRE− 1.98T − 0.19VS− 0.67CA (15)

D = −0.47− 0.32AS + 0.51GDP + 0.42POP− 0.03ES + 1.84PRE + 0.39T− 1.05VS + 0.16CA (16)

The F test shows that the above model is credible within a 95% confidence interval
(Supplementary Table S2).

4. Discussion

We analyzed the lake water provisioning services in Minnesota from both spatial and
temporal perspectives. The temporal analysis shows that lake water storage in Minnesota
fluctuated over time from 1998 to 2018 with an increasing interference, which is consistent
with the results of the Lake Hydrology Program [78]. According to Minnesota’s water
supply report by the Minnesota Department of Natural Resources Waters [79] and Min-
nesota water use report by the University of Minnesota Water Resources Center, surface
water plays an essential role in water provisioning in Minnesota, such as public water
supply and irrigation, and cooling in power generation. About 18.6% of the water comes
from groundwater, and the remaining water used comes from surface water. They also
found a growing consumption of surface water, which could contribute to the increasing
disturbance we found in this study.

Water provisioning output, efficiency, and trend have relatively stable spatial distribu-
tion, while the clustering patterns are different: (1) The high-value output zones are located
in Northeast Minnesota, including Northeast, North Central, and East Central, dominated
by forests. This distribution does not necessarily match the demand distribution for agri-
cultural and industrial water use. We should consider the availability of abundant water
provisioning for agricultural and industrial processing in the development plan. Only
one high-value cluster in water provisioning output indicates that the water provisioning
output is sound in total; there is no large-scale water shortage area. (2) Efficiency represents
the water provisioning capacity per unit surface water ecosystem. The spatial distribution
is similar to the output; high values are concentrated in Northeastern Minnesota. Thus, the
spatial mismatch between supply and demand also exists in the distribution of efficiency.
Unlike the output, the low-value clusters are significantly inefficient, which means the wa-
ter provisioning capacity per unit of surface water is flimsy, where the below-average zones
frequently appear considerably. (3) Compared with the above two indicators, the trend
index distribution is largely random. However, the low-value area significantly expanded,
so as the hot spots and cold spots. It shows that the water provisioning trend index declines
over time, the below-average area expands, and extreme values are gathering considerably.

Projections from co-ordinate planes defined by assessment dimensions prove wa-
ter provisioning efficiency is positively dependent on output, where output is above-
average, the efficiency is above-average, too. While output is negatively dependent on
efficiency, where efficiency is below-average, the output is below-average also. These
correlations should be considered in surface water resources management and ecosystem
protection projects.

We identified nine counties, including Becker, Cass, Clay, Douglas, Lincoln, Pope,
Stevens, Transverse, and Yellow Medicine, where water provisioning service is degrading in
the five studied years and fifteen counties degraded for four out of five years. Counties with
severe water provisioning degradation are mainly concentrated in three zones (Northeast,
East Central, and Southeast) in Western Minnesota. The degradation area distribution
is consistent with the distribution of cropland in Minnesota, while it does not match the
population and industry distribution. Agricultural activities have proved to be highly
dependent on surface water availability [80]. Simultaneously, the human disturbances to
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surface water are strong where the agricultural activities are vigorous, such as dam water
storage and irrigation drainage [81–83]. Thus, it is reasonable that prosperous agricultural
production is primarily responsible for the degradation of water provisioning services in
Western Minnesota, compared with the population or industrial activities.

The quantitative model between the influencing factors and the assessment results
show that human activities have a more substantial impact on water provisioning output
than natural climate factors, which reminds us that protecting the total water storage
and developing the economy is fundamentally an organic unity and complement each
other. The climate factors, especially temperature and precipitation, have more substantive
impact on water provisioning efficiency and trend. It confirms that combat climate change
measures are essential for improving water provisioning efficiency and intervening in
its trends.

We conducted this comprehensive study based on remote sensing products and
lake bathymetric data, analyzed the characteristics of water provisioning development of
70 counties in Minnesota from temporal and spatial perspectives, interpreted ecosystem
services from multiple dimensions and quantitatively explored their influencing factors.
Nevertheless, the study has some limitations: (1) Due to the limited availability of lake
bathymetric data, some lakes without lake bathymetric data were not included in the
analysis, which might result in some deviations between the county-level analysis and the
actual situation. (2) We only selected five time periods (i.e., 1998, 2003, 2008, 2013, and
2018) as the representative years to explore the spatial characteristics of water provisioning
ecosystem services at the county level. It should be noted that each time period is just one
snapshot in time, which might not capture the changes between the representative years.
(3) The natural ecosystems are dynamic complexes of plants, animals, micro-organism
communities, and non-living environments interacting as functional units [84]. Their
mechanisms and functional processes are complicated and correlated. We adopted a
linear model to simulate the various influencing factors, which can reflect the function
intensity of influencing factors, but it cannot simulate or express the specific process and its
mechanism of influencing factors. (4) Our proposed framework highlights water storage
as the main factor affecting lake ecosystem services. However, there are other factors (e.g.,
water quality, air quality, local climate regulation, aesthetics) that may also significantly
affect lake ecosystem services [85,86]. Due to the lack of relevant data at the individual
lake level, we did not integrate these factors into our framework. Future research can
focus on applying the multidimensional ecosystem service assessment framework to other
ecosystem services and exploring models that simulate real processes of how influencing
factors work.

5. Conclusions

We conducted a comprehensive, long-term, multidimensional ecosystem service as-
sessment that can potentially benefit policymakers. First, we revealed some neglected
degradations in traditional output-based assessment, such as the water provisioning ca-
pacity per unit of surface water is flimsy, and the number of counties with degradation is
increasing. Second, we identified the relatively stable distribution of water provisioning ser-
vices during 1998–2018 and the various spatial clustering patterns from three dimensions.
Third, we revealed the dependence between high-level efficiency and high-level output,
low-level output, and low-level efficiency, which could potentially be used in the water re-
sources utilization and ecosystem service management. Fourth, we identified nine severely
degraded counties and revealed that the Western Minnesota counties are more degraded
than the others, which is particularly important to the sustainable ecosystem utilization
and ecological services enhancement. Last but not least, we modeled the relationships
between the principal influencing factors and the multidimensional assessment results,
which reveals that human activities impact water provisioning services in Minnesota more
than climate changes.
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In summary, the contributions of this study are as follows: First, we expanded the
perspective of ecosystem services assessment from ‘output’ to an ‘output-efficiency-trend’
multidimensional framework, measuring the provisioning capacity of ecological services
per unit area of the ecosystem and the trend while assessing the output. Thus, we revealed
some degradations which could not be identified in traditional output perspective assess-
ment. Secondly, we identified the priorities for policymakers to underpin better protection
of lake ecosystems; the higher the degradation level of a county, the higher the priorities it
should have. Finally, we revealed that human activities have a more substantial impact
than climate change on output and should be paid more attention to output enhancing
policy formulation and management implementation. While efficiency and trend are more
sensitive to climate changes than human activities, combat climate-changing measures are
essential for improving efficiency and development.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.
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